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Chapter

Spatiotemporal Fusion
in Remote Sensing
Hessah Albanwan and Rongjun Qin

Abstract

Remote sensing images and techniques are powerful tools to investigate earth’s
surface. Data quality is the key to enhance remote sensing applications and
obtaining clear and noise-free set of data is very difficult in most situations due to
the varying acquisition (e.g., atmosphere and season), sensor and platform (e.g.,
satellite angles and sensor characteristics) conditions. With the increasing
development of satellites, nowadays Terabytes of remote sensing images can be
acquired every day. Therefore, information and data fusion can be particularly
important in the remote sensing community. The fusion integrates data from
various sources acquired asynchronously for information extraction, analysis, and
quality improvement. In this chapter, we aim to discuss the theory of spatiotempo-
ral fusion by investigating previous works, in addition to describing the basic
concepts and some of its applications by summarizing our prior and ongoing works.

Keywords: spatiotemporal fusion, satellite images, depth images,
pixel-level spatiotemporal fusion, feature-level spatiotemporal fusion,
decision-level spatiotemporal fusion

1. Introduction

1.1 Background

Obtaining a high-quality satellite image with a complete representation of earth’s
surface is crucial to get clear interpretability of data, which can be used for moni-
toring and managing natural and urban resources. However, because of the internal
and external influences of the imaging system and its surrounding environment, the
quality of remote sensing data is often insufficient. The internal imaging system
conditions include the spectral characteristics, resolution and other factors of the
sensor, algorithms used to calibrate the images, etc. The surrounding environment
refers to all external/environmental influences such as weather and season. These
influences can cause errors and outliers within the images; for instance, shadow and
cloud may cause obstructions in the scene and may occlude part of the information
regarding an object. These errors must be resolved in order to produce high-quality
remote sensing product (e.g., land-cover maps).

With the rapid and increasing development of satellite sensors and their capabil-
ities, studies have shown that fusion of data frommultisource, multitemporal images,
or both is the key to recover the quality of a satellite image. Image fusion is known as
the task of integrating two or more images into a single image [1–3]. The fusion of
data essentially utilizes redundant information from multiple images to resolve or
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minimize uncertainties associated with the data, with goals such as to reject outliers,
to replace and fill missing data points, and to enhance spatial and radiometric resolu-
tions of the data. Fusion has been used in a wide range of remote sensing applications
such as radiometric normalization, classification, change detection, etc. In general,
there are two types of fusion algorithms: spatial-spectral [4–7] and spatiotemporal
fusion [8–10]. Spatial-spectral fusion uses the local information in a single image to
predict the pixels’ true values based on spectrally similar neighboring pixels. It is used
for various types of tasks and applications such as filling missing data (also known as
image inpainting) and generating high-resolution images (e.g., pan-sharpening [11]
and super-resolution [12]). It can include filtering approaches such as fusing infor-
mation within a local window using methods such as interpolation [13, 14], maxi-
mum a posteriori (MAP), Bayesian model, Markov random fields (MRFs), and
Neural Networks (NN) [4, 12, 15–18]. Although spatial-spectral fusion is efficient, it
is not able to incorporate information from temporal images, which produce dramatic
radiometric differences such as those introduced by meteorological, phenological, or
ecological changes. For instance, radiometric distortions and impurities in an image
due to metrological changes (e.g., heavy cloud cover, haze, or shadow) cannot be
entirely detected and suppressed by spatial-spectral fusion since it only operates
locally within a single image. To address this issue, researchers suggested spatiotem-
poral fusion, which encompasses spatial-spectral fusion and offers a filtering algo-
rithm that is invariant to dynamic changes over time, in addition to being robust
against noise and radiometric variations. Identifying spatiotemporal patterns is the
core to spatiotemporal fusion, where the patterns are intended to define a correlation
between shape, size, texture, and intensity of adjacent pixels across images taken at
different times, of different types, and from different sources.

Spatiotemporal fusion has been an active area of study over the last few decades
[9]. Many studies have shown that maximizing the amount of information through
integrating the spatial, spectral, and temporal attributes can lead to accurate stable
predictions and enhance the final output [8, 9, 19–21]. Spatiotemporal fusion can be
applied within local and global fusion frameworks, where locally it can be
performed using weighted functions and local windows around all pixels [22–24],
and globally using optimization approaches [25, 26]. Additionally, spatiotemporal
fusion can be performed on various data processing levels depending on the desired
techniques and applications to be used [3]. It also can depend on the type of data
used; for instance, per-pixel operations are well suited for images acquired from the
same imaging system (i.e., same sensor) since they undergo similar calibration
process and minimum spectral differences in terms of having the same number of
bands and bandwidth ranges in the spectrum, whereas feature- or decision-level
fusion is more flexible and able to handle heterogeneous data such as combing
elevation data (e.g., LiDAR) with satellite images [27]. Fusion levels include:

Pixel-level image fusion: This is a direct low-level fusion approach. It involves
pixel-to-pixel operation, where the physical information (e.g., intensity values,
elevation, thermal values, etc.) associated with each pixel within two or more
images is integrated into a single value [2]. It includes methods such as spatial and
temporal adaptive reflectance fusion model (STARFM), Spatial and Temporal
Reflectance Unmixing Model (STRUM), etc. [22–24].

