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Chapter

The Monte Carlo Techniques and
the Complex Probability Paradigm
Abdo Abou Jaoude

Abstract

The concept of mathematical probability was established in 1933 by Andrey
Nikolaevich Kolmogorov by defining a system of five axioms. This system can be
enhanced to encompass the imaginary numbers set after the addition of three novel
axioms. As a result, any random experiment can be executed in the complex prob-
abilities set C which is the sum of the real probabilities set R and the imaginary
probabilities set M. We aim here to incorporate supplementary imaginary dimen-
sions to the random experiment occurring in the “real” laboratory in R and there-
fore to compute all the probabilities in the sets R, M, and C. Accordingly, the
probability in the whole set C ¼ RþM is constantly equivalent to one indepen-
dently of the distribution of the input random variable in R, and subsequently the
output of the stochastic experiment in R can be determined absolutely in C. This is
the consequence of the fact that the probability in C is computed after the subtrac-
tion of the chaotic factor from the degree of our knowledge of the nondeterministic
experiment. We will apply this innovative paradigm to the well-known Monte
Carlo techniques and to their random algorithms and procedures in a novel way.

Keywords: degree of our knowledge, chaotic factor, complex probability set,
probability norm, complex random vector, convergence probability,
divergence probability, simulation

1. Introduction

“Thus, joining the rigor of the demonstrations of science to the uncertainty of fate,

and reconciling these two seemingly contradictory things, it can, taking its name

from both, appropriately arrogate to itself this astonishing title: the geometry of

chance.”

Blaise Pascal

“You believe in the God who plays dice, and I in complete law and order.”

Albert Einstein, Letter to Max Born

“Chance is the pseudonym of God when He did not want to sign.”

Anatole France

“There is a certain Eternal Law, to wit, Reason, existing in the mind of God and

governing the whole universe.”

Saint Thomas Aquinas
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“An equation has no meaning for me unless it expresses a thought of God.”

Srinivasa Ramanujan

Calculating probabilities is the crucial task of classical probability theory. Adding
supplementary dimensions to nondeterministic experiments will yield a determin-
istic expression of the theory of probability. This is the novel and original idea at the
foundations of my complex probability paradigm. As a matter of fact, probability
theory is a stochastic system of axioms in its essence; that means that the phenom-
ena outputs are due to randomness and chance. Adding new imaginary dimensions
to the nondeterministic phenomenon happening in the set R will lead to a deter-
ministic phenomenon, and thus, a probabilistic experiment will have a certain
output in the set C of complex probabilities. If the chaotic experiment becomes fully
predictable, then we will be completely capable to foretell the output of random
events that occur in the real world in all probabilistic processes. Accordingly, the
task that has been achieved here was to extend the set R of random real probabil-
ities to the deterministic set C ¼ RþM of complex probabilities and this by
incorporating the contributions of the set M which is the set of complementary
imaginary probabilities to the set R. Consequently, since this extension reveals to
be successful, an innovative paradigm of stochastic sciences and prognostic was put
forward in which all nondeterministic phenomena in R was expressed determinis-
tically in C. I coined this novel model by the term “the complex probability para-
digm” that was initiated and established in my 14 earlier research works [1–14].

2. The purpose and the advantages of the current chapter

The advantages and the purpose of the present chapter are to [15–39]:

1.Extend the theory of classical probability to cover the complex numbers set,
hence to connect the probability theory to the field of complex analysis and
variables. This task was initiated and developed in my earlier 14 works.

2.Apply the novel paradigm and its original probability axioms to Monte Carlo
techniques.

3.Prove that all phenomena that are nondeterministic can be transformed to
deterministic phenomena in the complex probabilities set which is C.

4.Compute and quantify both the chaotic factor and the degree of our
knowledge of Monte Carlo procedures.

5.Represent and show the graphs of the functions and parameters of the
innovative model related to Monte Carlo algorithms.

6.Demonstrate that the classical probability concept is permanently equal to 1 in
the set of complex probabilities; thus, no chaos, no randomness, no ignorance,
no uncertainty, no unpredictability, no nondeterminism, and no disorder exist in

C complex setð Þ ¼ R real setð Þ þM imaginary set
� �

:

7.Prepare to apply this inventive paradigm to other topics in prognostics and to
the field of stochastic processes. These will be the goals of my future research
publications.
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Regarding some applications of the novel established model and as a subsequent
work, it can be applied to any nondeterministic experiments using Monte Carlo
algorithms whether in the continuous or in the discrete cases.

Moreover, compared with existing literature, the major contribution of the
current chapter is to apply the innovative complex probability paradigm to the
techniques and concepts of the probabilistic Monte Carlo simulations and
algorithms.

The next figure displays the major aims and purposes of the complex probability
paradigm (CPP) (Figure 1).

3. The complex probability paradigm

3.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising [1–14]. Let
E be a collection of elements {E1, E2, … } called elementary events and let F be a set
of subsets of E called random events. The five axioms for a finite set E are:

Axiom 1: F is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A nonnegative real number Prob(A), called the probability of A, is

assigned to each set A in F. We have always 0 ≤ Prob(A) ≤ 1.
Axiom 4: Prob(E) equals 1.
Axiom 5: If A and B have no elements in common, the number assigned to their

union is

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ

hence, we say that A and B are disjoint; otherwise, we have

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ

And we say also that Prob A∩Bð Þ ¼ Prob Að Þ � Prob B=Að Þ ¼ Prob Bð Þ � Prob A=Bð Þ
which is the conditional probability. If both A and B are independent then
Prob A∩Bð Þ ¼ Prob Að Þ � Prob Bð Þ.

Moreover, we can generalize and say that for N disjoint (mutually exclusive)
events A1,A2, … ,A j, … ,AN (for 1≤ j≤N), we have the following additivity rule:

Figure 1.
The diagram of the major aims of the complex probability paradigm.
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Prob ⋃
N

j¼1
A j

 !

