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Chapter

Non-Steady First Matrix Cracking
of Fiber-Reinforced Ceramics
Huan Wang

Abstract

Matrix cracking affects the reliability and safety of fiber-reinforced
ceramic-matrix composites during operation. The matrix cracking can be divided
into two types, that is, steady state crack and non-steady state cracking. This
chapter is about the non-steady stable cracking of fiber-reinforced CMCs. The
micro stress field of fiber, matrix, and interface shear stress along the fiber direction
is analyzed using the shear-lag model. The relationship between the crack opening
displacement and the crack surface closure traction is derived. The experimental
first matrix cracking stress of different CMCs are predicted.

Keywords: ceramic-matrix composites (CMCs), first matrix cracking stress,
brittle matrix, non-steady state, pre-existing defect

1. Introduction

Fiber-reinforced ceramic-matrix composites (CMCs) have greater specific
strength and specific stiffness. It will decrease the weight of the aircraft structure
when it is applied to the aircraft. However, there are some disadvantages like
complex processing and preparation, expansive, and so on. Now, there are some
models for first matrix cracking. The MCE model [1] is one of the most famous
models which established the relation between A.C.K and crack theory.
McCartney model [2] gives a detailed process about the numerical solution.
Chiang et al. [3, 4] used a modified shear-lag model considering the matrix defor-
mation and the fiber failure is also considered. This chapter is about the non-steady
matrix cracking of fiber reinforced CMCs. We assume that the fiber is strong
enough to keep intact when matrix cracking occurs, and the composites with inter-
face debonding are susceptible to weak frictional resistance. The growth character-
istics of short cracks are evaluated using the stress intensity method. We will do
some analysis about the fiber-matrix stress and solve equations to get the closing
traction distribution. Then, the matrix cracking condition is combined to obtain the
critical matrix cracking stress. The final results will show how the cracking stress is
related to the size of a pre-existing defect and prediction of the threshold stress.
Differences between the MCE model and McCartney model are also analyzed.

2. Fiber-matrix stress analysis

All analyses come from McCarteny model [2]. By performing stress analysis, the
influence of the fiber can be equivalent to applying a distribution of closing pressure
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p(x1) on the crack surface, and the influence of the applied stress can be evaluated
by regarding the stress as a uniform opening pressure σ

∞
acting along the matrix

crack surface. Therefore, we can obtain the net pressure on the crack surface,
σ
∞
� p xð Þ½ �. And the relation can be assumed for the continuum model [1]:

p x1ð Þ ¼ λ
ffiffiffiffiffiffiffiffiffiffiffi

u x1ð Þ
p

¼ p �x1ð Þ (1)

where x1 represents the location on the crack surface. According to the Sneddon
and Lowengrub [5] and the force analysis, we can get the relation between the
effective traction p(x1) and displacement distributions u(x1) as follows:

u x1ð Þ ¼ 2

π2

ða

x1

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � x12ð Þ
p

ðt

0

σ
∞
� p ξð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � ξ2
� �

q dξ

8

>

<

>

:

9

>

=

>

;

dt 0≪ x1 < a (2)

And we can also get the corresponding stress intensity factor [6]:

K ¼ 2

ffiffiffi

a

π

r

ða

0

σ
∞
� p ξð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2ð Þ
p dx (3)

To make the formula more simplified, we can get the following simpler
formula [2]:

u x1ð Þ ¼ 1

π2

ða

0
σ
∞
� p ξð Þf g ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ξ2
� �

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x12
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ξ2
� �

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x12
p

�

�

�

�

�

�

�

�

�

�

�

�

�

�

dξ 0≪ x1 < a (4)

After making some substitutions, we can obtain the following equation [2]:

P2 Xð Þ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2
p

� 1

π

ð1

0
P tð Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2
p

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2
p

�

�

�

�

�

�

�

�

�

�

dt

( )

0≪X< 1 (5)

here

μ ¼ λ2a=πσ
∞

(6)

K ¼ σ
∞

ffiffiffiffiffiffiffiffiffi

πað Þ
p

Y (7)

here

Y ¼ 2

π

ð1

0

1� P Xð Þf g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2
p dX (8)

To obtain the parameter λ, equating the energy availability for the continuum
and discrete fiber models. For the discrete fiber model, the energy available per unit
area for matrix cracking is [2]:

E ¼ R

6τ

Ec

1� v2ð Þ2
Vm

2Em
2

Vf
2Ef

ϵ3 (9)

For the continuum model, the energy available per unit area for matrix
cracking is [2]:
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E ∗ ¼ σ
∞
∆u∞2 �

ð

∆u∞2

0
p ∆u2ð Þd ∆u2ð Þ ¼ 4π

3λ2
Ec

1� v2

� �2

ϵ3 (10)

By equating E = E ∗ , the parameter λ is obtained:

λ ¼ 2
Vf

Vm

2πτ

R

EfEc

Em
2

� 	1=2

(11)

this is different with the parameter λ used by Marshall et al. [1].

