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Chapter

A New BEM for Modeling
of Acoustic Wave Propagation
in Three-Temperature
Nonlinear Generalized
Magneto-Thermoelastic ISMFGA
Structures Using Laser Ultrasonics
Mohamed Abdelsabour Fahmy

Abstract

The principal aim of this chapter is to introduce a new theory called acoustic
wave propagation of three-temperature nonlinear generalized magneto-
thermoelasticity, and we propose a new boundary element model for solving prob-
lems of initially stressed multilayered functionally graded anisotropic (ISMFGA)
structures using laser ultrasonics, which connected with the proposed theory. Since
there are no available analytical or numerical solutions for the considered nonlinear
wave propagation problems in the literature, we propose a new boundary element
modeling formulation for the solution of such problems. The numerical results are
depicted graphically to show the propagation of three temperatures and displace-
ment waves. The results also show the effects of initial stress and functionally
graded material on the displacement waves and confirm the validity and accuracy
of our proposed theory and solution technique.

Keywords: boundary element method, acoustic wave propagation,
three-temperature, nonlinear generalized magneto-thermoelasticity,
initially stressed multilayered functionally graded anisotropic structures,
laser ultrasonics

1. Introduction

Physically, according to particle motion orientation and energy direction, there
are three wave types, which are categorized as mechanical waves, electromagnetic
waves, and matter waves. Mechanical waves are waves, which cannot travel
through a vacuum and can travel through any medium at a wave speed, which
depends on elasticity and inertia. There are three types of mechanical waves: longi-
tudinal, transverse, and surface waves. Longitudinal waves occur when the move-
ment of the particles is parallel to the energy motion like sound waves and pressure
waves. Transverse waves appear when the movement of the particles is
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perpendicular to the energy motion like light waves, polarized waves, and electro-
magnetic waves. Surface waves happen when the movement of the particles is in a
circular motion. These waves usually occur at interfaces like ocean waves and cup of
water ripples. Electromagnetic waves are generated by a fusion of electric and
magnetic fields. These waves travel through a vacuum and do not need a medium to
travel like microwaves, X-ray, radio waves, and ultraviolet waves. The matter has a
wave–particle duality property, where in 1905, Albert Einstein introduced a quan-
tum mechanics theory stating that light has a dual nature; when the light is moving,
it shows the wave properties, and when it is at rest, it shows the particle properties,
where each light particle has an energy quantum called a photon. Sound is a pres-
sure variation, where a condensation is an increased pressure region on a sound
wave and a dilation is a decreased pressure region on a sound wave. Acoustics is the
science of study related to the study of sound in gases, liquids, and solids including
subjects such as vibration, sound, ultrasound, and infrasound and has grown to
encompass the realm of ultrasonics and infrasonics in addition to the audio range, as
the result of applications in oceanology, materials science, medicine, dentistry,
communications, industrial processes, petroleum and mineral prospecting, music
and voice synthesis, marine navigation, animal bioacoustics, and noise cancelation.
There are two mechanisms that have been proposed to explain wave generation,
which depend on the energy density of laser pulse, a first mechanism at high-energy
density, where a thin layer of solid material melts, followed by a dissolution process
where the particles fly off the surface, which leads to forces that generate ultra-
sound, and a second mechanism at low-energy density, where irradiation of laser
pulses onto a material generates elastic waves due to the thermoelastic process of
expansion of a surface at a high rate. Ultrasound generation with lasers offers a
number of advantages over conventional generation with piezoelectric transducers.
Since the ultrasound generation by a laser pulse in the thermoelastic range does not
damage the material surface, it has several applications such as fiber-optic commu-
nication, narrow-band and broadband systems, the ability to work on hard to reach
places, curved and rough surfaces, absolute beam energy measurements, and digital
images having higher spatial resolution. The process of converting a laser source
into an equivalent set of stress boundary conditions takes the largest share of the
effort involved in modeling of laser-generated ultrasound, which is very useful in
describing the features of a laser-generated ultrasonic in the thermoelastic system
[1–3]. Due to the interaction between laser light and a metal surface, the generation
of high-frequency acoustic pulses causes the laser irradiation of a metal surface. It
led to great progress to develop theoretical models to describe the experimental data
[4]. Scruby et al. [5] demonstrated that the thermoelastic area source has been
reduced to a point-source influential on the surface. This source point ignores the
optical absorption of laser energy into the bulk material and the thermal diffusion
from the heat source. Moreover, it does not take into account the limited side
dimensions of the source. Rose [6] introduced surface center of expansion (SCOE)
based on point-source representation. The SCOE models predict the major features
of laser-generated ultrasound waves and agree with experiments particularly well
for highly focused Q-switched laser pulses. It fails to predict a precursor in ultra-
sonic waveforms on and near the epicenter. The precursor is a small sharp initial
spike observed in metals signaling the arrival of the longitudinal wave. Doyle [7]
established that the existence of the metal precursor is due to subsurface sources
which arise from thermal diffusion, since the optical absorption depth is very small
in comparison to the thermal diffusion length. According to McDonald [8], Spicer
[9] used the generalized thermoelasticity theory to constitute a real model, taking
into consideration spatial–temporal shape of the laser pulse and the effect of
thermal diffusion.
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The mathematical foundations of three-temperature thermoelasticity were
defined for the first time by Fahmy [10–14]. Analytical solutions for the current
nonlinear generalized thermoelastic problems which are associated with the pro-
posed theory are very difficult to obtain, so many numerical methods were devel-
oped for solving such problems like finite difference method [15], discontinuous
Galerkin method [16], finite element method (FEM) [17], boundary element
method (BEM) [18–31], and other developed techniques [32–36]. The boundary
element method [37–67] is actualized effectively for tackling a few designing and
logical applications because of its straightforwardness, precision, and simplicity of
execution.

