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Chapter

The Brain Stress System in the 
Neurobiology of the “Dark Side” 
of Addiction and Its Relation to 
Neurodegeneration
Maria Uscinska, Nicolo’ Gagliano and Frank Ho-Yin Lai

Abstract

Addiction is a chronically relapsing disorder characterized by a compulsion to 
seek and take a substance of abuse, the development of dependence, and a negative 
emotional state when intake is stopped. Compelling evidence argues that dysregula-
tion of the brain stress system is a key constituent of the addiction process. Through 
mechanisms of negative reinforcement, the stress system is posited to induce 
negative emotional state referred to as the ‘dark side of addiction’ as it becomes the 
powerful motivation for drug-seeking associated with compulsive use. Therein, the 
neuropharmacological actions of corticotropin-releasing factor (CRF) is posited 
to play a key role in the anxiety/stress-like effects of acute withdrawal, anxiety/
stress-like effects of abstinence, and relapse to drug taking. In this view, the present 
chapter sheds a critical light on latest research developments implicating this largely 
neglected component of substance abuse to give insight into the neuropathology 
of the ‘dark side’ of addiction. Moreover, the chapter provides insight into indi-
vidual vulnerability to addiction and proposes a novel treatment candidate for the 
disorder.

Keywords: addiction, stress, neurobiology, corticotropin-releasing factor, 
hypothalamic-pituitary-adrenal (HPA) axis

1. Conceptual framework

DSM-5 defines addiction as an evolving and chronically relapsing disorder, 
characterized by a compulsion to take drugs, the development of dependence and a 
motivational withdrawal syndrome with a negative emotional state when access to 
the drug is prevented [1, 2]. The profound malaise and anxiety during withdrawal, 
protracted abstinence syndrome marked by a low-level anxiety/dysphoria, and 
a high vulnerability to relapse upon exposure to an acute stressor is aptly termed 
‘the dark side’ of addiction. It is the common element of the disorder, although all 
addictions to different drugs are characterized by distinct patterns with emphasis 
on different stages of the addiction cycle.

The disorder typically progresses in a cyclical manner through three stages, 
namely preoccupation/anticipation, binge/intoxication, and withdrawal/negative 
affect (see Figure 1). The early stages of the cycle are characterized by impulsivity, 
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whereas terminal stages are dominated by compulsivity. The former refers to rapid 
reactions to internal and external factors with no concern about negative outcomes 
whilst the latter to perseveration in actions despite adverse consequences or in the 
face of incorrect responses in choice situations. As the cycle of drug taking and 
withdrawal continues, the different components of the addiction cycle become 
more intense, and progressively evolve into a more severe pathology [1]. This 
process is accompanied by changes in the motivational behavioral mechanism that 
maintains addiction. Inasmuch as removal of negative emotional state associated 
with drug withdrawal becomes the mechanism driving the dependence-induced 
drug intake, there is a shift from positive to negative reinforcement maintaining the 
motivated behavior [3].

2. The dark side of addiction

In relation to the dark side of addiction, a wealth of data supports that symp-
toms of acute withdrawal from chronic drugs of abuse tend to be affective in 
nature, persist beyond the acute phase to protracted abstinence, and precede 
relapse to drug-seeking [4, 5]. Tension, fatigue and anxiety related to alcohol 
withdrawal have been shown to last from 5 to 9 months post-withdrawal [6, 7]. 
Furthermore, negative affective symptoms appear to be the leading precipitant of 
relapse [8, 9]. By way of example, the association between relapse and a subclini-
cal negative affective state was shown to be particularly strong in patients with 
alcohol dependence, who underwent a 12-week clinical trial [10]. Animal data 
further shows that a history of dependence lowers the “dependence threshold” and 
makes the subsequent addiction more severe, relative to subjects receiving alcohol 
for the first time [11–14]. Moreover, the former category evidenced a prolonged 
elevation in ethanol self-administration after acute withdrawal and detoxification 
[15–18], and this was accompanied by increased overt responsivity to stressors and 
increased responsivity to antagonists of the brain CRF systems [19–21]. Finally, 
evidence exists to support that a history of prior dependence increases sensitiv-
ity to stress-induced reinstatement upon exposure to variety of stressors such as 
footshock, social stress, or pharmacological stress (e.g., yohimbine) [22]. Notably, 