¼
X

N

j¼1

Prob A j

� �

And we say also that for N independent events A1,A2, … ,A j, … ,AN (for
1≤ j≤N), we have the following product rule

Prob ⋂
N

j¼1
A j

 !

¼
Y

N

j¼1

Prob A j

� �

3.2 Adding the imaginary part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let Pm ¼ i� 1� Prð Þ be the probability of an associated complemen-

tary event in M (the imaginary part) to the event A in R (the real part). It follows

that Pr þ Pm=i ¼ 1 where i is the imaginary number with i ¼
ffiffiffiffiffiffi

�1
p

or i2 ¼ �1.
Axiom 7:We construct the complex number or vector Z ¼ Pr þ Pm ¼

Pr þ i 1� Prð Þ having a norm Zj j such that

Zj j2 ¼ P2
r þ Pm=ið Þ2:

Axiom 8: Let Pc denotes the probability of an event in the complex probability
universe C where C ¼ RþM. We say that Pc is the probability of an event A inR

with its associated event in M such that

Pc2 ¼ Pr þ Pm=ið Þ2 ¼ Zj j2 � 2iPrPm and is always equal to 1:

We can see that by taking into consideration the set of imaginary probabilities,
we added three new and original axioms, and consequently the system of axioms

Figure 2.
The EKA or the CPP diagram.
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defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers.

3.3 A brief interpretation of the novel paradigm

To summarize the novel paradigm, we state that in the real probability universe
R, our degree of our certain knowledge is undesirably imperfect and hence unsat-
isfactory; thus, we extend our analysis to the set of complex numbers C which
incorporates the contributions of both the set of real probabilities which is R and
the complementary set of imaginary probabilities which is M. Afterward, this will
yield an absolute and perfect degree of our knowledge in the probability universe
C ¼ RþM because Pc = 1 constantly. As a matter of fact, the work in the universe
C of complex probabilities gives way to a sure forecast of any stochastic experiment,
since in C we remove and subtract from the computed degree of our knowledge the
measured chaotic factor. This will generate in the universe C a probability equal to 1

(Pc2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc). Many applications taking into con-
sideration numerous continuous and discrete probability distributions in my 14
previous research papers confirm this hypothesis and innovative paradigm. The
extended Kolmogorov axioms (EKA) or the complex probability paradigm (CPP)
can be shown and summarized in the next illustration (Figure 2).

4. The Monte Carlo techniques and the complex probability paradigm
parameters

4.1 The divergence and convergence probabilities

Let RE be the exact result of the stochastic phenomenon or of a multidimensional
or simple integral that are not always possible to compute by probability theory
ordinary procedures or by deterministic numerical means or by calculus [1–14].
And let RA be the phenomenon and integrals approximate results calculated by the
techniques of Monte Carlo:

The relative error in the Monte Carlo methods is Rel:Error ¼ RE�RA

RE

�

�

�

�

�

� ¼ 1� RA

RE

�

�

�

�

�

�.

Additionally, the percent relative error is = 100%� RE�RA

RE

�

�

�

�

�

� and is always between

0% and 100%. Therefore, the relative error is always between 0 and 1. Hence

0≤
RE � RA

RE

�

�

�

�

�

�

�

�

≤ 1⇔

0≤
RE � RA

RE

� �

≤ 1 if RA ≤RE

0≤ � RE � RA

RE

� �

≤ 1 if RA ≥RE

8

>

>

>

<

>

>

>

:

⇔

0≤RA ≤RE

RE ≤RA ≤ 2RE

�

Moreover, we define the real probability in the set R by

Pr ¼ 1� RE � RA

RE

�

�

�

�

�

�

�

�

¼ 1� 1� RA

RE

�

�

�

�

�

�

�

�

¼
1� 1� RA

RE

� �

if 0≤RA ≤RE

1þ 1� RA

RE

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:
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= 1 � the relative error in the Monte Carlo method.
= probability of Monte Carlo method convergence in R.
And therefore,

Pm ¼ i 1� Prð Þ ¼ i 1� 1� RE � RA

RE

�

�

�

�

�

�

�

�

	 
� �

¼ i 1� 1� 1� RA

RE

�

�

�

�

�

�

�

�

	 
� �

¼ i 1� RA

RE

�

�

�

�

�

�

�

�

¼
i 1� RA

RE

� �

if 0≤RA ≤RE

�i 1� RA

RE

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
i 1� RA

RE

� �

if 0≤RA ≤RE

i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

= probability of Monte Carlo method divergence in the imaginary complemen-
tary probability set M since it is the imaginary complement of Pr.

Consequently,

Pm=i ¼ 1� Pr ¼ 1� RA

RE

�

�

�

�

�

�

�

�

¼
1� RA

RE
if 0≤RA ≤RE

RA

RE
� 1 if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

= the relative error in the Monte Carlo method.
= probability of Monte Carlo method divergence in R since it is the real com-

plement of Pr.

In the case where 0≤RA ≤RE ) 0≤ RA

RE
≤ 1 ) 0≤Pr ≤ 1 and we deduce also that

0≤ 1� RA

RE

� 


≤ 1 ) 0≤Pm=i≤ 1 and ) 0≤Pm ≤ i.

And in the case where RE ≤RA ≤ 2RE ) 1≤ RA

RE
≤ 2 ) 0≤ 2� RA

RE

� 


≤ 1 )

0≤Pr ≤ 1 and we deduce also that 0≤ RA

RE
� 1

� 


≤ 1 ) 0≤Pm=i≤ 1 and ) 0≤Pm ≤ i.