In the present chapter, we introduce a new acoustic wave propagation theory
called three-temperature nonlinear generalized magneto-thermoelasticity, and
we propose a new boundary element technique for modeling problems of ini-
tially stressed multilayered functionally graded anisotropic (ISMFGA) struc-
tures using laser ultrasonics, which connected with the proposed theory, where
we used the three-temperature (3T) radiative heat conduction equations com-
bined with electron, ion, and photon temperatures in the formulation of such
problems. The numerical results are presented graphically to show the effects of
three temperatures on the displacement wave propagation in the x-axis direction
of ISMFGA structures. The numerical results also show the propagation of the
displacement waves of homogenous and functionally graded structures under
the effect of initial stress. The validity and accuracy of our proposed model was
demonstrated by comparing our BEM results with the corresponding FDM and
FEM results.

A brief summary of the paper is as follows: Section 1 introduces the background
and provides the readers with the necessary information to books and articles for a
better understanding of wave propagation problems in three-temperature nonlinear
generalized magneto-thermoelastic ISMFGA structures and their applications. Sec-
tion 2 describes the formulation of the new theory and introduces the partial
differential equations that govern its related problems. Section 3 outlines continuity
and initial and boundary conditions of the considered problem. Section 4 discusses
the implementation of the new BEM and its implementation for solving the
governing equations of the problem to obtain the three temperatures and displace-
ment fields. Section 5 presents the new numerical results that describe the displace-
ment waves and three-temperature waves under the effect of initial stress on the
homogeneous and functionally graded structures.

2. Formulation of the problem

Consider a multilayered structure with n functionally graded layers in the yz-
plane of a Cartesian coordinate. The x-axis is the common normal to all layers as
shown in Figure 1. The thickness of the considered multilayered structure and the

ith layer is denoted by h and hi, respectively. The considered multilayered structure
which occupies the region R ¼ x, y, zð Þ : 0< x< h, 0< y< b, 0< z< af g has been
placed in a primary magnetic field H0 acting in the direction of the y-axis.

According to the three-temperature theory, the governing equations of
nonlinear generalized magneto-thermoelasticity in an initially stressed multilayered
functionally graded anisotropic (ISMFGA) structure for the ith layer can be written
in the following form:

σab,b þ τab,b � Γab ¼ ρi xþ 1ð Þm€uia (1)
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σab ¼ χ þ 1ð Þm Ci
abfgu

i
f ,g � βiab Ti � T0 þ τ1 _T

i
� �h i

(2)

τab ¼ μi xþ 1ð Þm ~haHb þ ~hbHa � δba
~h fH f

� �� �

(3)

Γab ¼ Pi xþ 1ð Þm
∂uia
∂xb

�
∂uib
∂xa

� �

(4)

According to Fahmy [10], the 2D-3 T radiative heat conduction equations can be
expressed as follows:

∇ δ1j
i ∗
α þ δ2j

i
α

� �
∇Ti

α r, τð Þ
� 	

� r, τð Þ ¼ ciαρ
iδ1δ1j

∂Ti
α r, τð Þ

∂τ
(5)

where

 r, τð Þ ¼

ρieI Ti
e � Ti

I

� �
þ ρier Ti

e � Ti
p

� �

þ, α ¼ e, δ1 ¼ 1

�ρieI Ti
e � Ti

p

� �

þ, α ¼ I, δ1 ¼ 1

�ρier Ti
e � Ti

p

� �

þ, α ¼ p, δ1 ¼ T3
p

8

>>>><

>>>>:

(6)

in which

W r, τð Þ ¼ �δ2j
i
α
_Tα,ab þ βabTα0 τ0 þ δ2j

� �
€ua,b

� 	
þ ρiciα τ0 þ δ1jτ2 þ δ2j

� �
€Tα

� 	
�Q x, τð Þ

(7)

and

eI ¼ ρieIT
�2=3
e ,er ¼ ρierT

�1=2
e ,α ¼ αT

5=2
α , α ¼ e, I,

p ¼ pT
3þ
p

(8)

