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Chapter

3D Reconstruction through Fusion
of Cross-View Images
Rongjun Qin, Shuang Song, Xiao Ling and Mostafa Elhashash

Abstract

3D recovery from multi-stereo and stereo images, as an important application of
the image-based perspective geometry, serves many applications in computer
vision, remote sensing, and Geomatics. In this chapter, the authors utilize the
imaging geometry and present approaches that perform 3D reconstruction from
cross-view images that are drastically different in their viewpoints. We introduce
our project work that takes ground-view images and satellite images for full 3D
recovery, which includes necessary methods in satellite and ground-based point
cloud generation from images, 3D data co-registration, fusion, and mesh genera-
tion. We demonstrate our proposed framework on a dataset consisting of twelve
satellite images and 150 k video frames acquired through a vehicle-mounted Go-pro
camera and demonstrate the reconstruction results. We have also compared our
results with results generated from an intuitive processing pipeline that involves
typical geo-registration and meshing methods.

Keywords: cross-view 3D fusion, photogrammetry, remote sensing,
mesh reconstruction, 3D modeling

1. Introduction

3D data generation often requires expensive data collection such as aerial
photogrammetric or LiDAR flight [1, 2]. Depending on the required accuracy,
resolution and other specs of the final products, the efforts in data collection and
processing can exponentially grow. Alternative and low-cost data sources are of
particular interest for wide-area 3D modeling [3]. Satellite sensors running 24/7
offer overview images covering large regions with single scans, which compara-
tively come with lower cost than aerial flights and do not require physical access to
the area of interest [4]. On the other hand, there exist many ground-view images
coming either from crowdsourcing platforms or collected using relatively low-cost
equipment (e.g., video frames from low-cost cameras) that provides high-
resolution information of objects. Both the overview and the ground-view data are
complementary to each other and their view differences being approximately 90°
forms cross-view dataset, a fusion of which may yield a low-cost solution for
city-scale 3D modeling. This chapter describes our ongoing work (an earlier work is
described in [5]) in an attempt to address this challenging task by proposing an
integrated framework to fuse the 3D results of satellite overview and ground-view
video frames to generate 3D textured mesh models presenting both top and side
view features.
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The available commercial satellite images often have 0.3–0.5 m GSD (ground
sampling distance) and ground-view images can easily reach a GSD of a few
millimeters. With significantly different resolution, the resulting 3D geometry may
be associated with different uncertainties, which adds additional challenges for the
fusion task of these two types of data, which include:

1.The quality of 3D output separately generated from satellite images and
ground-view images are scene-specific and may differ in terms of
completeness and accuracy. Algorithms and basic principles for addressing
image-based 3D modeling are relative standard, thus the image quality and
their respective characteristics play a major role in the reconstruction results,
such as the photo-consistency/temporal differences/illumination among
images, their geometric setup, completeness in terms of coverage, intersection
angles, etc.

2.Due to the large view differences, the overview and ground-view dataset may
share very limited region in common, and additionally the 3D output from the
ground-view dataset may come with no geo-referencing information and may
contain non-rigid topographic distortions (e.g., trajectories drift or distortions
due to inaccurate interior/exterior orientation estimation), which further add
challenges in 3D geo-registration of the dataset.

3.The combined 3D point clouds are from two sources with different resolution,
uncertainty, and radiometric properties of textures, which present difficulties
in both the geometric reconstruction of meshes and the texture mappings.
Thus, obtaining visually consistent textured meshes the preserve information
to the maximal extent is extremely challenging.

We introduce in our proposed method major contributions to address the above-
mentioned challenges to form a complete fusion pipeline. These contributions are:
(1) we introduce a monocular video-frame-based 3D reconstruction pipeline to
achieve the minimal geometric distortion by leveraging the speed and accuracy in a
photogrammetric reconstruction pipeline called MetricSFM. (2) We introduce a
cross-view geo-registration and fusion algorithm that takes point clouds generated
from satellite multi-view stereo (MVS) images and from ground-view videos, to co-
register the ground-view point clouds to the overview point clouds; (3) we extend a
view-based meshing approach to accommodate point clouds with images coming
from different cameras. The rest of this chapter is organized as follows: Section 2
introduces related works and the overview of the proposed pipeline; Section 3
introduces our methodologies of the components of the pipeline in details, Section 4
describes the experiment dataset and the results of the 3D reconstruction; and
Section 5 concludes this chapter by discussing potential works moving forward.