Consequently, if RA ¼ 0 or RA ¼ 2RE that means before the beginning of the
simulation, then

Pr ¼ Prob convergenceð Þ in R ¼ 0

Pm ¼ Prob divergenceð Þ in M ¼ i

Pm=i ¼ Prob divergenceð Þ in R ¼ 1

And if RA ¼ RE that means at the end of Monte Carlo simulation, then

Pr ¼ Prob convergenceð Þ in R ¼ 1

Pm ¼ Prob divergenceð Þ in M ¼ 0

Pm=i ¼ Prob divergenceð Þ in R ¼ 0

4.2 The complex random vector Z in C ¼ RþM

We have
Z ¼ Pr þ Pm ¼

RA

RE
þ i 1� RA

RE

� �

if 0≤RA ≤RE

2� RA

RE

� �

þ i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼ Re Zð Þ þ iIm Zð Þ

.
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where

Re Zð Þ ¼ Pr ¼

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

¼ the real part of Z

and

Im Zð Þ ¼ Pm=i ¼
1� RA

RE
if 0≤RA ≤RE

RA

RE
� 1 if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

¼ the imaginary part of Z:

That means that the complex random vector Z is the sum in C of the real proba-
bility of convergence inR and of the imaginary probability of divergence inM.

If RA ¼ 0 or RA ¼ 2RE (before the simulation begins), then

Pr ¼
RA

RE
¼ 0

RE
¼ 0 or Pr ¼ 2� RA

RE
¼ 2� 2RE

RE
¼ 2� 2 ¼ 0:

and

Pm ¼ i 1� RA

RE

� �

¼ i 1� 0

RE

� �

¼ i 1� 0ð Þ ¼ i or Pm ¼ i
RA

RE
� 1

� �

¼ i
2RE

RE
� 1

� �

¼ i 2� 1ð Þ ¼ i

therefore Z ¼ 0þ i ¼ i.

If RA ¼ RE

2 or RA ¼ 3RE

2 (at the middle of the simulation), then

Pr ¼

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

¼

RE

2RE
¼ 0:5 if 0≤RA ≤RE

2� 3RE

2RE
¼ 0:5 if RE ≤RA ≤ 2RE

⇔Pr ¼ 0:5

8

>

>

<

>

>

:

and

Pm ¼
i 1� RA

RE

� �

if 0≤RA ≤RE

i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
i 1� RE

2RE

� �

¼ 0:5i if 0≤RA ≤RE

i
3RE

2RE
� 1

� �

¼ 0:5i if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

⇔Pm ¼ 0:5i

therefore Z ¼ 0:5þ 0:5i.
If RA ¼ RE (at the simulation end), then

Pr ¼

RA

RE
¼ RE

RE
¼ 1 if 0≤RA ≤RE

2� RA

RE
¼ 2� RE

RE
¼ 2� 1 ¼ 1 if RE ≤RA ≤ 2RE

⇔Pr ¼ 1

8

>

>

<

>

>

:
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and

Pm ¼
i 1� RA

RE

� �

if 0≤RA ≤RE

i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
i 1� RE

RE

� �

if 0≤RA ≤RE

i
RE

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
0 if 0≤RA ≤RE

0 if RE ≤RA ≤ 2RE

(

⇔Pm ¼ 0

therefore Z ¼ 1þ 0i ¼ 1.

4.3 The degree of our knowledge, DOK

We have

DOK ¼ Zj j2 ¼ P2
r þ Pm=ið Þ2 ¼

RA

RE

� 
2
if 0≤RA ≤RE

2� RA

RE

� 
2
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

þ
1� RA

RE

� 
2
if 0≤RA ≤RE

RA

RE
� 1

� 
2
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

¼
RA

RE

� 
2
þ 1� RA

RE

� 
2
if 0≤RA ≤RE

2� RA

RE

� 
2
þ RA

RE
� 1

� 
2
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

¼
2 RA

RE

� 
2
� 2

RA

RE

� �

þ 1 if 0≤RA ≤RE

2 RA

RE

� 
2
� 6

RA

RE

� �

þ 5 if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

From CPP we have that 0:5≤DOK ≤ 1, then if DOK = 0.5

⇔

2 RA

RE

� 
2
� 2

RA

RE

� �

þ 1 ¼ 0:5 if 0≤RA ≤RE

2 RA

RE

� 
2
� 6

RA

RE

� �

þ 5 ¼ 0:5 if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

then solving the second-degree equations for RA

RE
gives

RA

RE
¼ 1=2 if 0≤RA ≤RE

RA

RE
¼ 3=2 if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

⇔

RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

�

and vice versa:

That means that DOK is minimum when the approximate result RA is equal to
half of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to
three times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle
of the simulation.

In addition, if DOK ¼ 1, then

⇔

2 RA

RE

� 
2
� 2

RA

RE

� �

þ 1 ¼ 1 if 0≤RA ≤RE

2 RA

RE

� 
2
� 6

RA

RE

� �

þ 5 ¼ 1 if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

⇔

RA

RE

� 
2
� RA

RE

� �

¼ 0 if 0≤RA ≤RE

2 RA

RE

� 
2
� 6

RA

RE

� �

þ 4 ¼ 0 if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:
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⇔

RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

(

and vice versa:

That means that DOK is maximum when the approximate result RA is equal to 0
or 2RE (before the beginning of the simulation) and when it is equal to the exact
result RE (at the end of the simulation). We can deduce that we have perfect and
total knowledge of the stochastic experiment before the beginning of Monte Carlo
simulation since no randomness was introduced yet, as well as at the end of the
simulation after the convergence of the method to the exact result.

4.4 The chaotic factor, Chf

We have

Chf ¼ 2iPrPm

¼ 2i�

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

�
i 1� RA

RE

� �

if 0≤RA ≤RE

i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

Since i2 ¼ �1 then

Chf ¼
�2

RA

RE

� �

1� RA

RE

� �

if 0≤RA ≤RE

�2 2� RA

RE

� �

RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

From CPP we have that �0:5≤Chf ≤0, and then if Chf ¼ �0:5

⇔

�2
RA

RE

� �

1� RA

RE

� �

¼ �0:5 if 0≤RA ≤RE

�2 2� RA

RE

� �

RA

RE
� 1

� �

¼ �0:5 if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

⇔

RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

(

and vice versa.
That means that Chf is minimum when the approximate result RA is equal to half

of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to three
times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle of the
simulation.