λ ¼ 2Vf
2πτ

R

Ef

VmEm

� 	1=2

¼ VmEm

Ec

� �1=2

λ (12)

Now let us compare the parameter λwith λ. The parameter λ is obtained through

the energy balance considerations, while the parameter λ is gotten by doing some
mechanical analysis of the discrete fiber model. Therefore, we can know that the
parameter λ can account for the energy changes like stored energy and frictional
energy dissipation.

What’s more, it is necessary to choose a more reasonable matrix cracking condi-
tion to obtain the final critical matrix cracking stress. Now two matrix cracking
conditions will be on the list. It is noted that all the conditions are not on the physics
ground. Firstly, it is about Griffith fracture criterion as follows [2]:

K2 ¼ 2γEc= 1� v2
� �

(13)

According to this, we can derive the cracking condition. Secondly, it is assumed
that the matrix and composite stress intensities scale with the stress. So we can
derive the relation as follows [2]:

KL ¼ KL
c ¼ KM

c Ec=Em (14)

And this chapter adopts the first kind of condition. Finally, the equations
concerned with critical cracking condition in this chapter are derived as follows [2]:

a=a0 ¼ μc=Y μcð Þf g2
3 (15)

σc
∞
=σ0 ¼ 1=μcY

2 μcð Þ

 �

1
3 (16)

here, Y is a function only of μ.
To predict the threshold stress and obtain the relation between the cracking

stress and the pre-existing defect, we should firstly solve Eq. (5) and obtain the
effective traction distribution. Then, we can obtain many values of Y(μ)
corresponding to a range of values of μ. According to the cracking condition, the
curve related to the dependence of critical cracking stress on the pre-existing defect
is generated.

3. Numerical solution to matrix cracking stress

The main problem is to solve the nonlinear integral Eq. (5). The Simpson’s
integration formula is used here to derive the discrete form of the nonlinear integral
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equation which makes the substitutions. And finally, we can obtain the following
discrete formulation [2]:

g
Nþ1ð Þ
i

n o2
� 2þ μSif gg Nþ1ð Þ

i þ 1 ¼ μ
X

n

j ¼ 0

j 6¼ i

g
Nð Þ
j � g

Nð Þ
i

n o

Kij, i ¼ 0, … :n N≥0

(17)

here

gi ¼ g i=nð Þ, Si ¼
2 i=nð Þ2

1þ i=nð Þ4
, g

0ð Þ
i ¼ 0, i ¼ 0, … , n,

And,

Kij ¼
8δj
πn4

ln
Sj þ Si
Sj � Si

�

�

�

�

�

�

�

�

j3

1þ j=nð Þ4
� 2 , j 6¼ i,

With δ0 ¼ δn ¼ 1
3 , δj ¼

4

3
if j is odd

2

3
if j is even

8

>

>

<

>

>

:

, j ¼ 1, … , n� 1:

And the corresponding discrete form of Eq. (6) for Y [2] is given by

Y ¼ 8

πn2

X

n

j¼0

jδjgj

1þ j=nð Þ4
(18)

When solving Eq. (15), the parameter μ can be valued like 0.1, 1, 10, 100 and so

on. Then we can get the value of gNþ1
i by solving a quadratic equation and using the

starting value. What’s more, 0≤ g≤ 1. After getting values of all gNþ1
i , by comparing

the two adjacent iterations until a group of solution meets the condition [2]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nþ 1

Xn

i¼0
g Nþ1ð Þ
i � g Nð Þ

i

� 2
� 	

s

< δ (19)

where δ represents the accuracy and can be valued like 10�6, 10�8.

In this chapter, the value of δ is 10�6, and the values of μ are 0.1, 1, 100.
This is the flow chart of the solution:

4. Results and discussion

By solving Eq. (15), we can get the curve of the distribution of effective tractions
acting on the crack surfaces as in Figure 1. The horizontal axis represents the
location in the crack surface, and the vertical axis represents the continuous effec-
tive traction. And it is simple that both the horizontal and vertical axes are in
percentage terms. So this figure shows the closing traction distribution in a range of
parameter μ. The distributions corresponding to different values of μ are different.
And larger the value μ is, more load will the fiber support at the same position.
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When μ comes to 100, the fiber supports the applied load for most of the crack
length. As is mentioned above, this figure gives the accurate result for Eq. (1).
And according to this result, we can get the critical matrix cracking stress.

And the corresponding curve which shows the relation between the critical
cracking stress and the pre-existing defect is gotten with the cracking condition in

Figure 2. And the value of δ is 10�6, and the values of n is 60. The result can be
obtained by choosing different values of a/a0 and getting the corresponding value
of μ. And the values σc

∞
=σ0 varies with a=a0. a=a0 represents the length of pre-

existing defect, and σc
∞
=σ0 represents the corresponding matrix cracking stress.