2. Related works and an overview of the proposed pipeline

The uses of multi-source 3D data have been attempted for different purposes,
such as for localization, geo-registration, image synthesis, cartographical model
generation [6–9], and planetary applications using different types of sensors
[10–14]. For example, [8] utilized a combination of UAV (Unmanned Aerial
Vehicles) images and mobile LiDAR (Light Detection and Ranging) for 3D model
generation, where the geo-registrations are performed using manually measured
ground control points (GCP) from the LiDAR data, followed by a Bundle
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Adjustment [15] of the UAV images. All were performed following a surveying-
grade processes, thus minimal topographical distortions needed to be addressed in
critical or non-optimally collected data (e.g., monocular video collection with a
single trajectory).

Correlating the satellite overview and ground view images is extremely
challenging because the areas in common can sometimes be barely the ground or
even less (due to vegetations and moving objects). There are two types of
approaches to address relevant tasks, such as (1) cross-view images localization
[9, 16, 17] and (2) cross-view image synthesis [6, 7]. Since the traditional
feature-based matching methods fail in cross-view data, the major technical
approaches for cross-view data instead are to learn deep representations between
cross-view data, with various strategies for learning scene-level descriptors used to
match cross-view data, combing learned semantics and geometric transformation.
A few early works also explored the use of manually crafted features for such a task
[16, 18]. Most of the existing methods exploring 3D data co-registration require a
certain common regions, and the transformation is often assumed to be simple
models such as similarity or rigid transformations [19, 20]. Thus, exploring
methods for registering wide-area, cross-view dataset potentially with complex
geometric distortions are particularly of interest and can offer tangible solutions for
low-cost 3D data generation.

Meshing point clouds seems to be a standard practice with many applicable
algorithms available [21]. However, for image-based point clouds, meshing requires
the use of the visibility information between the view and each point [22, 23] which
sometimes are not easily available for multi-source data as first of all, they may
share different camera model, and second of all, standard software packages gener-
ating point clouds from images do not offer such visibility information. As a result,
a standard practice of using multi-source image-based point clouds only takes
point-cloud-based meshing methods [21], which are designed for very dense point
clouds and do not necessarily work well for point clouds with the level of uncer-
tainty and complexity as the image-based point clouds.

Despite these challenges, we consider the problem of turning the MVS satellite
images and ground-view Go-pro data to be approachable, if scenario-specific infor-
mation and intermediate results of the stereo reconstruction pipeline are available.
To achieve, we have the following three considerations:

1.Monocular ground-view video frames taking alongside the street do not offer
an optimal camera network, thus it is possible that the results of the 3D
reconstruction contain geometric distortion, for example, trajectory drifts, or
topographic distortion due to the incorrectly estimated interior/exterior
orientations [24], which will further add challenges to the geo-registration, we
therefore consider to optimize our photogrammetric reconstruction workflow
by considering self-calibration for each incremental reconstruction to
minimize the potential trajectory drift.

2.We observed that in an urban environment, the boundary of objects from the
satellite point clouds, for example, buildings, might coincide well with the
boundary produced by projecting the façade point clouds to the ground;
therefore it can be seen as a view-invariant feature for co-registering the
satellite point clouds and ground-view point clouds.

3.Meshing methods will unlikely to work well on the combined point clouds
(from satellite and ground-view point clouds) without the use of visibility
information. Although theoretically possible, re-implementing a meshing
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algorithm considering different camera models can be painstakingly trivial.
We consider the satellite point clouds to be associated with an orthophoto
under a parallel projection, thus the visibility can be easily computed and
incorporated into an image-based meshing [23] and texture mapping
pipeline [25].

To sum, our proposed data generation pipeline considers three major compo-
nents. As shown in Figure 1, which includes separate 3D data generation (for MVS
satellite images and ground-level video frames), geo-registration, and meshing.

The MVRSP (based on [4, 26, 27]) and MetricSFM are, respectively, our devel-
oped system for processing the satellite data and ground-level video frames. A
cross-view registration method is performed for overview and ground-view point
cloud registration, which utilize the boundary information derived from both types
of point clouds. Finally, the co-registered point clouds are processed by a modified
meshing and texture mapping algorithm that innovatively consider both perspec-
tive and parallelly projected image (satellite orthophoto) in an integrated optimiza-
tion framework.

3. Methodology

3.1 Multi-view (MVS) satellite image processing

The MVS satellite processing follows methods in [4, 26], which takes a pair-wise
reconstruction followed by a DSM (Digital Surface Model) fusion as shown in
Figure 2. Given a set of images, we will first apply an analysis algorithm presented

Figure 1.
The general workflow of our processing pipeline.