Figure 1.
Geometry of the FGA structure.
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The total energy of unit mass can be described by

P ¼ Pe þ PI þ Pp, Pe ¼ cαeT
i
e, PI ¼ cαIT

i
l, Pp ¼

1

4
cαpT

4i
p (9)

where σab, τab, and uik are the mechanical stress tensor, Maxwell’s electromag-

netic stress tensor, and displacement vector, respectively; Ti
α0 is the reference

temperature; Ti
α is the temperature; Ci

abfg and βiab are, respectively, the constant

elastic moduli and stress-temperature coefficients of the anisotropic medium; μi, ~h,

Pi, ρi, and ciα are the magnetic permeability, perturbed magnetic field, initial stress
in the ith layer, density, and specific heat capacity, respectively; τ is the time; τ0, τ1,
and τ2 are the relaxation times; i ¼ 1, 2, … , n� 1 represents the parameters in a
multilayered structure; and m is a dimensionless constant. Also, we considered in
the current study that τab,b ¼ μi0ϵabf JbH f is the a-component of the Lorentz force

and J τð Þ ¼ J0τ
τ23
e

τ
τ3 is the temporal profile of a non-Gaussian laser pulse, J0 is the total

energy intensity, and Q x, τð Þ ¼ 1�R
x0

e
xa
x0

� �

J τð Þ
, a ¼ 1, 2, 3 is the heat source intensity.

According to Fahmy [57], we notice that there are two special cases of the Green

and Naghdi theory of type III; when i
α ! 0, the equations of GN III theory are

reduced to the GN theory type II, and when i ∗
α ! 0, the equations of the GN III

theory are reduced to the GN theory type I.

3. Continuity and initial and boundary conditions

The continuity conditions along interfaces for the temperature, heat flux,
displacement, and traction can be expressed as follows:

Ti
α x, z, τð Þ x¼hi ¼ T iþ1ð Þ

α x, ztτÞð jx¼hi



 (10)

qi x, z, τð Þ x¼hi ¼ q iþ1ð Þ x, z, τÞð jx¼hi



 (11)

uif x, z, τð Þ






x¼hi

¼ u
iþ1ð Þ
f x, z, τð Þx¼hi (12)

tia x, z, τð Þ






x¼hi

¼ t iþ1ð Þ
a x, z, τð Þx¼hi (13)

where n is the total number of layers, ta are the tractions, which are defined by
ta ¼ σabnb, and i ¼ 1, 2, … , n� 1.

The remaining initial and boundary conditions for the current study are

uif x, z, 0ð Þ ¼ _uif x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (14)

uif x, z, τð Þ ¼ Ψ f x, z, τð Þ for x, zð Þ∈C3 (15)

tia x, z, τð Þ ¼ Φ f x, z, τð Þ for x, zð Þ∈C4, τ>0, (16)

Ti
α x, z, 0ð Þ ¼ Ti

α x, z, 0ð Þ ¼ 0 for x, zð Þ∈R∪C (17)

Ti
α x, y, τð Þ ¼ f x, y, τ

� �
for x, yð Þ∈C1, τ>0 (18)

qi x, z, τð Þ ¼ h x, z, τð Þ for x, zð Þ∈C2, τ>0 (19)
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where Ψ f , Φ f , f , and h are suitably prescribed functions and C ¼ C1 ∪C2 ¼

C3 ∪C4, C1 ∩C2 ¼ C3 ∩C4 ¼ Ø.

4. BEM numerical implementation

Making use of Eqs. (2)–(4), we can write (1) as follows:

Lgbu
i
f ¼ ρiüia � DaT

i
α � Pi ∂uib

∂xa
�

∂uia
∂xb

� �� �

¼ f gb (20)

where the inertia term ρ€ua, the temperature gradient DaT, and the initial stress
term are treated as the body forces.

The field equations may be expressed in the operator form as follows:

Lgbu
i
f ¼ f gb, (21)

LabT
i
α ¼ f ab (22)

where the operators Lgb, f gb, Lab, and f ab are as follows:

Lgb ¼ Dabf
∂

∂xb
þDaf þ ΛDa1f , Lab ¼ δ2j

i ∗
α

� �
∇ (23)

f gb ¼ ρi€uia � DaT
i
α � Pi ∂uib

∂xa
�

∂uia
∂xb

� �� �

(24)

f ab ¼ ∇ δ1j
i
α

� �
∇þ ρiciαδ1δ1j xþ 1ð Þm _T

i

α þ r, τð Þ (25)

where

Dabf ¼ Cabfgε, ε ¼
∂

∂xg
,Daf ¼ μH2

0

∂

∂xa
þ δa1Λ

� �
∂

∂x f
,

Da ¼ �βiab
∂

∂xb
þ δb1Λþ τ1

∂

∂xb
þ Λ

� �
∂

∂τ

� �

, Λ ¼
m

xþ 1
:

