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Chapter

Contribution to Decision Tree
Induction with Python: A Review

Bouchra Lamrini

Abstract

Among the learning algorithms, one of the most popular and easiest to under-
stand is the decision tree induction. The popularity of this method is related to three
nice characteristics: interpretability, efficiency, and flexibility. Decision tree can be
used for both classification and regression kind of problem. Automatic learning of a
decision tree is characterised by the fact that it uses logic and mathematics to
generate rules instead of selecting them based on intuition and subjectivity. In this
review, we present essential steps to understand the fundamental concepts and
mathematics behind decision tree from training to building. We study criteria and
pruning algorithms, which have been proposed to control complexity and optimize
decision tree performance. A discussion around several works and tools will be
exposed to analyze the techniques of variance reduction, which do not improve or
change the representation bias of decision tree. We chose Pima Indians Diabetes
dataset to cover essential questions to understand pruning process. The paper’s
original contribution is to provide an up-to-date overview that is fully focused on
implemented algorithms to build and optimize decision trees. This contributes to
evolve future developments of decision tree induction.

Keywords: decision tree, induction learning, classification, pruning,
bias-variance trade-off

1. Introduction

Decision tree induction is the most known and developed model of machine
learning methods often used in data mining and business intelligence for prediction
and diagnostic tasks [1-4]. It is used in classification problems, regression problems
or time-dependent prediction. The main strength of decision tree induction is its
interpretability characteristics. It is a graphical method designed for problems
involving a sequence of decisions and successive events. More precisely, his results
formalise the reasoning that an expert could have to reproduce the sequence of
decisions and find a characteristic of an object. The main advantage of this type of
model is that a human being can easily understand and reproduce decision sequence
to predict the target category of a new instance. The results provide a graphic
structure or a base of rules facilitates understanding and corresponds to human
reasoning.

Learning by decision tree is part of supervised learning, where the class of each
object in the database is given. The goal is to build a model from a set of examples
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associated with the classes to find a description for each of the classes from the
common properties between the examples. Once this model has been built, we can
extract a set of classification rules. In this model, the extracted rules are then used to
classify new objects whose class is unknown. The classification is done by travelling
a path from the root to a leaf. The class returned (default class) is the one that is
most frequent among the examples on the sheet. At each internal node (decision
node) of the tree, there is a test (question) which corresponds to an attribute in the
learning base and a branch corresponding to each of the possible values of the
attribute. At each leaf node, there is a class value. A path from the root to a node
therefore corresponds to a series of attributes (questions) with their values
(answers). This flowchart-like structure with recursive partitioning helps user in
decision-making. It is this visualisation, which easily mimics the human-level
thinking. That is why decision trees are easy to understand and interpret.

Another advantage of decision tree induction is its ability to automatically iden-
tify the most discriminating features for an use case, i.e., the most representative
data inputs for a given task. This is explained by its flexibility and autonomy as a
model with little assumption on the hypothesis space. It is an approach that remains
particularly useful for input space problems and a powerful tool able to handle very
large-scale problems, thus particularly useful in big data mining. However, it is
generally less accurate than other machine learning models like neural networks.

In brief, this learning algorithm has the following three essential characteristics:

* Interpretability: Because of its flowchart-like structure, the way attributes
interact to give a prediction is very readable.

* Efficiency: The induction process is done by a top-down algorithm which
recursively splits terminal nodes of the current tree until they all contain
elements of only one class. Practically, the algorithm is very fast in terms of
running time and can be used on very large datasets (e.g. of millions of objects
and thousands of features).

* Flexibility: This method does not make any hypothesis about the problem
under consideration. It can handle both continuous and discrete attributes.
Predictions at leaf nodes may be symbolic or numerical (in which case, trees
are called regression trees). In addition, the tree induction method can be easily
extended by improving tests at tree nodes (e.g. introducing linear
combinations of attributes) or providing a prediction at terminal nodes by
means of another model.