Feature-level image fusion: It involves extracting and matching distinctive fea-
tures from two or more overlapping images using methods such as dimensionality
reduction like principal component analysis (PCA), linear discriminant analysis
(LDA), SIFT, SURF, etc. [2, 28]. Fusion is then performed using the extracted
features and the coefficients corresponding to them [2, 29]. Some other common
methods that include spatiotemporal fusion on feature-level are sparse representa-
tion and deep learning algorithms [10, 30–38].
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Decision-level image fusion is a high-level of fusion method that requires each
image to be processed individually until an output (e.g., classification map). The
outputs are then postprocessed using decision-level fusion techniques [2, 39]. This
level of fusion can include the previous two levels of fusion (i.e., per-pixel opera-
tions or extracted features) within its operation [40, 41].

In this chapter, we will focus on the concept, methods, and applications of the
spatiotemporal-based fusion at all levels of fusion. We will discuss all aspects of
spatiotemporal fusion starting from its concepts, preprocessing steps, the
approaches, and techniques involved. We will also discuss some examples that
apply spatiotemporal fusion for remote sensing applications.

1.2 Contributions

This book chapter introduces the spatiotemporal analysis in fusion algorithms to
improve the quality of remote sensing images. We will explore spatiotemporal
fusion advantages and limitations, as well as, their applications and associated
technicalities under three scenarios:

1.Pixel-level spatiotemporal fusion

2.Feature-level spatiotemporal fusion

3.Decision-level spatiotemporal fusion

1.3 Organization

The organization of this chapter is as follows: Section 2 describes remote sensing
data and acquisition and generation processes and necessary preprocessing steps for
all fusion levels. Section 3 talks about spatiotemporal fusion techniques under the
three levels of fusion: pixel-level, feature-level, and decision-level, which can be
applied to either multisource, multitemporal, or multisource multitemporal satellite
images. Section 4 describes some applications applying spatiotemporal fusion, and
finally Section 5 concludes the chapter.

2. Generic steps to spatiotemporal fusion

Spatiotemporal analysis allows investigation of data from various times and
sources. The general workflow for any spatiotemporal fusion process is shown in
Figure 1. The process description toward a fused image is demonstrated in
Figure 1(a), where it describes the process of input acquisition, preprocessing
steps, and finally the fusion. Data in remote sensing are either acquired directly
from a sensor (e.g., satellite images) or indirectly generated using algorithms (e.g.,
depth image from dense image matching algorithms [42]) (see Figure 1(b)). It also
includes data from single or multiple sources (see Figure 1(b)); however, combing
multisource and multitemporal images requires preprocessing steps to assure data
consistency for analyses. The preprocessing steps can include radiometric and geo-
metric correction and alignment (see Figure 1(a)). The main spatiotemporal fusion
algorithm is then performed using one or more of the three levels of fusion as a base
for their method. In this section, we will discuss the most common preprocessing
steps in spatiotemporal fusion, as well as, the importance and previous techniques
used in spatiotemporal fusion in the three levels of fusion to improve the quality of
images and remote sensing applications.
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2.1 Data acquisition and generation

Today, there exists a tremendous number of satellite sensors with varying
properties and configurations providing researchers with access to a large amount of
satellite data. Remote sensing images can be acquired directly from sensors or indirectly
using algorithms. It is also availablewith awide range of properties and resolutions (i.e.,
spatial, spectral, and temporal resolutions), which are described in detail inTable 1.

2.1.1 Data acquisition

Generally, there exist two types of remote sensing sensor systems: active and
passive sensors [43]. Active sensors record the signal that is emitted from the sensor
itself and received back when it reflects off the surface of the earth. They include
sensors like Light Detection and Ranging (LiDAR) and Radar. Passive sensors record
the reflected signal off the ground after being emitted from a natural light source
like the Sun. They include satellite sensors that produce satellite images such as
Landsat, Satellite Pour l’Observation de la Terre (SPOT), MODIS, etc.

2.1.2 Data generation

Sometimes in remote sensing, the derived data can be also taken as
measurements. Examples include depth images with elevation data derived through

Figure 1.
The general workflow for spatiotemporal fusion. (a) The generic steps in spatiotemporal fusion, and (b) fusion
based on type of data.
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photogrammetric techniques on satellite stereo or multi-stereo images [42], classi-
fication maps, change detection maps, etc. In this section, we will discuss two
important examples of the commonly fused remote sensing data and their genera-
tion algorithms:

2.1.3 Depth maps (or digital surface model (DSM))

3D geometric elevation information can either be obtained directly using LiDAR
or indirectly using dense image matching algorithms such as Multiview stereo
(MVS) algorithms. However, because LiDAR data are expensive and often
unavailable for historic data (before 1970s when LiDAR was developed), generating
depth images using MVS algorithms is more convenient and efficient. MVS algo-
rithms include several steps:

Images acquisition and selection to perform MVS algorithm requires having at
least a pair or more of overlapping images captured from different viewing angles
that assure selecting an adequate number of matching features. Specifically, this
refers to the process of feature extraction and matching, where unique features
are being detected and matched in pairs of images using feature detectors and
descriptors methods such as Harris, SIFT, or SURF [44].

Dense image matching and depth map generation: Dense image matching refers
to the process of producing dense correspondences between two or among multiple
images, and with their pre-calculated geometrical relationship, depth/height infor-
mation can be determined through ray triangulation [45]. The dense correspon-
dences problem, with pre-calculated image geometry, turns to a 1-D problem in
rectified image (also called epipolar image) [46], called disparity computation,
which is basically the difference between the left and right views as shown below:

Type of

resolution

Spatial resolution Spectral resolution Temporal resolution

Definition Describes the ground area
covered by a single pixel in
the satellite images. It is also
known as the ground
sampling distance (GSD)
and can range from a few
hundreds of meters to sub-
meters. Satellite sensors like
Moderate Resolution
Imaging Spectroradiometer
(MODIS) produce coarse-
resolution images with 250,
500, and 1000 meters,
while fine-resolution
images are produced by
satellites like very high-
resolution (VHR) satellites
at the sub-meter level [43].