Both a=a0 and σc
∞
=σ0 are standard forms. In this curve, it is noted that the critical

stress decreases with the length of pre-existing defect increasing when the length of
pre-existing defect is short. And the stress tends to be constant with the length
rising when the length is over a value. When the length of pre-existing defect is
below a value, the corresponding critical stress is decided by the length of crack,
while the critical stress will be independent of the total pre-existing crack length
when the length of the defect is over the characteristic distance (Figure 3).

To obtain the threshold matrix cracking stress by choosing a=a0 ! ∞, we choose
the parameter μ like in the following table. It is shown that σc

∞
=σ0 ! 1:331 when

a=a0 ! ∞. We can know that it is close to the theoretical value by calculation
(Table 1).

Figure 1.
The flow chart of the solution to the effective fiber tractions.
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Figure 2.
The distribution of effective traction acting on the crack surface.

Figure 3.
The critical stress for matrix cracking on the length of the pre-existing matrix crack.

u 0.1 1 10 100 1000 1500 2000

σc
∞
=σ0 2.52038 1.582594 1.355636 1.332882 1.331029 1.331012 1.331025

Table 1.
Values of the critical cracking stress for various values of μ [2].
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Figure 4.
The distribution of effective tractions with different values of parameter Vf in three kinds of material. (a) SiC-
glass ceramic. (b) SiC/borosilicata. (c) C/borosilicata.
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a. The condition that the fiber is strong enough to keep intact and it does not
take into account the shear deformation in the matrix above the slipping
region is considered. But obviously the fiber failure and the deformation
above the slipping region influences the matrix cracking stress. This chapter
gives the numerical solution. MCE model gives the approximate analytical
solution [1] for short crack. And we can see that the two methods show the
same trends, and the numerical solution is lower than the analytical solution.
It is noted that the MCE model assumed the cracking condition instead of
deriving the condition. And the result of MCE model do not establish the
threshold matrix cracking stress below which is impossible to make the
matrix crack. The model will be valid when the ratio a/R is large enough, as
the fiber radius R was not quoted. It is not possible to determine that part of
the curve in Figure 5 satisfying the validity condition a/R > 10. So it is of vital
importance to derive numerical results. As Figure 1 shows, the distribution of
effective tractions p x1ð Þ=σ

∞
increases with the parameter μ rising at the same

position. By changing the value of Vf , we can finally change the standard
value σ0. As a result, the value of matrix cracking stress changes. And the
relation between the matrix cracking stress and Vf is shown in Figure 4. The
parameters of three kinds of material are listed in Tables 2–4. They are SiC-
glass ceramic, SiC/borosilicate, and C/borosilicate. And the formula can be
derived according to Eqs. (6) and (11):

μ ¼ 8τaVf
2Ef EfVf þ EmVmð Þ
RVm

2Em
2σ
∞

(20)

The relation that the parameter μ increases with the Vf rising can be gotten by
taking the derivative of the equation to determine its monotonicity. As a result, the
distribution of effective tractions p x1ð Þ=σ

∞
acting on the crack surface rises with

parameter Vf increasing. The parameter a represents the matrix cracking length,
and σ

∞
represents the applied stress. And as we all know, the distribution of

Parameter Ef/GPa Em/GPa Km
IC MPa� ffiffiffiffiffi

m
pð Þ R/μm τ/MPa

Value 200 85 2 8 2

Table 2.
The parameters of SiC-glass ceramic.

Parameter Ef/GPa Em/GPa Km
IC MPa� ffiffiffiffiffi

m
pð Þ R/μm τ/MPa

value 380 70 0.75 4 10

Table 4.
The parameters of C/borosilicata.

Parameter Ef/GPa Em/GPa Km
IC MPa� ffiffiffiffiffi

m
pð Þ R/μm τ/MPa

value 400 63 0.77 70 6–8

Table 3.
The parameters of SiC/borosilicata.
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Figure 5.
The distribution of effective tractions with different values of parameter τ in three kinds of material. (a) SiC-
glass ceramic. (b) SiC/borosilicata. (c) C/borosilicata.
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effective traction which is equivalent to the effect of fiber traction can make the
fiber ends displace to be rejoined. So the greater value of p x1ð Þ=σ

∞
, the harder the

matrix to crack which means the value of the matrix cracking stress is bigger. And
the parameter τ is in positive correlation with the parameter μ. In the same way, the
matrix cracking stress will increase with the parameter τ rising. The curve can be
seen in Figure 5 with three kinds of material which show the same tendency.

5. Conclusion

McCartney model gives a more reasonable parameter λ which is gotten by
equating the available energy of fiber discrete model and continuum model, while
the MCEmodel do some stress analysis of fiber discrete model to get this parameter.
So the McCartney model can explain the energy changes. McCartney model derived
rather than assuming the matrix cracking condition. The cracking condition is
gotten through the Griffith fracture criterion in McCartney model. MCE model
assumed that the matrix and composite stress intensities scale with the stresses. And
McCartney gives the threshold stress to verify the theoretical value.
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