The differential equation (21) can be solved using the weighted residual method
(WRM) to obtain the following integral equation:

ð

R
Lgbu

i
f � f gb

� �

ui ∗dadR ¼ 0 (26)

Now, the fundamental solution ui ∗df and traction vectors ti ∗da and tia can be written

as follows:

Lgbu
i ∗
af ¼ �δadδ x, ξð Þ (27)

ti ∗da ¼ Cabfgu
i ∗
df ,gnb (28)

tia ¼
tia

xþ 1ð Þm
¼ Cabfgu

i
f ,g � βiab Ti

α þ τ1T
i
α

� �� �

nb (29)

Using integration by parts and sifting property of the Dirac distribution for (26),
then using Eqs. (27) and (29), we can write the following elastic integral represen-
tation formula:
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uid ξð Þ ¼

ð

C

ui ∗da t
i
a � ti ∗dau

i
a þ ui ∗daβ

i
abT

i
αnb

� �
dC�

ð

R

f gbu
i ∗
dadR (30)

The fundamental solution Ti ∗can be defined as

LabT
i ∗ ¼ �δ x, ξð Þ (31)

By using WRM and integration by parts, we can write (23) as follows:

ð

R

LabT
i
αT

i ∗

α � LabT
i ∗

α Ti
α

� �
dR ¼

ð

C

qi
∗

Ti
α � qiTi ∗

α

� �
dC (32)

where

qi ¼ �i
αT

i
α:bna (33)

qi ∗ ¼ �i
αT

i ∗

α,bna (34)

By the use of sifting property, we obtain from (32) the thermal integral
representation formula:

Ti
α ξð Þ ¼

ð

C

qi
∗

Ti
α � qiTi ∗

α

� �
dC�

ð

R

f abT
i ∗

α dR (35)

By combining (30) and (35), we have

uid ξð Þ

Ti
α ξð Þ

" #

¼

ð

C

�
ti ∗da �ui ∗aaβabnb

0 �qi ∗

" #(

uia
Ti
α

" #

þ
ui ∗da 0

0 �Ti ∗
α

" #

τia

qi

" #)

dC

�

ð

R

ui ∗da 0

0 �Ti ∗
α

" #

f gb

� f ab

" #

dR (36)

The generalized thermoelastic vectors can be expressed in contracted notation
form as follows:

Ui
A ¼

uia a ¼ A ¼ 1, 2, 3

Ti
α A ¼ 4

(

(37)

Ti
αA ¼

tia a ¼ A ¼ 1, 2, 3

qi A ¼ 4

(

(38)

Ui ∗
DA ¼

ui ∗da d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

0 d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�Ti ∗
α D ¼ 4;A ¼ 4

8

>>><

>>>:

(39)

~T
i ∗

αDA ¼

ti ∗aa d ¼ D ¼ 1, 2, 3; a ¼ A ¼ 1, 2, 3

�~ui ∗d d ¼ D ¼ 1, 2, 3;A ¼ 4

0 D ¼ 4; a ¼ A ¼ 1, 2, 3

�qi ∗ D ¼ 4;A ¼ 4

8

>>><

>>>:

(40)
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~ui ∗d ¼ ui ∗daβ
i
afn f (41)

Using the previous vectors, we can write (36) as

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � ~T

i

αDAU
i
A

� �

dC�

ð

R

Ui ∗
DASAdR (42)

The vector SA can be split as follows

SA ¼ S0A þ STA þ SuA þ S
_T
A þ S

€T
A þ S€uA (43)

where

S0A ¼

0 A ¼ 1, 2, 3

1� R

x0
e

�xa
x0

� �

J τð Þ
A ¼ 4

8

><

>:

(44)

STA ¼ ωAFU
i
FwithωAF ¼

�Da A ¼ 1, 2, 3;F ¼ 4

∇ δ2j
i ∗

α

� �
∇ otherwise

�

(45)

SuA ¼ ψUi
Fwithψ ¼

Pi ∂

∂xb
�

∂

∂xa

� �

A ¼ 1, 2, 3; F ¼ 1, 2, 3,

0 A ¼ 4; F ¼ 4

8

<

:
(46)

S
_T
A ¼ ΓAF

_U
i

F with ΓAF ¼
�βiabτ1

∂

∂xb
þ Λ

� �
∂

∂τ
A ¼ 4;F ¼ 4

ρiciαδ1δ1j otherwise

8

><

>:

(47)

S
€T
A ¼ δAF €U

i

F with δAF ¼
0 A ¼ 4; F ¼ 4

ρiciα τ0 þ δ1jτ2 þ δ2j
� �� 	

otherwise

�

(48)