Refers to the ability of
satellite sensors to capture
images with wide ranges of
the spectrum. It includes
hyperspectral (HS) images
with thousands of bands or
multispectral (MS) images
with few numbers of bands
(up to 10–15 bands) [43]. It
may also include task-
specific bands that are
beneficial to study the
environment and weather,
like the thermal band as in
Landsat 7 thematic mapper
plus (ETM+) [43]. Spectral
resolution also refers to the
wavelength interval in the
spectral signal domain; for
instance, MODIS has 36
bands falling between 0.4
and 14.4 μm, whereas
Landsat 7 (ETM+) has 7
bands ranging from 0.45 to
0.9 μm.

It is the ability of satellite
sensors to capture an object
or phenomena in certain
periods of time, also known
as the revisiting time of
sensor at a certain location
on the ground. Today,
modern satellite systems
allow monitoring earth’s
surface over short and
regular periods of time; for
instance, MODIS provides
almost a daily coverage,
while Landsat covers the
entire earth surface every
16 days.

Table 1.
Satellite sensors’ characteristics and resolutions.
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Disparity ¼ ∆x ¼ xl � xr ¼
f T
z

(1)

where xl and xr are distance of pixel in the left and right images accordingly, f is
the focal length, T is the distance between the cameras, and z is the depth. The
depth (z) is then estimated from Eq. [1] by taking the focal length times the
distance between the cameras divided by the disparity as follows:

Depth ¼ Z ¼
ft

∣xl � xr∣
(2)

In addition, it is noted that assessing and selecting good pairs of images can
improve the dense image matching and produce a more accurate and complete 3D
depth map [47, 48].

2.1.4 Classification maps

Image classification can be divided into two categories: 1) Supervised
classification is a user-guided process, where classification depends on a prior
knowledge about the data that are extracted from the predefined training samples
by the user; some popular supervised classification methods include support vector
machine (SVM), random forest (RF), decision trees DT, etc. [49–51]. 2)
Unsupervised classification is a machine-guided process, where the algorithms
classify the pixels in the image by grouping similar pixels to come up with specific
patterns that define each class. These techniques include segmentation, clustering,
nearest neighbor classification, etc. [49].

2.2 Preprocessing steps

2.2.1 Geometric correction

Image registration and alignment is an essential preprocessing step in any
remote sensing application that processes two or more images. For accurate
analyses of multisource multitemporal images, it is necessary that overlapping
pixels in the images correspond to the same coordinates or points on the earth’s
surface. Registration can be performed manually by selecting control points (CPs)
between a pair of images to determine the transformation parameters and wrap the
images with respect to a reference image [52]. An alternative approach is an auto-
mated CP extraction that operates based on mutual information (MI) and similarity
measures of the intensity values [52]. According to [53], there are a few common
and sequential steps for image registration including the following steps:

Unique feature selection, extraction, and matching refers to the process where
unique features are detected using feature extraction methods, then matched to
their correspondences in a reference image. A feature can be a shape, texture,
intensity of a pixel, edge, or an index such as vegetation and morphological index.
According to [54, 55], features can be extracted based on the content of a pixel (e.g.,
intensity, depth value, or even texture) using methods such as SIFT, difference of
Gaussian (DOG), Harris detection, and Histogram of oriented gradient (HOG)
[53, 56–58] or based on patch of pixels [59–61] like using deep learning methods
(e.g., convolutional neural networks (CNNs)), which can be used to extract com-
plete objects to be used as features.

Transformation refers to the process of computing the transformation parame-
ters (e.g., rotation, translation, scaling, etc.) necessary to convolve an image to a
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coordinate system that matches a reference image. The projection and transforma-
tion methods include similarity, affine, projective, etc. [53].

Resampling is the process where an image is converted into the same coordinate
system as the reference image using the transformation parameters; it includes
methods such as interpolation, bilinear, polynomial, etc. [53].

2.2.2 Radiometric correction

Radiometric correction is essential to remove spectral distortion and radiometric
inconsistencies between the images. It can be performed either using absolute
radiometric normalization (ARN) or relative radiometric normalization (RRN)
[62–64]. ARN requires prior knowledge of physical information related to the scene
(e.g., weather conditions) for normalization [63, 65–67], while, RRN radiometri-
cally normalizes the images based on a reference image using methods such as dark
object subtraction (DOS), histogram matching (HM), simple regression (SR),
pseudo-invariant features (PIF), iteratively re-weighted MAD transformation, etc.
[62, 64, 68].

3. Data analysis and spatiotemporal fusion

Pixels in remote sensing data are highly correlated over space and time due to
earth’s surface characteristics, repeated patterns (i.e., close pixels belong to the
same object/class), and dynamics (i.e., season). The general algorithm for spatio-
temporal fusion is demonstrated in Figure 2, where all levels of fusion follow the
same ideology. The minimum image requirement for spatiotemporal fusion is a pair
of images whether they are acquired from multiple sources or time, the input
images are represented with t1 to tn in Figure 2. The red square can be either a single

Figure 2.
The general concept of spatiotemporal fusion to process patch of pixels (the red square) spatially across different
times (t).
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raw pixel, an extracted feature vector, or processed pixel with valuable information
(e.g., probability value indicating the class of a pixel). The fusion algorithm then
finds the spatiotemporal patterns over space (i.e., the coordinates (x, y), and pixel
content) and time (t) to predict accurate and precise values of the new pixels (see
Figure 2). In this section, we will provide an overview of some previous works
regarding spatiotemporal image fusion that emphasize on the importance of space-
time correlation to enhance image quality and discuss this type of fusion in the
context of three levels of fusion: pixel-level, feature-level, and decision-level.