Figure 2.
A workflow of the multi-view satellite image processing [28].
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in [28] to rank the matchability of the satellite stereo pairs (enumerated from the
existing images), and then we take the top five stereo pairs to perform relative
orientation and stereo dense matching using a software called RPC stereo processor
[4, 27]. The core matching algorithm uses a hierarchical semi-global matching [29]
with modifications to accommodate large-format images [30]. The use of multiple
stereo pairs enables sufficient redundancies for high-quality 3D reconstruction, and
the images consist of bothWorldview I/II images (data will be introduced in Section
4). The produced individual DSMs resulting from different stereo pairs are co-
registered with a shift-based registration which search for translation parameters in
reference to one of the pairs (which is used to be the first pair in the pair ranking),
and the co-registered DSMs are fused following an adaptive depth-fusion method
[26] that utilizes the color information of the orthophoto, which were shown to
achieve better accuracy than a simple median depth filtering. The readers may refer
to specific details of the reconstruction in [4, 26, 28].

A typical digital surface model generated using our pipeline is shown in
Figure 3, which indicates a 3D reconstruction result of the central area of the city of
London. Worldview-III images with a 0.3-m resolution are used, thus the resulting
surface models are with the same resolution.

3.2 3D reconstruction from ground-view monocular image sequences

Monocular 3D reconstruction refers to the process of recovering shape of objects
using images taken from a single video camera. As compared to typical
stereo/multi-stereo images captured from well-distributed angles, such video
sequences present sub-optimal camera network in which the pose estimation is
often inaccurate for metrically correct 3D reconstruction. Oftentimes, the structure
from motion and SLAM (simultaneous localization and mapping) approaches are
used to compute the camera poses and generate 3D semi-dense or dense point
clouds. These methods although provide visually pleasant trajectories and point
clouds, they may often be metrically incorrect and present drifting problems. In this
section, we introduce a monocular 3D reconstruction system that leverages the
speed of a typical SLAM system and rigorous photogrammetric optimization. We
first present typical components for 3D reconstruction and then briefly introduce
the processing workflow of the system.

Figure 3.
3D reconstruction of the central area in London (ca. 50 km2). Left: overview of part of the area; right: top,
enlarged RGB (red, green, blue) color image, bottom, pseudo color image (near infrared, red, green).
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3.2.1 A 3D reconstruction pipeline

Figure 4 presents a typical image-based 3D reconstruction pipeline. Raw images
or undistorted images (through pre-calibrated parameters) are taken as the input
and follow a series steps named feature extraction and matching, relative orienta-
tion, bundle adjustment and dense image matching, and output intrinsic and
extrinsic orientation parameters and dense point clouds. Among these steps, the
GPS (global positioning system) or IMU (inertial measurement unit) can be
optionally taken as observations to bring global datum. Below we briefly introduce
these components and their specifics in a ground-view image sequence scenario:

Camera intrinsic and extrinsic parameters: the camera intrinsic parameters
refer to the internal geometry of the camera and often considered as focal length,
principal points, and lens distortions. The extrinsic parameters refer to the poses
(position and facing) of each image, normally represented by six parameters: three
for a point in Euclidean coordinate (camera perspective center) and three rotation
angles (sometimes are represented directly as rotation matrix).

Pair selection: pair selection tells the system what are the images that are likely to
observe the same object, such that a connected graph can be built [31, 32] to
formulate observations to recover 3D geometry. In the ground-view scenario, this
can be simply formulated using the timestamp of the frames.

Feature extraction and matching: features represent areas or points of interest
in images and denote special pieces of information. In 3D reconstruction, points are
the most popular feature representations due to their simplicity and flexibility.
Point features can be understood as corners or spots that are distinctive and easily
identifiable across different images with various levels of perspective differences
and typical features are SIFT (Scale-Invariant Feature Transform) [33], SURF
(Speeded up robust features) [34], ORB (Oriented FAST and Rotated BRIEF) [35],
etc. Once these points are extracted, feature matching aims to associate identical
points across different images, which essentially represents corresponding rays
from different images. Typically done with an exhaustive search, feature matching
in a ground-view video frame scenario can be speed up by considering the fact of
horizontal moving thus to reduce the search space [36].