S€uA ¼ õ €U
i

F with õ ¼
ρi A ¼ 1, 2, 3, F ¼ 1, 2, 3,

βiabT
i
α0 τ0 þ δ2ið Þ A ¼ 4; F ¼ 4

(

(49)

The thermoelastic representation formula (36) can also be written in matrix
form as follows:

SA½ � ¼ �

0

�
1� R

x0
e �

xa
x0

� �

J τð Þ

2

4

3

5þ
�DaT

i
α

∇ δ2j
i ∗

α

� �
∇Ti

α

" #( )

þ
Pi ui0b,a � uia,b

� �

0

" #

þ
�βiabτ1

∂

∂xb
þ Λ

� �

_T
i

α

ρiciαδ1δ1j
_T
i

α

2

6
4

3

7
5þ ρiciα τ0 þ δ1jτ2 þ δ2j

� �� 	 0
€T
i

α

� 


þ
ρi€uia
βiabT

i
α0 τ0 þ δ2j
� �

€ui f ,g

" #

(50)

To transform the domain integral in (42) to the boundary, we approximate the

source vector SA by a series of given tensor functions f
q
AE and unknown coefficients

α
q
E as follows:

8
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SA ≈

XE

q¼1

f
q
AEα

q
E (51)

Thus, the thermoelastic representation formula (42) can be written in the
following form:

UD ξð Þ ¼

ð

C

Ui ∗

DAT
i
αA � ~T

i ∗

αDAU
i
A

� �

dC�
XN

q¼1

ð

R

Ui ∗

DA f
q
AEdRα

q
E (52)

By implementing the WRM to the following equations.

Lgbu
iq
fe ¼ f qae (53)

LabT
iq
α ¼ f

q
pj (54),

Then, the elastic and thermal representation formulae are given as follows [46]:

u
iq
de ξð Þ ¼

ð

C

ui ∗da t
iq
ae � ti ∗dau

iq
ae

� �
dC�

ð

R

ui ∗da f
q
aedR (55)

Tiq
α ξð Þ ¼

ð

C

qi ∗Tiq
α � qiqTi ∗

α

� �
dC�

ð

R

f qTi ∗
α dR (56)

The representation formulae (55) and (56) can be combined into the following
single equation:

U
iq
DE ξð Þ ¼

ð

C

Ui ∗
DAT

iq
αAE � Ti ∗

αDAU
iq
AE

� �

dC�

ð

R

Ui ∗
DA f

iq
AEdR (57)

With the substitution of (57) into (52), the dual reciprocity representation
formula of coupled thermoelasticity can be expressed as follows:

Ui
D ξð Þ ¼

ð

C

Ui ∗
DAT

i
αA � T

^ i ∗

αDAU
i
A

� �

dC

þ
XE

q¼1

U
iq
DE ξð Þ þ

ð

C

Ti ∗
αDAU

iq
AE �Ui ∗

DAT
iq
αAE

� �

dC

0

B
@

1

C
Aα

q
E (58)

To calculate interior stresses, (58) is differentiated with respect to ξl as follows:

∂Ui
D ξð Þ

∂ξl
¼ �

ð

C

Ui ∗
DA,lT

i
αA,l � T

^ i ∗

αDA,lU
i
A

� �

dC

þ
XE

q¼1

∂U
iq
DE ξð Þ

∂ξl
�

ð

C

Ti ∗
αDA,lU

iq
αAE � Ui ∗

DA,lT
iq
αAE

� �

dC

0

B
@

1

C
Aα

q
E (59)

According to the dual reciprocity boundary integral equation procedure of
Fahmy [44], we can write (58) in the following system of equations:
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ζ
^

U � ηTα ¼ ζU
^

� η℘
^

� �

α (60)

The generalized displacements and velocities are approximated in terms of a

series of known tensor functions f
q
FD and unknown coefficients γ

q
D and ~γ

q
D:

Ui
F ≈

XN

q¼1

f
q
FD xð Þγ

q
D (61)

where

f
q
FD ¼

f
q
fd f ¼ F ¼ 1, 2, 3; d ¼ D ¼ 1, 2, 3

f q F ¼ 4;D ¼ 4

0 otherwise

8

>><

>>:

(62)

The gradients of the generalized displacements and velocities can also be
approximated in terms of the derivatives of tensor functions as follows:

Ui
F,g ≈

XN

q¼1

f
q
FD,g xð Þγ

q
K (63)

These approximations are substituted into Eq. (45) to obtain

STA ¼
XN

q¼1

SAF f
q
FD,gγ

q
D (64)

By implementing the point collocation procedure introduced by Gaul et al. [43]
to Eqs. (51) and (61), we have

S
^

¼ Jα, Ui ¼ J0γ, (65)

Similarly, the implementation of the point collocation procedure to Eqs. (64),
(46), (47), (48), and (49) leads to the following equations:

S
^Ti

α

¼ BTγ (66)

SuA ¼ ψUi (67)

S
^ _T

l

α

¼ ΓAF
_U
i

(68)

S
^€T

l
_α

¼ δAF €U
i

(69)

S
^€u

¼ õ €U
i

(70)

where ψ, ΓAF, δAF, and õ are assembled using the submatrices ψ½ �0 ΓAF½ �, δAF½ �, and
õ½ �, respectively.