3.1 Pixel-level spatiotemporal fusion

As mentioned in the introduction, pixel-based fusion is the most basic and direct
approach to fuse multiple images by performing pixel-to-pixel operations; it has
been used in a wide range of applications and is preferred because of its simplicity.
Many studies performing pixel-level fusion algorithms realized the power of spa-
tiotemporal analysis in fusion and used it in a wide range of applications such as
monitoring, assessing, and managing natural sources (e.g., vegetation, cropland,
forests, flood, etc.), as well as, urban areas [9]. Most of the pixel-level spatiotem-
poral fusion algorithms operate as a filtering or weighted-function method; they
process a group of pixels in a window surrounding each pixel to compute the
corresponding spatial, spectral, and temporal weights (see Figure 3). A very popu-
lar spatiotemporal fusion method that set the base for many other fusion methods is
spatial and temporal adaptive reflectance fusion model (STARFM); it is intended to
generate a high-resolution image with precise spectral reflectance by merging
multisource fine- and coarse-resolution images [22]. Their method resamples the
coarse-resolution MODIS image to have a matching resolution as the Landsat TM
image, after that it computes the overall weight by calculating the spectral and
temporal differences between the images. STARFM is highly effective in detecting
phenological changes, but it fails to handle heterogeneous landscapes with rapid
land-cover changes and around mixed pixels [22]. To address this issue, [20] have
proposed Enhanced STARFM (ESTARFM); it applies a conversion coefficient to
assess the temporal differences between fine- and coarse-resolution images. In [69],
Hilker also addressed the problem of drastic land-cover change by proposing Spatial
Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH),
which applies Tasseled cap transformation [70] to detect the seasonal changes over

Figure 3.
Pixel-based fusion process diagram.
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a landscape. For further improvement of these algorithms, studies have suggested
using machine learning methods to identify similar pixels by their classes [71]. The
authors also show an example on using machine learning unsupervised classifica-
tion within the spatiotemporal fusion to enhance its performance. They used clus-
tering on one of the images using the ISODATA method [72], where pixels are
considered similar if the difference between the current and central pixel in the
window is less than one standard deviation of the pixels in the cluster. Other
methods use filtering algorithms to enhance the spatial and spectral aspects of
images, in addition to embedding the temporal analysis to further enhance the
quality and performance of an application. For instance, [73] proposed a method
that combines the basic bilateral filter with STARFM to estimate land surface
temperature (LST). In [19], they proposed a 3D spatiotemporal filtering as a
preprocessing step for relative radiometric normalization (RRN) to enhance the
consistency of temporal images. Their idea revolves around finding the spatial and
spectral similarities using a bilateral filter, followed by assessing the temporal sim-
ilarities for each pixel against the entire set of images. The temporal weight, which
assesses the degree of similarity, is computed using an average Euclidean distance
using the multitemporal data. In addition to the weighted-based functions,
approaches such as unmixing-based and hybrid-based methods are also common in
spatiotemporal fusion [74]. The unmixing-based methods predict the fine-
resolution image reflectance by computing the mixed pixels from coarse-resolution
image [75], while hybrid-based methods use a color mapping function that com-
putes the transformation matrix from the coarse-resolution image and apply it on
the finer resolution image [76].

3.2 Feature-level spatiotemporal fusion

Feature-level fusion is a more complex level of fusion, unlike pixel-based oper-
ations, it can efficiently handle heterogeneous data that vary in modality and
source. According to [2], feature-based fusion can either be conducted directly
using semantically equivalent features (e.g., edges) or through probability maps
that transform images into semantically equivalent features. This characteristic
allows fusion to be performed regardless of the type and source of information [27].
Fusion can then be performed using arithmetic (e.g., addition, division, etc.) and
statistical (e.g., mean, median, maximum, etc.) operations; the general process of
feature-based fusion is shown in Figure 4. The approach in [27] demonstrates a

Figure 4.
Feature-based fusion diagram.
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simple example on feature-level spatiotemporal fusion to investigate and monitor
deforestation; in their method, they combined data from meduim-resolution syn-
thetic aperture radar (SAR) and MS Landsat data, they extracted features related to
vegetation and soil location (using scattering information and Normalized Differ-
ence Fraction Index (NDFI) respectively), finally, fusion was performed through
decision tree classifier. Both [26, 62] point out to the most popular methods in
feature-level fusion, which include Laplacian pyramid, gradient pyramid, morpho-
logical pyramid, high-pass filter, and wavelet transform methods [77–81]. A very
famous fusion example in this category is inverse discrete wavelet (IDW) trans-
form, which is a wavelet transform fusion approach; it uses temporal images with
varying spatial resolutions to down-sample the coarse-resolution image. It basically
extracts the wavelet coefficients from the fine-resolution image and uses them to
down-sample the coarse-resolution image [82]. Sparse representation is another
widely used learning-based method in feature-level fusion due to its good perfor-
mance [8, 10, 30, 31]. All sparse representation algorithms share the same concept
and core idea, where the general steps include: 1) dividing the input images into
patches, 2) extracting distinctive features from the patches (e.g., high-frequency
feature patches), 3) generating coefficients from the feature patches, 4) training
jointly using dictionaries to find similar structures by extracting and matching
feature patches, and finally, 5) fusion using the training information and extracted
coefficients [8, 10, 30, 79, 83, 84].