Incremental relative orientation/pose estimation: the incremental relative
orientation refers to the process starting with a two-view relative orientation,
followed by sequentially orienting the rest of the images given the feature point
correspondences. Often the estimation process needs to address blunders in the
observations and the state-of-the-art procedure takes RANSAC (random sampling
consensus) [37] for robust and automated relative pose estimation. RANSAC used a
random sampling strategy that starts with randomly sampled feature matches
(observations) instead of all the observations for relative orientation (model esti-
mation), runs the same process for multiple times, and selects the model (estimated
orientation parameters) accounting for most of the observations with reasonable
residual. This has dramatically improved the automation in relative orientation and
subsequently the incremental procedure, as it theoretically only requires the error

Figure 4.
A typical 3D reconstruction pipeline, dark-gray blocks indicate optional steps.
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rate of the matches be larger than 50%, while apparently the state-of-the-art feature
extractors and matchers do much better with images in most of the applications.

Bundle adjustment: is a refinement process for the intrinsic and extrinsic
camera parameters simultaneously with the 3D coordinated of the scene points
since the measurements are prone to errors [38]. It involves a global minimization
scheme using robust nonlinear least-squares algorithm such as Levenberg-
Marquardt [39]. This often comes with a procedure called self-calibration [40] that
simultaneously estimates the lens distortions of the camera. In a ground-view video
frame scenario, because the bundle adjustment is particularly time consuming, it
may sometimes be simplified to only perform local bundle adjustment instead of
considering all available images.

3.2.2 3D reconstruction using ground-view image sequences

Ground-view image sequences formulate a specific scenario in which a typical
3D reconstruction pipeline can be customized to accommodate the need for speed
and accuracy. Our general workflow is presented in Figure 5. It is similar to a SLAM
pipeline [36] with the differences that the local and full bundle adjustment con-
siders the estimation of camera lens distortion parameters. Typically, the system
starts with an initialization module that aims at estimating the camera pose for the
two images used in the initialization by utilizing the matched features between
them, this is in line with the first half of incremental relative orientation as men-
tioned above. Moreover, this module generates initial 3D points of the scene by
triangulating the matched feature points from the two images. After generating the
initial reconstruction, the tracking module (in dashed box) starts to localize every
image by finding its pose, which is similar to the second half of the relative orien-
tation which sequentially add image frames to the system. In this module, the
temporal relation between the images is used by assuming a constant velocity
motion model so that we can get an initial estimate of the current image pose. Thus,
using the estimated pose, we can directly project the 3D points into the current
image and perform window-based search for the potential feature matches with the
projected points. Consequently, we can save computations by searching correspon-
dences only inside this window instead of searching in the whole image. Then, using
these correspondences, the current camera pose can be estimated. It should be
noted that the concept of keyframes are used to identify important frames in which
the poses will be optimized through bundle adjustment, because frames that are
estimated through a constant velocity are considered to close enough to interpolate.
For images that fail the constant velocity motion model, the tracking module per-
forms full feature matches to find feature in previous frames that have an associated
map point using a spatial resection (i.e., a Perspective-n-Point (PnP) algorithm)
[41] by taking existing 3D points and 2D correspondences to compute their pose,
and such images are then taken as the new keyframes, in the meantime features
with no 3D correspondences will be triangulated as candidates of 3D map points.

Figure 5.
A 3D reconstruction pipeline using ground-view video frames.
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Once the tracking module accumulates frames to a pre-defined number, a full
bundle adjustment is used interchangeably with local bundle adjustment to refine
the estimated measurements. These aforementioned processes are implemented in
an in-house software package called MetricSFM. A sample from the 3D reconstruc-
tion results is shown in Figure 6.

3.3 Cross-view 3D point co-registration and fusion

Non-rigid distortion of the ground-view data (e.g., trajectory drift) and very
limited overlapping region among cross-view data make them difficult to be regis-
tered without significant manual effort. Based on the assumption that the object
boundaries (e.g., buildings) from the over-view data should coincide with foot-
prints of façade points from ground-view, we tackle these problems by proposing a
fully automated geo-registration method for cross-view data, which utilizes seman-
tically segmented object boundaries as view-invariant features under a global opti-
mization framework. Taking the over-view point clouds generated from satellite
stereo/multi-stereo images and the ground-view point clouds frommonocular video
frames as the input, the proposed method takes a “two-step” strategy to solve the
non-rigid cross-view registration problem using object boundaries, which is further
optimized through a constrained bundle adjustment to keep 2D-3D consistencies.