In addition, if Chf ¼ 0 then

⇔

�2
RA

RE

� �

1� RA

RE

� �

¼ 0 if 0≤RA ≤RE

�2 2� RA

RE

� �

RA

RE
� 1

� �

¼ 0 if RE ≤RA ≤ 2RE

⇔

RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

8

<

:

8

>

>

>

>

<

>

>

>

>

:

And, conversely, if
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

�

, then Chf ¼ 0.
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That means that Chf is equal to 0 when the approximate result RA is equal to 0 or
2RE (before the beginning of the simulation) and when it is equal to the exact result
RE (at the end of the simulation).

4.5 The magnitude of the chaotic factor, MChf

We have

MChf ¼ Chfj j ¼ �2iPrPm

¼ �2i�

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

�

i 1� RA

RE

� �

if 0≤RA ≤RE

i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

Since i2 ¼ �1 then

MChf ¼

2
RA

RE

� �

1� RA

RE

� �

if 0≤RA ≤RE

2 2� RA

RE

� �

RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

From CPP we have that 0≤MChf ≤0:5, and then if MChf ¼ 0:5

⇔

2
RA

RE

� �

1� RA

RE

� �

¼ 0:5 if 0≤RA ≤RE

2 2� RA

RE

� �

RA

RE
� 1

� �

¼ 0:5 if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

⇔

RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

8

>

<

>

:

and vice versa.
That means that MChf is maximum when the approximate result RA is equal to

half of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to
three times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle
of the simulation. This implies that the magnitude of the chaos (MChf) introduced
by the random variables used in Monte Carlo method is maximum at the halfway of
the simulation.

In addition, if MChf ¼ 0, then

⇔

2
RA

RE

� �

1� RA

RE

� �

¼ 0 if 0≤RA ≤RE

2 2� RA

RE

� �

RA

RE
� 1

� �

¼ 0 if RE ≤RA ≤ 2RE

⇔

RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

8

<

:

8

>

>

>

>

<

>

>

>

>

:

And, conversely, if
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

�

, thenMChf ¼ 0.

That means that MChf is minimum and is equal to 0 when the approximate
result RA is equal to 0 or 2RE (before the beginning of the simulation) and when it is
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equal to the exact result RE (at the end of the simulation). We can deduce that the
magnitude of the chaos in the stochastic experiment is null before the beginning of
Monte Carlo simulation since no randomness was introduced yet, as well as at the
end of the simulation after the convergence of the method to the exact result when
randomness has finished its task in the stochastic Monte Carlo method and
experiment.

4.6 The probability Pc in the probability set C ¼ RþM

We have

Pc2 ¼ DOK � Chf ¼ DOK þMChf

¼
2 RA

RE

� 
2
� 2

RA

RE

� �

þ 1 if 0≤RA ≤RE

2 RA

RE

� 
2
� 6

RA

RE

� �

þ 5 if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

�
�2

RA

RE

� �

1� RA

RE

� �

if 0≤RA ≤RE

�2 2� RA

RE

� �

RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

¼
1 if 0≤RA ≤RE

1 if RE ≤RA ≤ 2RE

�

⇔Pc2 ¼ 1 for 0≤∀RA ≤ 2RE

⇔Pc ¼ 1 = probability of convergence in C; therefore,

Pc ¼

RA

RE
¼ 1 if 0≤RA ≤RE

2� RA

RE
¼ 1 if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

⇔

RA ¼ RE if 0≤RA ≤RE

RA ¼ RE if RE ≤RA ≤ 2RE

�

⇔RA ¼ RE for 0≤∀RA ≤ 2RE continuously in the probability set C ¼ RþM.
This is due to the fact that in C, we have subtracted in the equation above the
chaotic factor Chf from our knowledge DOK, and therefore we have eliminated
chaos caused and introduced by all the random variables and the stochastic
fluctuations that lead to approximate results in the Monte Carlo simulation in R.
Therefore, since in C we have always RA ¼ RE, then the Monte Carlo simulation
which is a stochastic method by nature in R becomes after applying the CPP a
deterministic method in C since the probability of convergence of any random
experiment in C is constantly and permanently equal to 1 for any iterations
number N.

4.7 The rates of change of the probabilities in R, M, and C

Since

Z ¼ Pr þ Pm ¼

RA

RE
þ i 1� RA

RE

� �

if 0≤RA ≤RE

2� RA

RE

� �

þ i
RA

RE
� 1

� �

if RE ≤RA ≤ 2RE

¼ Re Zð Þ þ iIm Zð Þ

8

>

>

>

>

<

>

>

>

>

:

Then
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dZ

dRA
¼ dPr

dRA
þ dPm

dRA
¼

d

dRA

RA

RE
þ i 1� RA

RE

� �	 


if 0≤RA ≤RE

d

dRA
2� RA

RE

� �

þ i
RA

RE
� 1

� �	 


if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

¼

d

dRA

RA

RE

	 


þ d

dRA
i 1� RA

RE

� �	 


if 0≤RA ≤RE

d

dRA
2� RA

RE

	 


þ d

dRA
i

RA

RE
� 1

� �	 


if RE ≤RA ≤ 2RE

8

>

>

>

>

<

>

>

>

>

:

¼

1

RE
� i

RE
¼ 1

RE
1� ið Þ if 0≤RA ≤RE

� 1

RE
þ i

RE
¼ 1

RE
i� 1ð Þ if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

Therefore,

Re
dZ

dRA

	 