Figure 1. 
The progression of alcohol dependence over time marked by a shift in underlying motivational mechanisms. 
From initial, positively reinforcing, pleasurable drug effects, the addictive process progresses over time to being 
driven by negatively reinforcing relief from a negative emotional state.
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the neural mechanism of stress-induced reinstatement overlaps with that of acute 
motivational withdrawal [23]. In what follows, next sections of the chapter provide 
a conceptual framework linking addiction to stress systems.

3. Brain stress systems and addiction

In neural terms, the “dark side” of addiction is posited to be mediated by activa-
tion of brain stress system that interacts with hormonal stress systems. Emerging 
evidence have highlighted that dysregulation of brain arousal/stress systems plays 
a key role in pathophysiology of drug addiction [2]. More relevant to this chapter, 
the negative emotional state associated with the dark side of addiction has been 
linked to a cycle of increasing dysregulation of brain reward/anti-reward mecha-
nisms. Therein, corticotropin releasing factor (CRF) appears to be the prominent 
component of the negative reinforcement processes that drive the compulsivity of 
addiction [2].

CRF is a 41-amino acid polypeptide that mobilizes the body’s hormonal, auto-
nomic, and behavioral responses to stressors (for a review of the biology of CRF 
systems see [24, 25]). It has a wide distribution across the brain with particularly 
high concentrations of cell bodies in the paraventricular nucleus of the hypothala-
mus, the basal forebrain, and the brainstem [26]. Therein, majority of stress-like 
effects are mediated by the brain and pituitary CRF1 receptors [25]. The urocortin/
CRF2 systems have been less explored, with some data pointing to neuroadapta-
tion associated with chronic drug use, also in opposition to the effects of the CRF1 
receptor.

Initial drug use at the binge/intoxication stage of addiction cycle activates the 
hypothalamic pituitary-adrenal (HPA) axis, which initiates acquisition of drug-
seeking behavior through activity in the brain motivational circuits [27–30]. HPA 
axis activity is characterized by a cascade of physiological changes within the 
paraventricular nucleus of the hypothalamus, the anterior lobe of the pituitary 
gland, and the adrenal gland (for review, see Ref. [31]).

The CRF is synthesized by neurosecretory neurons in the medial parvocellular 
subdivision of the paraventricular nucleus and released into the portal blood vessels 
of the anterior pituitary gland. Therein it binds to the CRF1 receptor on pituitary 
corticotropes triggering the release of adreno-corticotropin hormone (ACTH) into 
the systemic circulation, which induces glucocorticoid synthesis and secretion from 
the adrenal cortex.

Once drug-seeking behavior is initiated, the transition from acute to chronic 
administration of drugs of abuse is mediated by progressive changes in the HPA axis 
that can lead to subsequent activation of extrahypothalamic brain stress systems 
characterizing the withdrawal/negative affect stage [32–34]. The HPA axis is regu-
lated via negative feedback from circulating glucocorticoids that act on glucocorti-
coid receptors in the paraventricular nucleus and the hippocampus. Although high 
levels of glucocorticoids can feedback to shut off the HPA axis, they can also sensi-
bilize CRF systems in the central nucleus of the amygdala and basolateral amygdala 
involved in behavioral responses to stressors [35–39]. This observation lends support 
to the thesis that CRF has a key role in the dark side of the addiction process.

4. Allostatic model of addiction

As the cycle of drug taking and withdrawal continues, the different compo-
nents of the addiction cycle become more intense, changes also the motivational 
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behavioral mechanism that maintains addiction. The shift from positive to negative 
reinforcement behind motivation in compulsive drug use might be explained by 
allostatic model of the brain motivational systems. It defines addiction as a failure 
of counteradaptive processes of optimal homeostatic reward functioning to return 
to their normal range [2, 40]. Therein, the posited mechanism of pathology is 
mediated by within-system neuroadaptations (changes in reward pathways) and 
between-system neuroadaptations (brain stress systems) [1, 41].