3.3.1 Building boundary extraction from ground-view and over-view point clouds

The building extraction on the over-view point cloud is achieved by converting
the point cloud into a digital surface model (DSM), on which the well-developed
morphological top-hat [42, 43] can be used to extract a binary mask for all the high
objects like tree and building. For satellite orthophoto containing multi-spectral
information, the NDVI (Normalized Difference Vegetation Index) [44] can be
extracted to further remove the trees from the binary masks. The ground-view
building detection is based on the observation that the building façade points are
usually vertical to the horizontal ground plane. We therefore determine the vertical
direction by calculating the normal vector for all the points and then selecting the
direction with the largest number of normal vectors pointing to the vertical direc-
tions. Once the vertical direction is obtained, all the ground-view points are
projected onto the horizontal plane, which is followed by a classical region growing
method [45] to extract point cloud segments. Finally, those segments with the
number of points greater than a threshold are kept as the extracted ground-view
buildings. The results of building boundary extraction from both over-view and
ground-view data can be seen in Figure 7.

Figure 6.
The 3D reconstruction result, left: ground truth trajectory from mobile LiDAR, right: our result without loop
closure (7500 frames).
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3.3.2 Individual building segment matching

In order to efficiently search for accurate registration parameters locally to
address potential topographical errors of the point clouds (e.g., drifted trajectory
resulting metrically incorrect point clouds), we developed a simple 2D point cloud
registration algorithm that performs sampled exhaustive search. Given the over-
view point set Pd of size nd as the reference point cloud, and the ground-view point
set Ps of size ns as the matching point cloud, with the scale difference s between two
point sets. Firstly, the distance map (as Figure 8(b) shows) for Pd is calculated
using distance transformation [46, 47], in which the distance of each pixel (colored
in gray-level, darkest referring to the closest distance) to the region of interest (in
our scenario this refers to the boundary from the overview data). Ps is centralized
by subtracting the central point for each point from Ps. Assuming a fixed scale
determined by sparse known observations such as GPS positions, we perform an
exhaustive-search through the rotation and translation space to find the optimal
parameters. The final rotation parameter and translation parameter were found as
ones that minimize the co-registration error in the distance map, and an example
result is shown in Figure 8(c).

Figure 7.
Illustration of building boundary extraction results from (a) over-view and (b) ground-view data.

Figure 8.
Exhaustive search-based local matching algorithm. Given the over-view building boundary points Pd as
destination in (a), the distance map in (b) is calculated where the intensity of pixel denotes the closest distance
to Pd, then the global solution in (c) is obtained by our proposed method. Red points represent the ground-view
point Ps.

9

3D Reconstruction through Fusion of Cross-View Images
DOI: http://dx.doi.org/10.5772/intechopen.93099



3.3.3 Global optimization for consistent building segment matching using graph-cut

In the previous building segment matching step, a list of transformations T ¼
Ti, i ¼ 1, 2, …f g is generated, which constitutes the final hypotheses for each

building segments. We consider that the transformation hypothesis for neighboring
building segments to be similar, therefore, we consider formulating this constrain in
an energy minimization problem (Eq. (1)):

E Tð Þ ¼
X

B

D B,Tð Þ þ
X

Bi, B j

VBi,B j
TBi

,TB j

� �

, (1)

where D B,Tð Þ is the data term for teach building segment B with a transforma-

tion T in T , and VBi,B j
TBi

,TB j

� �

is the smooth term that penalizes differences of

two transformations TBi and TB j of the building segments Bi and B j.

3.3.3.1 Data term

Given a building B and a transformation T, we first collect its k-adjacent
buildings (including B), measured using distance between barycentric coordinates.
These segments after transformation are used to verify how close they are to the
over-view building segments. To robustify the evaluation, we consider counting the
number of points that are close enough to the overview building segments, as
follows (Eq. (2)):

D B,Tð Þ ¼
X

p∈B

c p, p0ð Þ ¼
0, if d p, p0ð Þ<dth

1, otherwise

8

<

:

(2)

where c p, p0ð Þ is the cost of a point p that belongs to the building B, which equals
to 0 if the distance d p, p0ð Þ between p and its closest point p0 in the over-view
building boundaries is smaller than dth, and equals to 1 otherwise. This formulation
can effectively keep the value range of the data term limited. For example, the value
of d p, p0ð Þ can be very large if an incorrect transformation converts the point p far
away from p0; however, c p, p0ð Þ can eliminate the influence of this mistake to
generate more reasonable cost value.

3.3.3.2 Smooth term

The smooth term VBi,B j
TBi

,TB j

� �

penalizes the transformation associate with

two neighboring buildings being too different, shown in Eq. (3):

VBi,B j
TBi

,TB j

� �

¼
p1, if θBi

� θB j

�

�

�

�< θth and tBi
� tB j

�

�

�

�< tth

p2, otherwise

8

<

:

(3)

where θ is the rotation angle in 2D and t is translation, and we assign a small
penalty p1 to neighboring segments with transformation different smaller than a
given threshold, otherwise we assign a larger penalty. The weights and thresholds
can be determined based on the noise level of data. The solution Eq. (1) can be
achieved efficiently through graph-cut algorithm [48].