Another state-of-the-art approach in feature- and decision-level fusion is deep
learning or artificial neural networks (ANNs). They are currently a very active area
of interest in many remote sensing fields (especially image classification) due to
their outstanding performance that surpasses traditional methods [32–38, 76,
82–84]. They are also capable of dealing with multi-modality like images from
varying sources and heterogeneous data, for instance, super-resolution and pan-
sharpening images from different sensors, combining HS and MS images, combin-
ing images with SAR or LiDAR data, etc. [32–38]. In feature-level fusion, the ANN
is either performed on the images for feature extraction or to learn from the data
itself [38]. The extracted features from the temporal images or classification map
are used as an input layer, which are then weighted and convoluted within several
intermediate hidden layers to result in the final fused image [32–35, 37, 79]. For
instance, [85] uses neural networks (CNN) to extract features from RGB image and
a DSM elevation map, which are then fed into the SVM training model to generate
an enhanced semantic labeling map. ANNs have also been widely used to solve
problems related to change detection of bi-temporal images such as comparing
multi-resolution images [86] or multisource images [87], which can be solved in a
feature-learning representation fashion. For instance, the method in [87] directly
compares stacked features extracted from a registered pair of images using deep
belief networks (DBNs).

3.3 Decision-level spatiotemporal fusion

The decision-level fusion operates on a product level, where it requires images to
be fully and independently processed until the meaningful output is obtained (e.g.,
classification or change detection maps) (see Figure 5). Decision-level fusion can
adapt to different modularities like combing heterogeneous data such as satellite
and depth images, which can be processed to common outputs (e.g., full/partial
classification maps) for fusion [88]. Additionally, the techniques followed by this
fusion type are often performed under the umbrella of Boolean or statistical opera-
tions using methods like likelihood estimation, voting (e.g., majority voting,
Dempster-Shafer’s estimation, fuzzy Logic, weighted sum, etc.) [88–90]. In [88],
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they provide an example on the mechanism of decision-level fusion; they developed
a fusion approach to detect cracks and defects on ground surface, they first convert
multitemporal images into spatial density maps using kernel density estimation
(KDE), then, fused the pixels density values using a likelihood estimation method.
In general, most of the decision-level fusion techniques rely on probabilistic
methods, where they require generating an initial label map with each pixel
upholding a probability value and indicating its belonging to a certain class, which
can be generated using traditional classification methods like the supervised (e.g.,
random forest) or unsupervised (e.g., clustering or segmentation) classification (see
Section 2.1.2.). Another advantage of the decision-level fusion is that it can be
implemented while incorporating both levels of fusion, the pixel- and feature-level
fusion. The method in [41] shows a spatiotemporal fusion algorithm that includes
all levels of fusion, where they propose a post-classification refinement algorithm to
enhance the classification maps. First, they generate probability maps for all tem-
poral images using random forest classifier (as an initial classification map); then
they use a recursive approach to iteratively process every pixel in the probability
maps by fusing the multitemporal probability maps with the elevation from the
DSMs using a 3D spatiotemporal filtering. Similarly, [40] have also proposed fusion
of probability maps for building detection purposes, where they first generate the
probability maps, then fuse them using a simple 3D bilateral filter.

Recently, more focus has been driven toward using spatiotemporal fusion to
recover the quality of 3D depth images generated from MVS (e.g., DSM fusion).
Median filtering is the oldest and most common fusion approach for depth images;
it operates by computing the median depth of each pixel from a group of pixels at
the same location in the temporal images [91]. The median filtering is robust to
outliers and is efficient in filling missing depth values. However, the median filter
only exploits the temporal domain; to further enhance its performance and the
precision of the depth values, studies suggest spatiotemporal median filtering. In
[92], the authors have proposed an adaptive median filtering that operates based on
the class of the pixels; they use an adaptive window to isolate pixels belonging to the
same class, then choose the median pixel based on the location (i.e., adaptive
window) and temporal images. In [93], the authors also show that spatiotemporal
median filtering can be improved by adopting an adaptive weighing-filtering func-
tion that involves assessing the uncertainty of each class in the spatial and temporal
domains in the depth images using standard deviation. The uncertainty will then be
used as the bandwidth parameter to filter each class individually. The authors in
[47] also suggested a per-pixel fusing technique to select the depth value for each

Figure 5.
Feature-based fusion diagram.
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pixel by using a recursive K-median clustering approach that generates one to eight
clusters until it reaches the desired precision.

Other complex yet efficient methods used in decision-level fusion are deep
learning algorithms as mentioned previously in Section 2.3.2. [94]. They are either
used as postprocessing refinement approaches or to learn end-to-end from a model
[38]. For example, the method in [95] used a postprocessing enhancement step for
semantic labeling, where they first generate probability maps using two different
methods, RF and CNN using multimodal data (i.e., images and depth images), then
they fused the probability maps using Conditional random fields (CRFs) as
postprocessing approach. In [96], on the other hand, the authors used a model
learning-based method, where they first semantically segment multisource data
(i.e., image and depth image) using a SegNet network, then fuse their scores using a
residual learning approach.