¼ dPr

dRA
¼

þ 1

RE
if 0≤RA ≤RE

� 1

RE
if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
constant>0 if 0≤RA ≤RE and RE >0

constant<0 if RE ≤RA ≤ 2RE and RE >0

8

<

:

That means that the slope of the probability of convergence in R or its rate of
change is constant and positive if 0≤RA ≤RE, and constant and negative
if RE ≤RA ≤ 2RE, and it depends only on RE; hence, we have a constant increase in
Pr (the convergence probability) as a function of the iterations number N as RA

increases from 0 to RE and as RA decreases from 2RE to RE till Pr reaches the value 1
that means till the random experiment converges to RE:

Im
dZ

dRA

	 


¼ 1

i

dPm

dRA
¼ d Pm=ið Þ

dRA
¼

� 1

RE
if 0≤RA ≤RE

þ 1

RE
if RE ≤RA ≤ 2RE

8

>

>

>

<

>

>

>

:

¼
constant<0 if 0≤RA ≤RE and RE >0

constant>0 if RE ≤RA ≤ 2RE and RE >0

(

That means that the slopes of the probabilities of divergence in R and M or
their rates of change are constant and negative if 0≤RA ≤RE and constant and
positive if RE ≤RA ≤ 2RE and they depend only on RE; hence, we have a constant
decrease in Pm=i and Pm (the divergence probabilities) as functions of the
iterations number N as RA increases from 0 to RE and as RA decreases from 2RE to
RE till Pm=i and Pm reach the value 0 that means till the random experiment
converges to RE.
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Additionally,

dZ

dRA

�

�

�

�

�

�

�

�

2

¼ dPr

dRA

	 
2

þ 1

i

dPm

dRA

	 
2

¼ dPr

dRA

	 
2

þ d Pm=ið Þ
dRA

	 
2

¼
1
RE

� 
2
þ � 1

RE

� 
2
if 0≤RA ≤RE

� 1
RE

� 
2
þ 1

RE

� 
2
if RE ≤RA ≤ 2RE

8

>

>

<

>

>

:

⇔

dZ

dRA

�

�

�

�

�

�

�

�

2

¼ 1

R2
E

þ 1

R2
E

¼ 2

R2
E

for 0≤∀RA ≤ 2RE

⇔

dZ

dRA

�

�

�

�

�

�

�

�

¼
ffiffiffi

2
p

RE
¼ constant>0 if RE >0;

that means that the module of the slope of the complex probability vector Z in C

or of its rate of change is constant and positive and it depends only on RE; hence, we
have a constant increase in Re Zð Þ and a constant decrease in Im Zð Þ as functions of
the iterations numberN and as Z goes from (0, i) atN = 0 till (1,0) at the simulation
end; hence, till Re Zð Þ ¼ Pr reaches the value 1 that means till the random experi-
ment converges to RE.

Furthermore, since Pc2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1, then
Pc ¼ 1 = probability of convergence in C, and consequently

d Pcð Þ
dRA

¼ d 1ð Þ
dRA

¼ 0,

which means that Pc is constantly equal to 1 for every value of RA, of RE, and of
the iterations number N, which means for any stochastic experiment and for any
simulation of Monte Carlo method. So, we conclude that in C ¼ RþM, we have
complete and perfect knowledge of the random experiment which has become now
a deterministic one since the extension in the complex probability plane C defined
by the CPP axioms has changed all stochastic variables to deterministic variables.

5. The new paradigm parameter evaluation

We can infer from what has been developed earlier the following:

The real probability of convergence Pr Nð Þ ¼ 1� RE�RA Nð Þ
RE

�

�

�

�

�

�.

We have 0≤N ≤NC whereN = 0 corresponds to the instant before the beginning
of the random experiment when RA N ¼ 0ð Þ ¼ 0 or ¼ 2RE and where N ¼ NC (iter-
ations number needed for the method convergence) corresponds to the instant at the
end of the random experiments and Monte Carlo methods when RA N ¼ NCð Þ ! RE.

The imaginary complementary probability of divergence Pm Nð Þ ¼ i RE�RA Nð Þ
RE

�

�

�

�

�

�.

The real complementary probability of divergence Pm Nð Þ=i ¼ RE�RA Nð Þ
RE

�

�

�

�

�

�.

The random vector of complex probability

Z Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ ¼ 1� RE � RA Nð Þ
RE

�

�

�

�

�

�

�

�

	 


þ i
RE � RA Nð Þ

RE

�

�

�

�

�

�

�

�
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The degree of our knowledge

DOK Nð Þ ¼ Z Nð Þj j2 ¼ P2
r Nð Þ þ Pm Nð Þ=i½ �2 ¼ 1� RE � RA Nð Þ

RE

�

�

�

�

�

�

�

�

	 
2

þ RE � RA Nð Þ
RE

�

�

�

�

�

�

�

�

	 
2

¼ 1þ 2iPr Nð ÞPm Nð Þ ¼ 1� 2Pr Nð Þ 1� Pr Nð Þ½ � ¼ 1� 2Pr Nð Þ þ 2P2
r Nð Þ

¼ 1� 2
RE � RA Nð Þ

RE

�

�

�

�

�

�

�

�

þ 2
RE � RA Nð Þ

RE

	 
2

:

DOK Nð Þ is equal to 1 when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
The Chaotic factor

Chf Nð Þ ¼ 2iPr Nð ÞPm Nð Þ ¼ �2Pr Nð Þ 1� Pr Nð Þ½ � ¼ �2Pr Nð Þ þ 2P2
r Nð Þ

¼ �2
RE � RA Nð Þ

RE

�

�

�

�

�

�

�

�

þ 2
RE � RA Nð Þ

RE

	 
2

Chf Nð Þ is null when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
The magnitude of the chaotic factor MChf

MChf Nð Þ ¼ Chf Nð Þj j ¼ �2iPr Nð ÞPm Nð Þ ¼ 2Pr Nð Þ 1� Pr Nð Þ½ � ¼ 2Pr Nð Þ � 2P2
r Nð Þ