Solving the system (65) for α and γ yields

α ¼ J�1S
^

, γ ¼ J0�1Ui (71)
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Now, the coefficients α can be expressed in terms of nodal values of the

unknown displacements Ui, velocities _U
i
, and accelerations €U

i
as follows:

α ¼ J�1 S
^0

þ BTJ0�1 þ ψ �Ui þ ΓAF
_U
i
þ õ þ δAF
� �

€U
i

� ��

(72)

An implicit-implicit staggered algorithm for the integration of the governing
equations was developed and implemented for use with the DRBEM for solving the
governing equations which may now be written in a more convenient form after
substitution of Eq. (72) into Eq. (60) as follows:

M
z}|{

€U
i
þ Γ

z}|{
_U
i
þ K
z}|{

Ui ¼ 
z}|{i

(73)

X
z}|{

€T
i

α þ A
z}|{

_T
i

α þ B
z}|{

Ti
α ¼ 

z}|{
€U
i
þ 
z}|{

(74)

where V ¼ η℘
^

� ζU
^

� �

J�1, M
z}|{

¼ V õ þ δAF
� �

, Γ

z}|{

¼ VΓAF,

K
z}|{

¼ �ζ
^

þ V BTJ0�1 þ ψ
� �

, 
z}|{i

¼ �ηT
^

þ VS
^0
, X
z}|{

¼ �ρici xþ 1ð Þm,

A
z}|{

¼ kiab
∂

∂xa
∂

∂xb
, B
z}|{

¼ ki
∗

ab
∂

∂xa
∂

∂xb
, 
z}|{

¼ βiabT0, 
z}|{

¼ � 1�R
x0

e
xa
x0

� �

J τð Þ

where V, M
z}|{

, Γ

z}|{

, K
z}|{

, A
z}|{

, and B
z}|{

represent the volume, mass, damping,

stiffness, capacity, and conductivity matrices, respectively, and €U
i
, _U

i
,Ui,Ti, and


z}|{i

represent the acceleration, velocity, displacement, temperature, and external
force vectors, respectively.

In many applications, the coupling term 
z}|{

€U
i

nþ1 that appears in the heat
conduction equation and which is induced by the effect of the strain rate is
negligible.

Hence, Eqs. (73) and (74) lead to the following coupled system of differential-
algebraic equations (DAEs):

M
z}|{

€U
i

nþ1 þ Γ

z}|{
_U
i

nþ1 þ K
z}|{

Ui
nþ1 ¼ 

z}|{ip

nþ1 (75)

X
z}|{

€T
i

α nþ1ð Þ þ A
z}|{

_T
i

α nþ1ð Þ þ B
z}|{

Ti
α nþ1ð Þ ¼ 

z}|{
€U
i

nþ1 þ 
z}|{

(76)

where 
z}|{ip

nþ1 ¼ ηT
ip
α nþ1ð Þ þ VS

^0
and T

ip
α nþ1ð Þ is the predicted temperature.

Integrating Eq. (73) with the use of trapezoidal rule and Eq. (75), we obtain

Ui
nþ1 ¼

_U
i

n þ
Δτ

2
€U
i

nþ1 þ
€U
i

n

� �

¼ _U
i

n þ
Δτ

2
€U
i

n þ M
z}|{�1


z}|{ip

nþ1 � Γ

z}|{
_U
i

nþ1 � K
z}|{

Ui
nþ1

� �� 


(77)

Ui
nþ1 ¼ Ui

n þ
Δτ

2
_U
i

nþ1 þ
_U
i

n

� �

¼ Ui
n þ Δτ _U

i

n þ
Δτ2

4
€U
i

n þ M
z}|{�1

~
ip

nþ1 � Γ

z}|{
_U
i

nþ1 � K
z}|{

Ui
nþ1

� �� 


(78)
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From Eq. (77) we have

_U
i

nþ1 ¼ ϒ
�1

_U
i

n þ
Δτ

2
€U
i

n þ M
z}|{�1


z}|{ip

nþ1 � K
z}|{

Ui
nþ1

� �� 
� 


(79)

where ϒ ¼ I þ Δτ
2 M
z}|{�1

Γ

z}|{
� �

.