4. Examples on spatiotemporal fusion applications

4.1 Spatiotemporal fusion of 2D images

4.1.1 Background and objective

A 3D spatial-temporal filtering algorithm is proposed in [19] to achieve relative
radiometric normalization (RRN) by fusing information from multitemporal
images. RRN is an important preprocessing step in any remote sensing application
that requires image comparison (e.g., change detection) or matching (e.g., image
mosaic, 3D reconstruction, etc.). RRN is intended to enhance the radiometric con-
sistency across set of images, in addition to reducing radiometric distortions that
result due to sensor and acquisition conditions (as mentioned in Section 1.1.).
Traditional RRN methods use a single reference image to radiometrically normalize
the rest of the images. The quality of the normalized images highly depends on the
reference image, which requires the reference image to be noise-free or to have
minimum radiometric distortions. Thus, the objective of [19] is to generate high-
quality radiometrically consistent images with minimum distortion by developing
an algorithm that fuses the spatial, spectral, and temporal information across a set
of images.

4.1.2 Theory

The core of the 3D spatiotemporal filter is based on the bilateral filter, which is
used to preserve the spectral and spatial details. It is a weighting function that
applies pixel-level fusion on images from multiple dates (see Figure 4(a)). The
general form of this filter is as follows:

Ii ¼
ð

Ω

wj,i:I j:dj (3)

where the original and filtered images are indicated using I and I. The weight for
every pixel at point j into the fused pixel i is indicated using wj,i. The filtering is
carried out on the entire space of the set of images Ω including all domains, that is,
the spatial (i.e., pixels’ coordinates (x, y)), the spectral (i.e., intensity value), and
temporal (i.e., intensity of temporal images). The spatial and spectral weights are
described by [97] and are indicated in Eqs. (4) and (5) respectively
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wspatial ¼ exp
jx � ix
�

�

�

�

2

σx
!

þ
jy � iy

�

�

�

�

�

�

2

σx
!

0

B

@

1

C

A
, j, i∈Ω (4)

wspectral ¼ exp �
I j � Ii
�

�

�

�

2

σI

 !

, j, i∈Ω (5)

where, I is the pixel value at x and y locations, and σx
! and σI are the spatial and

spectral bandwidths respectively that set the degree of filtering based on the spatial
and spectral similarities between the central pixel and nearby pixels. The novelty of
this filter is in the design of the temporal weight, where it computes the resem-
blance between every image and the entire set of images using an average Euclidean
distance as the follows

wspectral ¼ exp �
jt � it
�

�

�

�

2

σT

 !

, j, i∈Ω (6)

where jt � it
� �

are the difference between the current image being processed
and all other images and σT is the degree of filtering along the temporal direction.
Eq. (6) allows all images to contribute toward each other in enhancing the overall
radiometric characteristics and consistency without requiring a reference image for
the RRN process.

4.1.3 Experimental results and analysis

The 3D spatial-temporal filter was conducted on three experiments with
varying resolutions and complexities. Experiments 1 and 2 were applied on
urban and sub-urban areas respectively; each experiment had five medium-
resolution images from Landsat 8 satellite (with 15- to 30- m spatial resolution).
Experiment 3 was on a fine-resolution image from Planet satellite (with 3-m spatial
resolution).

Figure 6(b) and (c) shows an example of the input and results of the filter using
the data from experiment 1 (i.e., the urban area). The input images show a signifi-
cant discrepancy in the radiometric appearance (see Figure 6(b)); however, the
heterogeneity between multitemporal images is reduced after the filtering process
(see Figure 6(c)). By comparing the original and filtered images in Figure 6(c), we
can notice that the land covers are more similar in the filtered images than in the
original images. For instance, the water surface (shown in Figure 6(c) in blue bold
dashed line) used to have a clear contrast in intensity in the original images, but
after the filtering process, they become more spectrally alike in terms of intensity
looks and ranges.

The experiments are also validated numerically using transfer learning classifi-
cation (using SVM) to test the consistency between the normalized filtered images.
The transfer learning classification uses a reference training data from one image
and applies it to the rest of the images. The results in Table 2 indicate that the
filtered images have higher accuracy than the nonfiltered original images, where the
average improvement in accuracy is �6%, 19%, and 2% in all three experiments
respectively. Reducing the uncertainty in the filtering process by not requiring a
reference image for normalization was the key to this algorithm. The algorithm was
formulated to take advantage of the temporal direction by treating all images in the
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dataset as a reference. Therefore, it will have higher confidence to distinguish
between actual objects and radiometric distortions (like clouds) in the scene when
processing each pixel.

Figure 6.
Pixel-level fusion using 3D spatiotemporal bilateral filter to combine multitemporal images [19].
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4.2 Spatiotemporal fusion of multisource multitemporal images

4.2.1 Background and objective

Multitemporal and multisource satellite images often generate inconsistent clas-
sification maps. Noise and misclassifications are inevitable when classifying satellite
images, and the precision and accuracy of classification maps vary based on the
radiometric quality of the images. The radiometric quality is a function of the
acquisition and sensor conditions as mentioned in the background in Section 1.1.
The algorithm can also play a major role in the accuracy of the results; some
classification algorithms are more efficient than others, while some can be sensitive
to the spatial details in the images like complex dense areas and repeated patterns,
which lead objects of different classes to have similar spectral reflectance. The
acquisition time, type of algorithm, and distribution of objects in the scene are huge
factors that can degrade the quality and generate inconsistent classification maps
across different times. To address these issues, the authors in [41] proposed a 3D
iterative spatiotemporal filtering to enhance the classification maps of
multitemporal very high-resolution satellite images. Since the 3D geometric infor-
mation is more stable and is invariant to spectral changes across temporal images,
[41] proposed combining the 3D geometric information in the DSM with
multitemporal classification maps to provide spectrally invariant algorithm.