¼ 2
RE � RA Nð Þ

RE

�

�

�

�

�

�

�

�

� 2
RE � RA Nð Þ

RE

	 
2

MChf Nð Þ is null when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
At any iteration number N 0≤∀N ≤NC, the probability calculated in the set C of

complex probabilities is as follows:

Pc2 Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ=i½ �2 ¼ Z Nð Þj j2 � 2iPr Nð ÞPm Nð Þ ¼ DOK Nð Þ � Chf Nð Þ

¼ DOK Nð Þ þMChf Nð Þ ¼ 1

then

Pc2 Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ=i½ �2 ¼ Pr Nð Þ þ 1� Pr Nð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc Nð Þ ¼ 1ðcontinuouslyÞ:

Thus, the prediction in the set C of the probabilities of convergence of the
random Monte Carlo methods is always certain.

Let us consider afterward a multidimensional integral and a stochastic
experiment to simulate the Monte Carlo procedures and to quantify, to draw, as
well as to visualize all the prognostic and CPP parameters.

6. The flowchart of the prognostic model of Monte Carlo techniques
and CPP

The flowchart that follows illustrates all the procedures of the elaborated
prognostic model of CPP.
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7. Simulation of the new paradigm

Note that all the numerical values found in the simulations of the new paradigm
for any iteration cycles N were computed using the 64-bit MATLAB version 2020
software and compared to the values found by Microsoft Visual C++ programs.
Additionally, the reader should be careful of the truncation and rounding errors since
we represent all numerical values by at most five significant digits and since we are
using Monte Carlo techniques of simulation and integration which yield approximate
results under the influence of stochastic aspects and variations. We have considered
for this purpose a high-capacity computer system: a workstation computer with
parallel microprocessors, a 64-bit operating system, and a 64-GB RAM.
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7.1 The continuous random case: a four-dimensional multiple integral

The Monte Carlo technique of integration can be summarized by the following
equation:

ð

b1

a1

ð

b2

a2

…

ð

bn

an

f x1, x2, … , xnð Þ:dx1dx2 … dxn ffi

b1 � a1ð Þ � b2 � a2ð Þ � … � bn � anð Þ½ �
N

X

N

j¼1

f x1 j, x2 j, … , xn j
� �

Let us consider here the multidimensional integral of the following function:

ð

4=3

0

ð

4=3

0

ð

4=3

0

ð

4=3

0

xyzw:dxdydzdw ¼
ð

4=3

0

ð

4=3

0

ð

4=3

0

x2

2

	 
4=3

0

yzw:dydzdw ¼
ð

4=3

0

ð

4=3

0

ð

4=3

0

16

18
yzw:dydzdw

¼ 8

9

ð

4=3

0

ð

4=3

0

y2

2

	 
4=3

0

zw:dzdw ¼ 8

9

ð

4=3

0

ð

4=3

0

16

18
zw:dzdw ¼ 64

81

ð

4=3

0

z2

2

	 
4=3

0

w:dw ¼ 64

81

ð

4=3

0

16

18
w:dw

¼ 512

729

w2

2

	 
4=3

0

¼ 512

729
� 16

18
¼ 512

729
� 8

9
¼ 4, 096

6, 561
¼ 0:62429507696997411…

⇔RE ¼ 0:62429507696997411… by the deterministic methods of calculus.
⇔f x, y, z,wð Þ ¼ xyzw, where x, y, z, and w follow a discrete uniform distribution

U such that

x↦U 0, 4=3ð Þ, y↦U 0, 4=3ð Þ, z↦U 0, 4=3ð Þ,w↦U 0, 4=3ð Þ

Figure 3.
The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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⇔

ð

4=3

0

ð

4=3

0

ð

4=3

0

ð

4=3

0

xyzw:dxdydzdw ffi 4=3� 0ð Þ � 4=3� 0ð Þ � 4=3� 0ð Þ � 4=3� 0ð Þ½ �
N

X

N

j¼1

x jy jz jw j

¼ 256=81

N

X

N

j¼1

x jy jz jw j ¼ RA

with 1≤N ≤NC after applying Monte Carlo method.
Furthermore, the four figures (Figures 3–6) illustrate and prove the increasing

convergence of Monte Carlo simulation and technique to the exact result

Figure 5.
The increasing convergence of the Monte Carlo method up to N = 500 iterations.

Figure 4.
The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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RE ¼ 0:62429507696997411… for N = 50, 100, 500, and N ¼ NC ¼ 100, 000

iterations. Consequently, we have limN!þ∞ Pr Nð Þ ¼ limN!þ∞ 1� RE�RA Nð Þ
RE

�

�

�

�

�

�

n o

¼

1� RE�RE

RE

�

�

�

�

�

� ¼ 1� 0 ¼ 1 which is equal to the probability of convergence of Monte

Carlo technique as N ! þ∞.
Moreover, Figure 7 shows undoubtedly and graphically the relation of all the

parameters of the complex probability paradigm (Chf ,RA,Pr,MChf ,RE,DOK,Pm=i,Pc)
to the Monte Carlo technique after applying CPP to this four-dimensional integral.

Figure 7.
The CPP parameters and the Monte Carlo method for a multiple integral.

Figure 6.
The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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7.2 The discrete random case: the matching birthday problem

An interesting problem that can be solved using simulation is the famous birthday
problem. Suppose that in a room of n persons, each of the 365 days of the year (not a
leap year) is equally likely to be someone’s birthday. It can be proved from the
theory of probability and contrary to intuition that only 23 persons need to be
present for the probability to be better than fifty-fifty that at least two of them will
have the same birthday.