The review is organised into three parts. The first aims at introducing a brief
history of decision tree induction. We present mathematically basics and search
strategy used to train and build a decision tree. We discuss the supervised learning
problem and the trade-off between a model’s ability to minimise bias and variance.
In this regard, we are extending our investigation to fundamental aspects, such as
ensemble meta-algorithms and pruning methods, which we must put in advance for
building an optimal decision tree. In the second section, we introduce some results
obtained by means of the Scikit-Learn Python modules and Pima Indians Diabetes
data in order to feed our discussions and our perspectives in terms of future devel-
opments and applications of Python community. The third section is devoted to the
improvements of decision tree induction in order to improve its performance. We
have collected some technical discussions that we raise given our experience in
Research and Development (R&D). Finally, the conclusions give a general synthesis
of the survey developed and discuss some ideas for future works.
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2. A brief history of decision tree induction

There are many induction systems that build decision trees. Hunt et al. [5] were
the first in this field to study machine learning using examples. Their concept
learning system (CLS) framework builds a decision tree that tries to minimise the
cost of classifying an object. There are two types of costs: (1) the cost of determining
the value of a property of the object O, exhibited by the object and (2) the
misclassification cost of deciding that the object belongs to class C when its real
class is K. The CLS method uses a strategy called Lookahead which consists of
exploring the space of all possible decision trees to a fixed depth and choosing an
action to minimise the cost in this limited space and then moving one level down in
the tree. Depending on the depth of the Lookahead chosen, CLS can require a
substantial amount of computation but has been able to unearth subtle patterns in
the objects shown to it.

Quinlan [6] proposed Iterative Dichotomiser 3 (ID3), which takes up certain
concepts of CLS. ID3 was developed following a challenge induction task on the
study of end of chess games posed by Donald Michie. Analogue concept learning
system (ACLS) [7] is a generalisation of ID3. CLS and ID3 require that each attri-
bute used to describe the object takes its values in a finite set. In addition to this type
of attribute, ACLS allows the use of attributes whose values can be integer. ASSIS-
TANT [8], which is a descendant of ID3, allows the use of continuous attributes and
builds a binary decision tree. ASSISTANT avoids overfitting by using a pruning
technique, which has resulted in ASSISTANT-86 [9]. Another descendant of ID3 is
[10, 11], which will be explained later.

There is another family of induction systems, such as the algorithm of the star
AQ [12], which induces a set of decision rules from a base of examples. AQ builds an
R function that covers positive examples and rejects negative ones. CN2 [13] learns
a set of unordered rules of the form “IF-THEN” from a set of examples. For this,
CN2 performs a top-down search (from general to specific) in the rule space,
looking for the best rule, then removes the examples covered by this rule and
repeats this process until no good rule is found. CN2’s strategy is similar to that of
AQ in that it eliminates the examples covered by the discovered rule, but it also
differs in that it specialises a starting rule instead of generalising it.

Statisticians have attributed the authorship of decision tree building to Morgan
and Sonquist [1], who are the first researchers to introduce the automatic interac-
tion detector (AID) method. This method is applied to learning problems whose
attribute to predict (the class) is quantitative. It works sequentially and is indepen-
dent of the extent of linearity in the classifications or the order in which the
explanatory factors are introduced. Morgan and Sonquist were among the first to
use decision trees and among the first to use regression trees.

Several extensions have been proposed: theta AID (THAID) [2] and chi-squared
AID (CHAID) [3] which uses chi-square as the independence gap to choose the best
partitioning attribute. There is also a method proposed by [4] called classification
and regression tree (CART) which builds a binary decision tree using the feature
and threshold that yield the largest information gain at each node.