10

Recent Advances in Image Restoration with Applications to Real World Problems



3.3.4 Bundle adjustment for pose refinement

The co-registration is further performed in the vertical direction using the
overlapping ground points, and this is followed by a bundle adjustment of all image
poses such that they are consistent with the registered ground-view point clouds.
This is achieved by weighting the unknown poses to be close to the poses after the
transformation. An additional bundle adjustment benefits the poses to be strictly
following the epipolar constraints thus offers consistent 2D-3D relationship for
further processing such as texture mapping.

Both the overview and ground-view point clouds are then combined, and their
overlapping point clouds were fused as follows: for areas where both satellite point
clouds and ground-view point clouds exist, we take the ground-view point clouds
as it with a resolution presents higher accuracy and certainty. An example of
co-registered cross-view point clouds is shown in Figure 9.

3.4 Meshing and texture mapping of cross-view fused point clouds

3.4.1 Mesh reconstruction of cross-view fused point cloud

As mentioned in Section I (Introduction), a point cloud-based meshing method
[21] is unlikely to yield visually consistent meshes (an example is shown in
Figure 14). Therefore, our solution considers the use of image information for mesh
reconstruction. The base method [23] takes the constructed Delaunay tetrahedra of
the point clouds as the input to extract the surface. These tetrahedra can be viewed
as a connected graph, in which the tetrahedra are the nodes and shared/common
faces are edges. Figure 10 shows the procedure: black triangles denote cameras,
dash arrows denote visual rays, each point in 3D space can be determined by at least
two rays, which connect the object points and camera centers, here we call it ray
visibility. Based on ray visibility, tetrahedra intersected with rays are evaluated by
their probability to be in a free space (outer space), and tetrahedra behind the ray
endpoint are evaluated by their probability belonging to the full space (inner
space). Such a graph labeling can be casted to a s-t minimal cut problem and solved
with maxflow algorithms [49]. The final surfaces are the common faces of the
tetrahedra labeled as free and full spaces (Figure 10).

Our pipeline extends from this base algorithm by incorporating point clouds
generated from the satellite images. The following steps give streamline from source
points to surface mesh model.

Delaunay 3D triangulation: 3D triangulation or tetrahedralization is extended
from 2D triangulation, which partitions a polyhedron into non-overlapping basic
3D elements, where the vertices of tetrahedra take the vertices of the original

Figure 9.
Co-registered cross-view point clouds are fused (left: before; right: after) by only keeping the high resolution
results. Non-textured points are over-view satellite point clouds.
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polyhedron. Delaunay tetrahedron reconstruction [51] divides the convex hull of
points into compact simplices, where neither extremely long edge nor extremely
sharp angle is included. Many well-known commercial packages and open source
projects have implemented the algorithm that creates Delaunay tetrahedron from
point set, here we use CGAL [52] an open source computational geometric
algorithm library to construct tetrahedra.

Visibility: each ray will propagate its confidence to intersected nodes (tetrahedra)
and edges (triangle faces) of the tetrahedra graph. The algorithm was implemented
by an open-sourced project OpenMVS [53]. Dense points and their associated
images with poses are the most common source of visibility in our framework, often
under a perspective geometry. However, the geometric model of satellite camera
sensors is different (e.g., rational polynomial coefficients) [4]. By considering that
the point clouds can be associated with the orthophoto through a parallel projection,
we proposed a two-step method: (1) project satellite point on to grid, only the
highest point is recorded in each cell. (2) Create vertical visual rays from those
points.

Assigning weights for the graph: our method follows a so-called soft visibility
weighting model that was used by the base algorithm. The readers may refer to the
original paper [23] for more detail.

Solving min-cut problem: once weighting procedure for the edges is done, we
use IBFS (incremental breadth first search) [54] maximum flow algorithm to solve
minimum s-t cut problem. And finally, the common faces between source and sink
tetrahedra are extracted to build up optimum surface model.

3.4.2 Texture mapping of cross-view fused point cloud

Our texture mapping framework is based on Waechter’s work [25] which has
been well practiced and widely used by rather popular open source projects, for
example, OpenMVS [53]. Texturing a 3D model from multiple registered images is
typically performed in a two steps approach: (1) select view(s) should be used to
texture each face yielding a preliminary texture and (2) optimize the texture to
avoid seams between adjacent texture patches.