Many people are interested in checking the theoretical proof of this statement,
so we will demonstrate it briefly before doing the problem simulation. After some-
one is asked about his or her birthday, the probability that the next person asked
will not have the same birthday is 364/365. The probability that the third person’s
birthday will not match those of the first two people are 363/365. It is well-known
that the probability of two independent and successive events happening is the
product of the probability of the separate events. In general, the probability that the
nth person asked will have a birthday different from that of anyone already asked is

P all n birthdays are different
� �

¼ 365

365

� �

� 364

365

� �

� 363

365

� �

� …

� 365� n� 1ð Þ
365

� �

The probability that the nth person asked will provide a match is 1 minus this value:

P matching birthdays
� �

¼

1� 365

365

� �

� 364

365

� �

� 363

365

� �

� … � 365� n� 1ð Þ
365

� �

¼ 1� 365ð Þ � 364ð Þ � 363ð Þ � … � 365� n� 1ð Þ½ �
365n

¼ RE

which shows that with 23 persons, the chances are 50.7%; with 55 persons, the
chances are 98.6% or almost theoretically certain that at least two out of 55 people
will have the same birthday. The table gives the theoretical probabilities of
matching birthdays for a selected number of people n (Table 1).

Without using the probability theory, we can write a routine that uses the
random number generator to compute the approximate chances for groups of n
persons. Obviously, what is needed here is to choose n random integers from the set
of integers {1, 2, 3, … , 365} and to check whether there is a match. When we repeat
this experiment a large number of times, we can calculate afterward the probability
of at least one match in any gathering of n persons. Note that if n≥ 366, then
P matching birthdays
� �

¼ 1 by the famous pigeonhole principle.
Furthermore, the four figures (Figures 8–11) illustrate and prove the increasing

convergence of Monte Carlo simulation and technique to the exact result RE ¼
0:706316242719… for n = 30 and for N = 50, 100, 500, and N ¼ NC ¼ 750, 000

iterations. Consequently, we have lim
N!þ∞

Pr Nð Þ ¼ lim
N!þ∞

1� RE�RA Nð Þ
RE

�

�

�

�

�

�

n o

¼

1� RE�RE

RE

�

�

�

�

�

� ¼ 1� 0 ¼ 1 which is equal to the probability of convergence of Monte

Carlo technique as N ! þ∞.
Moreover, Figure 12 shows undoubtedly and graphically the relation of all the

parameters of the complex probability paradigm (Chf ,RA,Pr,MChf ,RE,DOK,Pm=i,Pc)
to theMonte Carlo technique after applying CPP to this problem of matching birthday.
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7.2.1 The cubes of complex probability

In Figure 13 and in the first cube, the simulation of Chf and DOK as functions of
the iterations N and of each other is executed for the problem of matching birthday.
If we project Pc2(N) = DOK(N) � Chf(N) = 1 = Pc(N) on the plane N = 0 iterations,

Number of people n Theoretical probability = RE

n = 5 P = 0.027135573700

n = 10 P = 0.116948177711

n = 15 P = 0.252901319764

n = 20 P = 0.411438383581

n = 22 P = 0.475695307663

n = 23 P = 0.507297234324

n = 25 P = 0.568699703969

n = 30 P = 0.706316242719

n = 35 P = 0.814383238875

n = 40 P = 0.891231809818

n = 45 P = 0.940975899466

n = 50 P = 0.970373579578

n = 55 P = 0.986262288816

n = 100 P = 0.999999692751

n = 133 P = 0.999999999999

n = 365 P = 1.000000000000

Table 1.
Some theoretical probabilities of matching birthdays for n people where 1≤ n≤ 365.

Figure 8.
The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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we will get the line in cyan. The starting point of this line is point J (DOK = 1,
Chf = 0) when N = 0 iterations, and then the line gets to point (DOK = 0.5,
Chf = �0.5) when N = 375,000 iterations and joins finally and again point J
(DOK = 1, Chf = 0) when N = NC = 750,000 iterations. The graphs of Chf(N) (pink,
green, blue) in different planes and DOK(N) (red) represent the other curves. We
can notice that point K (DOK = 0.5, Chf = �0.5, N = 375,000 iterations) is the
minimum of all these curves. We can notice also that point L has the coordinates
(DOK = 1, Chf = 0, N = NC = 750,000 iterations). Additionally, the three points J, K,
and L correspond to the same points that exist in Figure 12.

Figure 9.
The increasing convergence of the Monte Carlo method up to N = 100 iterations.

Figure 10.
The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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In Figure 14 and in the second cube, we simulate the probability of convergence
Pr(N) and its complementary real probability of divergence Pm(N)/i as functions of
the iterations N for the problem of matching birthday. If we project Pc2(N) =
Pr(N) + Pm(N)/i = 1 = Pc(N) on the plane N = 0 iterations, we will get the line in
cyan. The starting point of this line is point (Pr = 0, Pm/i = 1), and the final point is

Figure 11.
The increasing convergence of the Monte Carlo method up to N = 750,000 iterations.

Figure 12.
The CPP parameters and the Monte Carlo techniques for the matching birthday problem.
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Figure 13.
Chf and DOK in terms of each other and of N for the problem of matching birthday.

Figure 14.
Pm/i and Pr in terms of each other and of N for the problem of matching birthday.
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point (Pr = 1, Pm/i = 0). The graph of Pr(N) in the plane Pr(N) = Pm(N)/i is
represented by the red curve. The starting point of this graph is point J (Pr = 0, Pm/i = 1,
N = 0 iterations), and then it gets to point K (Pr = 0.5, Pm/i = 0.5, N = 375,000
iterations) and joins finally point L (Pr = 1, Pm/i = 0, N = NC = 750,000 iterations).
The graph of Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1 is represented by the blue
curve. We can notice how much point K is important and which is the intersection
of the blue and red graphs when Pr(N) = Pm(N)/i = 0.5 at N = 375,000 iterations.
Additionally, the three points J, K, and L correspond to the same points that exist in
Figure 12.