Substituting from Eq. (79) into Eq. (78), we derive

Ui
nþ1 ¼Ui

n þ Δτ _U
i

n þ
Δτ2

4
€U
i

n þ M
z}|{�1

~
ip

nþ1 � Γ

z}|{
�ϒ
�1

��

_U
i

n þ
Δτ

2

� 


€U
i

n þ M
z}|{

�1 
z}|{ip

nþ1 � K
z}|{

Ui
nþ1

� �


� K
z}|{

Ui
nþ1

�� 
 (80)

Substituting _U
i

nþ1 from Eq. (79) into Eq. (75), we obtain

€U
i

nþ1 ¼ M
z}|{�1


z}|{ip

nþ1 � Γ

z}|{

ϒ
�1

_U
i

n þ
Δτ

2
€U
i

n þ M
z}|{�1


z}|{ip

nþ1 � K
z}|{

Ui
nþ1

� �� 
� 
� 


� K
z}|{

Ui
nþ1

� 


(81)

Integrating the heat Eq. (74) using the trapezoidal rule and Eq. (76), we get

_T
i

α nþ1ð Þ ¼
_T
i

n þ
Δτ

2
€T
i

α nþ1ð Þ þ
€T
i

αn

� �

¼ _T
i

αn þ
Δτ

2
X

z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� A
z}|{

_T
iA

α nþ1ð Þ � B
z}|{

Ti
α nþ1ð Þ

� 


þ €T
i

αn

� �

(82)

Ti
α nþ1ð Þ ¼ Ti

αn þ
Δτ

2
_T
i

α nþ1ð Þ þ
_T
i

αn

� �

¼ Ti
αn þ Δτ _T

i

αn

þ
Δτ2

4
€T
i

αn þ X
z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� A
z}|{

_T
i

α nþ1ð Þ � B
z}|{

Ti
α nþ1ð Þ

� 
� �

(83)

From Eq. (82) we get

_T
i

α nþ1ð Þ ¼ ϒ
�1 _T

i

αn þ
Δτ

2
X

z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� B
z}|{

Ti
α nþ1ð Þ

� 


þ €T
i

αn

� �� 


(84)

where ϒ ¼ I þ 1
2 A
z}|{

Δτ X
z}|{�1� �

Substituting from Eq. (84) into Eq. (83), we have

Ti
α nþ1ð Þ ¼ Ti

αn þ Δτ _T
i

αn þ
Δτ2

4
€T
i

αn þ X
z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� A
z}|{

Y�1 _T
i

αn

h i���

þ
Δτ

2
X

z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� B
z}|{

Ti
α nþ1ð Þ

� 


þ €T
i

αn

� ��

� ~BTi
α nþ1ð Þ


�

(85)
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Substituting _T
i

nþ1 from Eq. (84) into Eq. (76), we obtain

€Tα nþ1ð Þi
A ¼ X

z}|{�1


z}|{

€U
i

nþ1 þ 
z}|{

� A
z}|{

ϒ
�1 _T

i

αn þ
Δτ

2
X

z}|{�1����


z}|{

€U
i

nþ1 þ 
z}|{

� B
z}|{

Ti
α nþ1ð Þ

� 


þ €T
i

α nþ1ð Þ

�
�

� � B
z}|{

Ti
α nþ1ð Þ




(86)

Now, a displacement-predicted staggered procedure for the solution of (80) and
(85) is as follows:

The first step is to predict the propagation of the displacement wave field:

U
ip
nþ1 ¼ Ui

n. The second step is to substitute _U
i

nþ1 and
€U
i

nþ1 from Eqs. (77) and (75),
respectively, in Eq. (85) and solve the resulting equation for the three-temperature
wave fields. The third step is to correct the displacement wave propagation using
the computed three-temperature fields for Eq. (80). The fourth step is to compute

_U
i

nþ1,
€U
i

nþ1,
_T
i

α nþ1ð Þ, and
€T
i

α nþ1ð Þ from Eqs. (79), (81), (82), and (86), respectively.

5. Numerical results and discussion

In order to show the numerical results of this study, we consider a monoclinic
graphite-epoxy as an anisotropic thermoelastic material which has the following
physical constants [57]:

The elasticity tensor is expressed as

Cpjkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1

18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0

201:3 70:1 2:4 0 0 147:3

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

GPa (87)

The mechanical temperature coefficient is

βpj ¼

1:01 2:00 0

2:00 1:48 0

0 0 7:52

2

6
4

3

7
5 � 106 N

Km2 (88)

The thermal conductivity tensor is

kpj ¼

5:2 0 0

0 7:6 0

0 0 38:3

2

6
4

3

7
5W=Km (89)

Mass density ρ ¼ 7820kg=m3 and heat capacity c ¼ 461J=kg K.
The proposed technique that has been utilized in the present chapter can be

applicable to a wide range of laser wave propagations in three-temperature
nonlinear generalized thermoelastic problems of FGA structures. The main aim of
this paper was to assess the impact of three temperatures on the acoustic
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displacement waves; the numerical outcomes are completed and delineated graph-
ically for electron, ion, phonon, and total temperatures.