Quinlan [11] then proposes the C4.5 algorithm for IT community. C4.5 removed
the restriction that entities must be categorical by dynamically defining a discrete
attribute based on numerical variables. This discretization process splits the contin-
uous attribute value into a discrete set of intervals. C4.5 then converts the trees
generated at the end of learning step into sets of if-then rules. This accuracy of each
rule is well taken into account to determine the order in which they must be
applied. Pruning is performed by removing the rule’s precondition if the precision
of the rule improves without it.
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Many decision tree algorithms have been developed over the years, for example,
SPRINT by Shafer et al. [14] and SLIQ by Mehta et al. [15]. One of the studies
comparing decision trees and other learning algorithms was carried out by Tjen-
Sien et al. [16]. The study shows that C4.5 has a very good combination of error rate
and speed. C4.5 assumes that the training data is in memory. Gehrke et al. [17]
proposed Rainforest, an approach to develop a fast and scalable algorithm. In [18],
Kotsiantis represents a synthesis of the main basic problems of decision trees and
current research work. The references cited cover the main theoretical problems
that can lead the researcher into interesting directions of research and suggest
possible combinations of biases to explore.

2.1 Mathematical basics and search strategy

The automatic learning of the rules in a decision tree consists in separating the
learning objects into disjoint sub-samples of objects (which have no elements in
common) where the majority of objects ideally have the same value for the output
variable, i.e. the same class in the case of a classification problem. Each internal
node performs a test on an input attribute. This test is determined automatically
based on the initial training sample and according to test selection procedures that
differ from one tree induction algorithm to another. For attributes with numerical
values (or after encoding data), the test consists in comparing the value of an
attribute with a numerical value which is called discretization threshold. According
to the algorithm used, the terminal nodes of the tree are labelled either by the
majority class of objects in the training sample which have reached this sheet
following successive separations or by a distribution of probabilities of the classes
by frequency of these objects in each class.

As indicated above, the main learning algorithms using decision trees are C4.5
[11] and CART [4]. The CART algorithm is very similar to C4.5, except for a few
properties [19, 20], but it differs in that it supports numerical target variables
(regression) and does not compute rule sets. The CART algorithm can be used to
construct classification and regression decision trees, depending on whether the
dependent variable is categorical or numeric. It also handles missing attribute
values. The decision tree built by the CART algorithm is always a binary decision
tree (each node has only two child nodes), also called hierarchical optimal discrim-
inate analysis (HODA). The measurement of impurity (or purity) used in the
decision tree by CART is the Gini index (C4.5 uses the notion of entropy) for
classification tasks. In regression tasks, the fit method takes inputs and target
arguments as in the classification setting, only that in this case target, it is expected
to have floating point values (continuous values) instead of integer values. For a leaf
L;, common criteria to minimise as for determining locations for future splits are
mean squared error (MSE), which minimises the L; + 1 error using mean values at
terminal nodes, and mean absolute error (MAE), which minimises the L; error
using median values at terminal nodes.

Several software for decision trees building are available, most of them
referenced in the literature. We cite the chi-squared automatic interaction detector
(CHAID) method implemented in the SIPINA® tool which seeks to produce a tree of
limited size, allowing to initiate a data exploration. WEKA? uses C4.5 algorithm,
and there is no need to discretize any of the attributes, and scikit-learn Python
library uses an optimised version of the CART algorithm. The current (version

1 http://eric.univ-lyon2.fr/~ricco/sipina.html

* https://www.cs.waikato.ac.nz/ml/weka/
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0.22.1) implementation of scikit-learn library does not support categorical variables.
A data encoding is mandatory at this stage (the labels transform into a value
between 0 and nbClasses-1). The algorithm options are described in the Python
documentation®.

The algorithm below generally summarises the learning phase of a decision tree
which begins at the top of the tree with a root node containing all the objects of the

learning set:

Algorithm 1: build DT

1 if DT contains objects all of which belong to the same class then

2 ‘ return a leaf labeled with this class

3 else

4 1- Take [ax<ay] = _choose_test_(DT);

5 2- Split DT into DTy and DTjgp according to test [ag<ay| and build
the sub-trees SDTy = build DTy and SDTjgn = build DTy from
this sub-sets;

6 3- Creat a node with the test [ax<ag,], make SDTjp and SDT g like

successors of this node and return the resulting tree.