In Figure 15 and in the third cube, we simulate the vector of complex
probabilities Z(N) in C as a function of the real probability of convergence
Pr(N) = Re(Z) in R and of its complementary imaginary probability of divergence
Pm(N) = i � Im(Z) in M, and as a function of the iterations N for the problem
of matching birthday. The graph of Pr(N) in the plane Pm(N) = 0 is represented
by the red curve, and the graph of Pm(N) in the plane Pr(N) = 0 is represented
by the blue curve. The graph of the vector of complex probabilities
Z(N) = Pr(N) + Pm(N) = Re(Z) + i � Im(Z) in the plane Pr(N) = iPm(N) + 1 is
represented by the green curve. The graph of Z(N) has point J (Pr = 0, Pm = i, N = 0
iterations) as the starting point and point L (Pr = 1, Pm = 0, N = NC = 750,000
iterations) as the end point. If we project Z(N) curve on the plane of complex
probabilities whose equation is N = 0 iterations, we get the line in cyan which is
Pr(0) = iPm(0) + 1. This projected line has point J (Pr = 0, Pm = i, N = 0 iterations) as
the starting point and point (Pr = 1, Pm = 0, N = 0 iterations) as the end point. We
can notice how much point K is important, and it corresponds to Pr = 0.5 and

Figure 15.
The vector of complex probability Z in terms of N for the problem of matching birthday.
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Pm = 0.5i when N = 375,000 iterations. Additionally, the three points J, K, and L
correspond to the same points that exist in Figure 12.

8. Perspectives and conclusion

In the current chapter, the extended and original Kolmogorov model of eight
axioms (EKA) was connected and applied to the random and classical Monte Carlo
techniques. Thus, we have bonded Monte Carlo algorithms to the novel CPP para-
digm. Accordingly, the paradigm of “complex probability” was more expanded
beyond the scope of my 14 earlier studies on this topic.

Also, as it was proved and demonstrated in the original paradigm, when N = 0
(before the beginning of the random simulation) and when N = NC (after the
convergence of Monte Carlo algorithm to the exact result), then the chaotic factor
(Chf and MChf) is 0, and the degree of our knowledge (DOK) is 1 since the
stochastic aspects and variations have either not commenced yet or they have
terminated their job on the random phenomenon. During the course of the
nondeterministic phenomenon (N > 0), we have 0 < MChf ≤ 0.5, 0.5 ≤ DOK < 1,
and � 0.5 ≤ Chf < 0, and it can be noticed that throughout this entire process, we
have continually and incessantly Pc2 = DOK � Chf = DOK + MChf = 1 = Pc, which
means that the simulation which seemed to be random and nondeterministic in the
set R is now deterministic and certain in the set C ¼ RþM, and this after adding
the contributions of M to the experiment happening in R and thus after removing
and subtracting the chaotic factor from the degree of our knowledge. Additionally,
the probabilities of convergence and divergence of the random Monte Carlo proce-
dure that correspond to each iteration cycle N have been determined in the three
sets of probabilities which are C, M, and R by Pc, Pm, and Pr, respectively.
Subsequently, at each instance of N, the novel Monte Carlo techniques and CPP
parameters DOK, Chf,MChf, RE, RA, Pr, Pm, Pm=i, Pc, and Z are perfectly and surely
predicted in the set of complex probabilities C with Pc kept as equal to 1 continu-
ously and forever. Also, referring to all these shown simulations and obtained
graphs all over the entire chapter, we can visualize and quantify both the system
chaos and stochastic influences and aspects (expressed by Chf and MChf) and the
certain knowledge (expressed by DOK and Pc) of Monte Carlo algorithms. This is
definitely very wonderful, fruitful, and fascinating and demonstrates once again the
advantages of extending the five axioms of probability of Kolmogorov and thus the
benefits and novelty of this original theory in applied mathematics and prognostics
that can be called verily: “the complex probability paradigm.”

Moreover, it is important to mention here that one essential and very well-
known probability distribution was taken into consideration in the current chapter
which is the uniform and discrete probability distribution as well as a specific
generator of uniform random numbers, knowing that the original CPPmodel can be
applied to any generator of uniform random numbers that exists in literature. This
will yield certainly analogous results and conclusions and will confirm without any
doubt the success of my innovative theory.

As a prospective and future challenges and research, we intend to more develop
the novel conceived prognostic paradigm and to apply it to a diverse set of
nondeterministic events like for other stochastic phenomena as in the classical
theory of probability and in stochastic processes. Additionally, we will implement
CPP to the first-order reliability method (FORM) in the field of prognostic in
engineering and also to the problems of random walk which have huge conse-
quences when applied to economics, to chemistry, to physics, and to pure and
applied mathematics.

25

The Monte Carlo Techniques and the Complex Probability Paradigm
DOI: http://dx.doi.org/10.5772/intechopen.93048



Nomenclature

R the events real set
M the events imaginary set
C the events complex set
i the imaginary number with i2 ¼ �1 or i ¼

ffiffiffiffiffiffi

�1
p

EKA extended Kolmogorov axioms
CPP complex probability paradigm
Prob any event probability
Pr the probability in the real set R = the probability of convergence

in R

Pm the probability in the complementary imaginary set M that
corresponds to the real probability set in R = the probability of
divergence in M

Pc the probability in R of the event with its associated event in
M = the probability in the set C ¼ RþM of complex probabilities

RE the exact result of the random experiment
RA the approximate result of the random experiment
Z complex probability number = complex random vector = sum of Pr

and Pm
DOK = Zj j2 the degree of our knowledge of the stochastic experiment or system,

it is the square of the norm of Z
Chf the chaotic factor of Z
MChf the magnitude of the chaotic factor of Z
N the number of iterations cycles = number of random vectors
NC the number of iterations cycles till the convergence of Monte Carlo

method to RE = the number of random vectors till convergence.
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