Figure 2 shows the three temperatures Te, Ti, and Tp and total temperature

T T ¼ Te þ Ti þ Tp

� �
wave propagation along the x-axis. It was shown from this

figure that the three temperatures are different and they may have great effects on
the connected fields.

Figures 3 and 4 show the displacement u1 and u2 acoustic waves propagation
along x-axis for the three temperatures Te,Ti,Tp and total temperature T. It was
noticed from Figures 3 and 4 that the three temperatures and total temperature
have great effects on the acoustic displacement waves.

In order to evaluate the influence of the functionally graded parameter and
initial stress on the propagation of the displacement waves u1 and u2 along the
x-axis, the numerical results are presented graphically, as shown in Figures 5 and 6.
These results are compared for different values of initial stress parameter and
functionally graded parameter according to the following cases, A, B, C, and D,

Figure 2.
Propagation of the temperature Te, Ti, Tp and T waves along the x-axis.

Figure 3.
Propagation of the displacement u1 waves along the x-axis.
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Figure 4.
Propagation of the displacement u2 waves along the x-axis.

Figure 5.
Propagation of the displacement u1 waves along the x-axis.

Figure 6.
Propagation of the displacement u2 waves along the x-axis.
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where A represents the numerical results for homogeneous m ¼ 0ð Þ structures in
the absence of initial stress (P ¼ 0), B represents the numerical results for func-
tionally graded m ¼ 0:5ð Þ structures in the absence of initial stress (P ¼ 0), C
represents the numerical results for homogeneous m ¼ 0ð Þ structures in the pres-
ence of initial stress (P ¼ 0:5), and D represents the numerical results for function-
ally graded m ¼ 0:5ð Þ structures in the presence of initial stress (P ¼ 0:5). It can be
seen from Figures 5 and 6 that the effects of initial stress and functionally graded
parameter are very pronounced.

Figure 7.
Propagation of the temperature T waves along the x-axis for BEM, FDM, and FEM.

Figure 8.
Propagation of the displacement u1 waves along the x-axis for BEM, FDM, and FEM.
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Since there are no available results for the three-temperature thermoelastic
problem, except for Fahmy’s research [10–14]. For comparison purposes with the
special cases of other methods treated by other authors, we only considered a one-
dimensional special case of nonlinear generalized magneto-thermoelastic of aniso-
tropic structure [11, 12] as a special case of the considered problem. In the special
case under consideration, the temperature and displacement wave propagation
results are plotted in Figures 7 and 8. The validity and accuracy of our proposed
BEM technique was demonstrated by comparing graphically the BEM results for the
considered problem with those obtained using the finite difference method (FDM)
of Pazera and Jędrysiak [68] and finite element method (FEM) of Xiong and Tian
[69] results based on replacing heat conduction with three-temperature heat con-
duction; it can be noticed that the BEM results are found to agree very well with the
FDM or FEM results.

6. Conclusion

Propagation of displacements and temperature acoustic waves in three-
temperature nonlinear generalized magneto-thermoelastic ISMFGA structures has
been studied, where we used the three-temperature nonlinear radiative heat con-
duction equations combined with electron, ion, and phonon temperatures. The
BEM results of the considered model show the differences between electron, ion,
phonon, and total temperature distributions within the ISMFGA structures. The
effects of electron, ion, phonon, and total temperatures on the propagation of
acoustic displacement waves have been investigated. Also, the effects of function-
ally graded parameter and initial stress on the propagation of acoustic displacement
waves have been established. Since there are no available results for comparison,
except for the one-temperature heat conduction problems, we considered the one-
dimensional special case of our general model based on replacing three-temperature
radiative heat conductions with one-temperature heat conduction for the verifica-
tion and demonstration of the considered model results. In the considered special
case, the BEM results have been compared graphically with the FDM and FEM, and
it can be noticed that the BEM results are in excellent agreement with the FDM and
FEM results.

Nowadays, knowledge and understanding of the propagation of acoustic waves
of three-temperature nonlinear generalized magneto-thermoelasticity theory can be
utilized by computer scientists and engineers, geotechnical and geothermal engi-
neers, material science researchers and designers, and mechanical engineers for
designing heat exchangers, semiconductor nanomaterials, and boiler tubes, as well
as for chemists to observe the chemical reaction processes such as bond forming and
bond breaking. In the application of three-temperature theories in advanced
manufacturing technologies, with the development of soft machines and robotics in
biomedical engineering and advanced manufacturing, acoustic displacement waves
will be encountered more often where three-temperature nonlinear generalized
magneto-thermoelasticity theory will turn out to be the best choice for thermome-
chanical analysis in the design and analysis of advanced ISMFGA structures using
laser ultrasonics.
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