Best view selection: the base method [25] determines face visibility (distinct
from ray visibility) for all combinations of views and faces by first performing back
face and view frustum culling, then renders faces onto images, using depth buffer
to determine the nearest faces. Lempitsky et al. [51, 52, 55] compute a labeling that
assign a view to be used as texture for each mesh face using a pairwise Markov
random field energy formulation. We consider the ground-view images are
perspective, and the satellite orthophotos are in parallel projection. Our texture

Figure 10.
Left: Green network is Delaunay triangulation, yellow region (free space) is tetrahedra which intersected with
rays (dash arrows), and white region is tetrahedra labeled as full space. Right: red lines are surfaces between
full and free space, which are common faces shared by those tetrahedra (artwork from [50] with minor edit).
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mapping considers the orthophoto as one of the images with only few simple
modifications: we balanced data term of ortho images to compensate resolution gap
and make ortho images as the default sources for texturing.

Seamless texture fusion: in Waechter et al.’s method [25], they proposed a
global and local color adjustment method to blur the seams, which extended
Lempitsky and Ivanov’s [55] color adjustment approach. The original approach only
accounts for color difference on vertices to measure color difference along the seam
line, called global adjustment. The extended method added a local adjustment with
Poisson editing [56] affect border strip of image patches. In our case, since the
resolution of orthophoto is way lower than the ground-view images, prior to apply-
ing the fusion of image patches, we up-sampled orthophoto to the same resolution
as that of the ground-view images. After color balancing and Poisson editing, color
differences can be well-adjusted and seams are successfully been blurred.

4. Data description

We take the Ohio State University (OSU) Columbus Campus as our test site, of
which we have collected 12 overlapping satellite images consisting of WorldView-I
and WorldView-II images (information shown in Table 1). These images selec-
tively form 31 pairs used for the reconstruction based on the method of [28], and
many of these images are not from the same year thus creating challenges for the
reconstruction. Table 2 provides an overview of the first 10 pairs used from the
acquired images: not all of these pairs form in-track stereo, while the large redun-
dancy does provide the advantage in producing more accurate surface model.
Figure 11 shows the generated digital surface model. The achieved RMSE (root-
mean-squared-error) is 1.26 m evaluated through LiDAR point clouds, and the
RMSE reached 0.60 m by excluding changed buildings, rivers, and trees.

We have also collected approximately 300 GB of Go-pro videos covering a
trajectory equivalent to 33 km, and the reconstruction for the ground-view images
take 150 k frames (with a resolution of 1500 � 2000 pixels per frame) out of these
videos. Figure 12 shows the reconstructed point clouds of approximately two thirds

Acquisition

time

Sensor Off nadir

(degree)

Sun elevation

angle (degree)

Resolution

(meter)

Cloud cover

percentage (%)

1 2009-04-01 WorldView-01 1.80 52.40 0.50 0.00

2 2010-04-15 WorldView-01 15.40 58.20 0.52 0.00

3 2010-09-25 WorldView-02 13.00 48.30 0.49 0.04

4 2010-09-25 WorldView-02 19.20 48.30 0.52 0.01

5 2011-10-08 WorldView-02 4.30 43.80 0.47 0.00

6 2012-01-09 WorldView-01 20.00 26.10 0.55 0.00

7 2012-01-09 WorldView-01 32.70 26.20 0.67 0.00

8 2013-08-06 WorldView-02 15.80 64.20 0.50 0.00

9 2013-12-28 WorldView-01 22.90 24.50 0.57 0.00

10 2014-06-06 WorldView-02 23.50 70.80 0.54 0.00

11 2015-04-17 WorldView-02 25.60 56.80 0.56 0.00

12 2019-01-05 WorldView-02 19.90 26.60 0.52 0.00

Table 1.
Twelve overlapping satellite images used for satellite-based 3D reconstruction.
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Pair Intersection angle

(degree)

Sun difference angle

(degree)

Time difference

(days)

Left image

ID

Right

image ID

1 6.20 0.00 0 3 4

2 12.70 0.10 0 6 7

3 13.60 5.80 379 1 2

4 2.90 1.60 719 6 9

5 9.80 1.70 719 7 9

6 8.70 4.50 378 3 5

7 14.90 4.50 378 4 5

8 7.70 6.60 304 8 10

9 2.10 14.00 315 10 11

10 5.70 30.20 1359 11 12

Table 2.
Examples of metadata of pairs used for satellite-based 3D reconstruction. These data come in level 1. The image
ID refers to those in Table 1.

Figure 11.
The generated digital surface models of the OSU campus using our satellite data processing pipeline. The top-
row shows enlarged views.
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of the region. The pose estimation time takes approximately 20 hours and dense
matching takes 4 h in a normal i-7 desktop computer.