4.2.2 Theory

The 3D iterative spatiotemporal filter is a fusion method that combines infor-
mation from various types, sources, and times. The algorithm is a combination of
feature and decision levels of fusion; it is described in detail in Algorithm 1. The first
step is to generate initial probability maps for all images using random forest
classification. The inference model is then built to recursively process every pixel in
the probability maps using a normalized weighing function that computes the total

weight W3D x j, y j, tn
� �

based on the spatial (W spatial), spectral (W spectral), and

temporal (W temproral) similarities. The temporal weight is based on the elevation
values in the DSMs. The probability value for every pixel is computed and updated

Transfer learning classification

Image 1 2 3 4 5

Exp. I Suburban

Without filter 80.88 74.14 93.30 93.59 91.97

With filter 91.99 91.96 93.95 86.08 94.30

Exp. I - Urban

Without filter 72.61 67.91 81.00 50.21 93.75

With filter 89.29 90.60 91.35 77.82 93.10

Exp. II

Without filter 66.48 74.14 68.35 67.17 73.30

With filter 66.75 76.20 72.06 65.10 78.54

The bold numbers indicate an increase in the accuracy, and the numbers highlighted in gray indicate the reference
image used for the training in the transfer learning classification.

Table 2.
The accuracy results for the 3D spatial-temporal filter [19].
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using W3D x j, y j, tn
� �

and the previous iteration until it satisfies the convergence

condition, which requires the difference between the current and previous itera-
tions to be under a certain limit.

Algorithm 1: Pseudo code of the proposed 3D iterative spatiotemporal filter [41]

4.2.3 Experimental results and analysis

The proposed filter was applied to three datasets that include an open area,
residential area, and school area. The input data include multisource and
multitemporal very high-resolution images and DSMs; the probability maps were
created for six types of classes: buildings, long-term or temporary lodges, trees, grass,
ground, and roads (see Figure 7(a) for more details about the input data). Figure 7
(b) shows a sample of the filtering results. We can see that the initial classification of
the building (circled with an ellipse) is mostly incorrectly classified to long-term
lodge; however, it keeps improving as the filtering proceeds through the iterations.

The overall accuracy was reported, and it indicates that the overall enhancement
in the accuracy is about �2–6% (see Table 3). We can also notice that dense areas
such as the residential area have the lowest accuracy range (around 85%), while the
rest of the study areas had accuracy improvement in the 90% range. It indicates that
the filtering algorithm is dependent on the degree of density and complexity in the
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scene, where objects are hard to distinguish in condensed areas due to mixed pixel
and spectral similarity of different objects.

4.3 Spatiotemporal fusion of 3D depth maps

4.3.1 Background and objective

Obtaining high-quality depth images (also known as depth maps) is essential for
remote sensing applications that process 3D geometric information like 3D

Figure 7.
3D iterative spatiotemporal filtering for classification enhancement [41].
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reconstruction. MVS algorithms are widely used approaches to obtain depth images
(see Section 2.1.2.); however, depth maps generated using MVS often contain noise,
outliers, and incomplete representation of depth like having missing data, holes, or
fuzzy edges and boundaries. A common approach to recover the depth map is by
fusing several depth maps through probabilistic or deterministic methods. How-
ever, most fusion techniques in image processing focus on the fusion of depth
images from Kinect or video scenes, which cannot be directly applied on depth
generated from satellite images due to the nature of images. The difference between
depth generated from satellite sensors and Kinect or video cameras include:

1. Images captured indoor using Kinect or video cameras have less noise, since they
are not exposed to external environmental influences like atmospheric effects.

2.Kinect or video cameras generate a large volume of images, which can improve
dense matching, while the number of satellite images is limited due to the
temporal resolution of the satellite sensor.

3.The depth from satellite images is highly sensitive to the constant changes in the
environment and the spatial characteristics of the earth surface like the repeated
patterns, complexity, sparsity, and density of objects in the scene, which can
obstruct or create mismatching errors in the dense image matching process.

Most depth fusion algorithms for geospatial data focus on median filtering (see
Section 4.3.), but it still needs some improvement in terms of robustness and
adaptivity to the scene content. To address the aforementioned problems, [90]
proposed an adaptive and semantic-guided spatiotemporal filtering algorithm to
generate a single depth map with high precision. The adaptivity is implemented to
address the issue of varied uncertainty for objects of different classes.