The body’s response to stress related to addiction is controlled by CRF in the 
paraventricular nucleus of the hypothalamus. It maintains homeostasis by orches-
trating rapid and sustained responses to anticipated challenges to normal operating 
level of the regulatory system. Upon exposure to an environmental challenge, a 
feed-forward mechanism continuously re-evaluates the environmental demand for 
adaption, and accordingly readjusts all parameters toward new set points to mobi-
lize resources quickly. However, it might become the engine for pathology if insuf-
ficient resources are available to shut off the response. This leads to an allostatic 
state, defined as a stability with an altered set point [42]. In this view, CRF becomes 
the key contributor to allostasis and it is hypothesized to mediate the compulsivity 
and relapse to drug-seeking and drug-taking in addiction [43].

More relevant to this treatise, repeated administration of drugs of abuse leads to 
an alteration in psychological homeostatic processes, characterized by overactiva-
tion of normal arousal or emotional systems in the body [44]. Given that addiction 
shares some common characteristic with chronic physiological disorders, it allows 
to speculate that it represents a chronic deviation of the regulatory system from its 
normal operating level, rather than mere homeostatic dysregulation of emotional 
function.

Just like any chronic physiological disorder, addiction is subject to significant 
environmental stressors, deteriorates with time, and is marked by a residual neural 
trace for rapid re-addiction even after years of abstinence. In response to excessive 
drug use the brain attempts to maintain homeostatic stability through molecu-
lar, cellular, and neurocircuitry changes that occur at the cost of allostatic state. 
Allostasis represents a chronic deviation from optimal brain emotional regulation 
marked by decreased function of reward circuits, strengthened stimulus–response 
associations, loss of executive control and recruitment of the brain stress systems. 
These neurobiological changes underpin the chronic elevation of reward threshold 
associated with negative emotional state, thereby contributing to the compulsive 
drug use [45]. In this view, the cycle of increasing dysregulation of brain reward/
anti-reward mechanisms constitutes the posited mechanism of the negative emo-
tions in addiction and compulsive drug use.

5. CRF in the dark side of addiction

All drugs of abuse activate the HPA axis during acquisition of drug-taking and 
acute withdrawal from the drug by releasing CRF in the paraventricular nucleus 
of the hypothalamus. Activation of the axis during acute administration facilitates 
activity in the brain motivational circuits of drug reward, thereby promoting 
acquisition of drug-seeking behavior [27–30]. Repeated administration dysregulates 
these acute changes beyond HPA axis to affect the brain extrahypothalamic stress 
system [46–49]. Therein the repeated exposure to high levels of glucorticoids may 
have profound effects on the extrahypothalamic brain stress systems, contributing 
to the persistence and relapse to cycles of addiction to drugs of abuse [32]. Repeated 
addiction cycles not only blunt the HPA axis response but also sensitize the response 
of the extrahypothalamic CRF stress system in the amygdala [34]. Whilst initially 
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the presence of glucocorticoids enhances response to novelty and reward, sensitiza-
tion of CRF systems in the extended amygdala may contribute to a stress compo-
nent of the shift from homeostasis to pathophysiology of drug addiction. The stress 
component is posited to constitute an opponent anti-reward process response to 
excessive activation of reward systems [2].

Compelling evidence exist to support the thesis that the neuroanatomical 
substrates for many of the motivational effects associated with the dark side of 
addiction constitute a common neural circuitry within the basal forebrain, termed 
the “extended amygdala” [50]. It represents a macrostructure comprising the bed 
nucleus of the stria terminalis, central medial amygdala, and a transition zone in 
the posterior part of the medial nucleus accumbens (i.e., posterior shell) [51, 52]. 
Importantly, the extended amygdala includes dopamine and opioid peptides associ-
ated with the positive reinforcing effects of drugs of abuse, and major components 
of the extrahypothalamic CRF systems associated with negative reinforcement 
mechanisms [33]. It receives afferent connections from limbic cortices, the hip-
pocampus, basolateral amygdala, midbrain, and lateral hypothalamus and efferent 
connections to the posterior medial ventral pallidum, ventral tegmental area, 
various brainstem projections, and to the lateral hypothalamus [52]. The arousal/
stress brain systems in the extended amygdala may play a key role in the negative 
emotional states that maintains addiction to drugs of abuse and may overlap with 
the negative emotional constituent of other psychopathologies.