5. Experiment results

We demonstrate that the resulting geometry shows completeness in terms of the
rooftop and façade information (for places where ground-view images are avail-
able). Figure 13 provides an overview of the registered point clouds and a compar-
ison showing the mis-registration using a typical point cloud based algorithm [20].

With the registered point clouds, we can generate the meshes using our pro-
posed meshing pipeline introduced in Section 3.4. Figure 14 shows the
reconstructed meshes (shaded and textured) using our pipeline, and we have also
included the results from a pure point cloud-based meshing method, which visually
demonstrates much worse results. In Figure 15, we have also included the recon-
struction results of a relatively larger region using our reconstructed pipeline.

5.1 Accuracy evaluation

We have compared the resulting combined model with the ground truth Air-
borne LiDAR data as shown in Figure 16, in which we include two sample areas
(top and bottom row of Figure 16). Since the airborne LiDAR does not cover the
façade information, we evaluate the accuracy of the results using resampled DSM to
the same grid. It is expected that the combined model with the incorporated street-
view point clouds should have better accuracy given the more accurate point clouds
of the (partial) ground and building boundaries. From Figure 16, we can observe that
the satellite DSM (left column), due to the lower resolution, shows blurred object
boundaries, as compared to the combined model (middle column). Figure 17 plots
the error distributions, and it evidences our observations in Figure 16: the object
boundaries in the satellite DSM show larger errors than the combined model, and it
can be also seen in some regions of the ground that the combined model presents less
error due to the captured fine ground structures (marked in red circle of Figures 16
and 17, bottom row). Table 3 calculates the RMSE (root mean squared error) of these
two areas, and it shows that the combined model improves at 0.20 m in accuracy for

Figure 12.
Dense reconstruction using our processing pipeline for two thirds of the campus region, totaling 7 billion color
points.
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area 1 and 1 m for area 2. This shows significant improvement in terms of data
accuracy, and we should note that this evaluate is only on the DSM and it is expected
that if the façade data evaluation is considered (if ground truth of the façade geom-
etry is available), the accuracy improvement can be significantly more.

6. Conclusion

In this chapter, we propose a framework for fusing results from cross-view images
for 3D mesh reconstruction. We present our processing framework (Figure 1) that

Figure 13.
Registration result of ICP (a) and our method (b) on the distorted ground-view trajectory. (c) Part of the
registered ground-view point clouds generated on 150 k Go-Pro images.
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consists of three major components: (1) 3D reconstruction separately from the top-
view satellite images and ground-level images; (2) cross-view geo-registration between
the satellite point clouds and ground-view point clouds; 3) meshing reconstruction
based on the combined satellite and ground point clouds. In each of these components,
we present our developed systems and on-going research efforts in addressing the
potential challenges (introduced in Section 1.1) and the in-progress results. We dem-
onstrate that our proposed pipeline can achieve visually more consistent textured
meshes, in comparison to a standard and intuitive processing method. The proposed
framework and the attempts for integrating satellite and ground-view images and

Figure 14.
Left: shaded mesh model. Right: textured mesh model. (a) Reconstructed mesh using Poisson reconstruction.
(b) Reconstructed mesh using our reconstruction method.

Figure 15.
A screenshot of the generated textured mesh of the OSU campus area using our proposed pipeline, which
includes information from the top-view and details on the facades.
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Figure 16.
DSM from satellite stereo (left column)/combined model (middle column)/airborne LIDAR (right column).
Top and bottom row indicates two difference samples (sample area 1 and sample area 2). The red-circled
region shows that a ground structure is well compared in the combined model, as compared to the satellite DSM.

Figure 17.
Error maps of satellite model (left column) and combined model (right column) evaluated against the LiDAR
DSM. Top and bottom row indicates two difference samples (sample area 1 and sample area 2). The red circled
region shows smaller errors in the combined model due to that the ground structure is well captured.
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converting them to textured models can be of particular interest for data collection in
areas where standard datasets such as aerial/UAV (unmanned aerial vehicle) photo-
grammetric/LiDAR flights. We have demonstrated that DSM generated from the
combined model using our workflow can be 1-m more accurate than the satellite DSM
and is expected to be much more accurate if the evaluation on the façade is considered
(as the satellite DSM does not have façade information at all). Our future works
include further optimizing individual modules of our processing pipeline and part of
these modules will be made available once they are optimized for practical uses.
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RMSE (m) – Area 1 RMSE (m) – Area 2

Satellite model 4.315 3.505

Combined model 4.138 2.532

Table 3.
Error evaluation.
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