4.3.2 Theory

The adaptive and semantic-guided spatiotemporal filter is a pixel-based fusion
method, where the depth of the fused pixel is inferred using multitemporal depths
and a prior knowledge about the pixel class and uncertainty. A reference orthophoto

Date Test region 1 Test region 2 Test region 3

Before

(%)

After

(%)

∆

(%)

Before

(%)

After

(%)

∆

(%)

Before

(%)

After

(%)

∆

(%)

2007 91.04% 95.21 +4.17 83.47 88.14 +4.67 91.12 95.85 +4.73

2010/1 93.21 96.45 +3.24 81.50 85.67 +4.17 93.06 96.82 +3.76

2010/6 91.93 96.26 +4.33 83.52 89.79 +6.27 88.82 94.87 +6.05

2010/12 89.08 95.57 +6.49 80.81 87.59 +6.78 88.58 94.86 +6.28

2012/3 92.19 95.92 +3.73 81.43 86.92 +5.49 91.44 97.08 +5.64

2013/9 90.40 96.56 +6.16 81.03 87.29 +6.26 94.99 97.54 +2.55

2014/7 95.11 97.27 +2.16 82.19 88.90 +6.17 90.39 96.58 +6.19

2015 92.74 96.35 +3.61 83.22 85.69 +2.47 94.61 97.19 +2.58

Average 92.09 96.20 4.24 82.15 87.50 5.29 91.63 96.35 4.72

Table 3.
The overall accuracy for classification results using the method in [41].
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is classified using a rule-based classification approach that uses normalized DSM
(nDSM) with indices such as normalized difference vegetation index (NDVI). The
uncertainty is then measured for all four classes (trees, grass, buildings, and ground
and roads) using the standard deviation. The uncertainty is measured spatially
using the classification map and also across the temporal images. The adaptive and
semantic-guided spatiotemporal filter is intended to enhance the median filter, thus
it uses height h i, j, tð Þmed as the base to the fused pixel, where the general form of the
filter is expressed as

DSM f i, jð Þ ¼
1

WT
∗
X

Width

i¼1

X

Height

j¼1

Wr ∗W s ∗Wh ∗ h i, j, tð Þmed (7)

where DSM f is the fused pixel; i, j are the pixel’s coordinates; hmed is the median
height value from the temporal DSMs; and the spectral, spatial, and temporal height
weights are expressed as Wr, W s, and Wh respectively. The Wr and W s are
described in Eqs. (4) and (5) that measure the spectral and spatial components from
the orthophoto. The Wh is a measure of similarity for the height data across
temporal images, and it can be computed using the following formula:

Wh i, jð Þ ¼ exp
� hmed�h i,j,tð Þj jj j2

2 σ
2
h (8)

where σhis the adaptive height bandwidth, which varies based on the class of
pixel as follows:

σh ¼

σBuilding ! if pixel i, jð Þ is building

σGround=road ! if pixel i, jð Þ is ground=road

σtree ! if pixel i, jð Þ is tree

σgrass ! if pixel i, jð Þ is grass

σwater ! if pixel i, jð Þ is water

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(9)

Figure 8.
Process description of adaptive and semantic-guided spatiotemporal filtering [93].
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4.3.3 Experimental results and analysis

The method in [90] was experimented on three datasets with varying
complexities. The satellite images are taken from the World-View III sensor, and
depth is generated using MVS algorithm on every image pair using RSP (RPC Stereo
Processor) software developed by [95] and semi-global matching (SGM) algorithm
[42]. Figure 8 describes the procedures followed by the fusion algorithm, in
addition to the visual results where it shows that noise and missing elevation points
were recovered in the fused image. The validation of three experiments shows that
this fusion technique can achieve up to 2% increase in the overall accuracy of the
depth map.

5. Conclusions

Spatiotemporal fusion is one of the powerful techniques to enhance the quality
of remote sensing data, hence, the performance of its applications. Recently, it has
been drawing great attention in many fields, due to its capability to analyze and
relate the space-interaction on ground, which can lead to promising results in terms
of stability, precision, and accuracy. The redundant temporal information is useful
to develop a time-invariant fusion algorithm that leads to the same inference from
the multitemporal geospatial data regardless of the noise and changes that occur
occasionally due to natural (e.g., metrology, ecology, and phenology) or instru-
mental (e.g., sensor conditions) causes. Therefore, incorporating spatiotemporal
analysis in any of the three levels of fusion can boost their performance, where it
can be flexible to handle data from multiple sources, types, and times. Despite the
effectiveness of spatiotemporal fusion, there are still some issues that may affect the
precision and accuracy of the final output. These considerations must be taken into
account while designing the spatiotemporal fusion algorithm. For example, spatio-
temporal analysis for per-pixel operations is highly sensitive to mixed pixels espe-
cially for coarse-resolution images where one pixel may contain the spectral
information of more than one object. The accuracy of the spatiotemporal fusion can
also be sensitive to the complexity of the scene, where in densely congested areas
such as cities the accuracy may be less than open areas or sub-urban areas (as
mentioned in the examples in Section 4.). This is due to the increase in the hetero-
geneity of the images in these dense areas. This issue can be solved using adaptive
spatiotemporal fusion algorithms, which is a not widely investigated area of study
in current practices. Feature and decision levels of fusion can partially solve this
problem by learning from patches of features or classified images, but their accu-
racy will also be under the influence of the feature extraction algorithm or the
algorithm to derive the initial output. For instance, mismatching features can result
in fusing unrelated features or data points, thus produce inaccurate coefficients for
the feature-level fusion model. Another observation is the lack of studies that relates
the number of temporal images and the fusion output accuracy, which is useful to
decide the optimal number of input images for fusion. Additionally, it is rarely seen
that the integrated images are picked before fusion, where assessing and choosing
good images can lead to better results. Spatiotemporal fusion algorithms are either
local or global approaches, the local algorithms are simple and forward like pixel-
level fusion or local filtering like the methods in [19, 22], while global methods tend
to perform extensive operations for optimization purposes like in [25]. In future
works, we aim to explore how these explicitly modeled spatiotemporal fusion algo-
rithms can be enhanced by the power of more complex and inherent models such as
deep learning-based models to drive more important remote sensing applications.
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