6. Brain stress and neurodegeneration

Stress might exert either ameliorating or detrimental effects on physiological 
processes. In the short term it might be beneficial to an organism however in the 
long-term it plays a major role in various pathophysiology related to neurodegenera-
tive diseases and mood disorders. Upon exposure to stress the body enters the ‘fight 
or flight’ stage, after which it builds resistance to the stress in the adaptation stage, 
and finally due to ‘wear and tear’ it reaches exhaustion [53]. In the adaptation stage, 
cortisol typically exerts a negative feedback effect to shut down the stress response. 
Multiple brain regions related to cognition are actively involved in feedback 
regulation including the hippocampus, amygdala, the brain stem and prefrontal 
cortex [54]. Accordingly, stimulation by corticosteroids induced at the level of the 
amygdala, the prefrontal cortex and the locus coeruleus was found to interfere 
with HPA activity and memory [55]. A deficient cortisol feedback effect caused by 
glucocorticoid resistance increases the activity of the HPA-axis have been found to 
be associated with neurodegenerative diseases, obesity, heart disease, depression, 
and a variety of other health issues [56]. Therein the vasopressin neurons of the 
central nervous system inhibit the regulatory influence of CRH neurons in the PVN 
resulting in a disproportionally high activity of the HPA system.

Given the inhibitory control of the hippocampus over the HPA-axis, damage to 
this structure is posited to be causally involved in disinhibition of the HPA axis activ-
ity thereby accounting for the age-related accumulation of hippocampal damage 
in Alzheimer’s disease (AD) and depression. This thesis is furthered by evidence of 
increased cortisol plasma levels in early stage of AD associated with cognitive decline 
[57], and a correlation of salivary cortisol levels with the severity of the disease [58]. 
Accordingly, neuronal atrophy was evidenced in the hippocampus of stressed or 
corticosteroid-treated rodents and primates [59]. Elevated CRH and cortisol levels 
were also shown to contribute to the symptoms of depression in a large subpopula-
tion of depressed subjects [56]. This is corroborated by the normalizing effect of 
antidepressants on the synthesis of CRH by stimulation and/or upregulation of 
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corticosteroid receptor expression, and reversal the clinical symptoms [60]. In 
light of these evidence, the ‘glucocorticoid cascade hypothesis’ is posited to be the 
dominant pathogenetic mechanism in human neurodegenerative diseases marked by 
HPA-axis alterations including depression and AD [61].

Although CRH and cortisol seem to be etiologically involved in the development 
of depression, conclusive arguments cannot be drawn due to no evidence for any 
major damage in the human hippocampus in the disorder. Moreover, reduced hip-
pocampal volume does not necessarily translate in cell death and might alternatively 
be explained by changes is water content or the structure in glial cells.

7. Summary and conclusions

Addiction to all drugs of abuse involves activation of the HPA axis. 
Pathophysiology of drug addiction involves dysregulation of the brain emotional 
system posited to be a key constituent of the negative emotional state produced 
by dependence that maintains drug-seeking through the mechanism of negative 
reinforcement. More specifically, the action of CRF in extra hypothalamic systems 
in the extended amygdala is considered a neural substrate of the pathophysiology 
of the disorder and plays a key role in maintaining the addiction cycle once it is 
initiated. It comprises the central nucleus of the amygdala, bed nucleus of the stria 
terminalis, and a transition area in the shell of the nucleus accumbens. Beyond pro-
viding insight into the neurobiology of the dark side of addiction, better character-
ization of the CRF systems in addiction hold promise for new targets for identifying 
vulnerability to addiction and novel treatments for the disorder.
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