end

_choose_test_(DT): Select an attribute a; and a threshold ay, which
minimizes the measurement of the score on DT.

o =

In order for the tree to be easily interpreted, its size must be minimum. Thus, the
test selection procedure applied at each node aims to choose the test (the attribute-
threshold pair) which separates the objects from the current sub-sample in an
optimal way, i.e. which reduces the uncertainty linked to the output variable within
successor nodes. An entropy measurement (score based on a normalisation of the
Shannon information measurement) allows to evaluate the gain of information
provided by the test carried out. Once the model has been built, we can infer the
class of a new object by propagating it in the tree from top to bottom according to
the tests performed. The chosen test separates the current sample of objects into
two sub-samples which are found in the successors of this node. Each test at a node
makes it possible to direct any object to one of the two successors of this node
according to the value of the attribute tested at this node. In other words, a decision
tree is seen as a function which attributes to any object the class associated with the
terminal node to which the object is directed following tests to the internal nodes of
the tree. Figure 1 illustrates an example using two input attributes with the
partitioning of the input space it implies.

The induction algorithm continues to develop the tree until the terminal nodes
contain sub-samples of objects that have the same output value. The label associated
with a leaf in the tree is determined from the objects in the learning set that have
been directed to this leaf. The majority class among the classes of these objects can
be used or even the distribution of class probabilities if a stop criterion has
interrupted development before reaching “pure” nodes.

The principal objective of an induction algorithm is to build on the learning data
a simpler tree whose reliability is maximum, i.e. the classification error rate is
minimal. However, a successful and very precise model on the learning set is not
necessarily generalizable to unknown examples (objects), especially in the presence
of noisy data. In this case, two sources of error expressed in the form of bias
(difference between the real value and the estimated value) and the variance can
generally influence the precision of a model. Several bibliographic analyses ([21]

> https://scikit-learn.org/stable/modules/tree.html#
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Figure 1.
An example of a decision tree and the partition it implies (Figure taken from https://www.kdnuggets.com/
website).

and the references cited in this work, [22]) have shown that decision trees suffer
from a significant variance which penalises the precision of this technique. A tree
may be too large due to too many test nodes determined at the bottom of the tree on
sub-samples of statistically unreliable size objects. The choice of tests (attributes
and thresholds) at the internal nodes of a decision tree can also depend on a sample
to another which contributes to the variance of the models built. For these reasons,
the criteria for stopping the development of a tree or simplification techniques such
as pruning procedures is to find a good compromise between the complexity of the
model and its reliability on an independent sample. These techniques can only
improve the first source of error (bias) mentioned above. Different variance reduc-
tion techniques are proposed in the literature, notably the ensemble meta-
algorithms such as bagging, random forests, extra-trees and boosting.

The ensemble meta-algorithms are effective in combination with decision trees.
These methods differ by their way of adapting the original tree induction algorithm
and/or aggregating the results. Bagging, random forests and extra-trees methods
have several similarities. They independently build T constitutive trees. The pre-
dictions of different trees are aggregated as follows: each tree produces a vector of
class probabilities. The T trees probability are additional in a weight vector, and the
class that receives the most weight according to this one is assigned to the object.
Note that these three methods use a random component and their precision can
then vary slightly from one execution to another. Boosting method produces
sequentially (and deterministically) the set of trees unlike these three methods
using a different aggregation procedure. These methods have been successfully
applied to numerous applications, notably in bioinformatics [23] and in networks
[24]. Maree [22] presents a bibliographical analysis of these methods. His work
covers the problem of automatic image classification using sets of random trees
combined with a random extraction of sub-windows of pixel values.

2.2 Pruning

Pruning is a model selection procedure, where the models are the pruned sub-
trees of the maximum tree Ty. Let 7 be the set of all binary sub-trees of T having
the same root as T. This procedure minimises a penalised criterion where the
penalty is proportional to the number of leaves in the tree [25]. Defining the
optimal size of a decision tree consists in stopping the pre-pruning or reducing the
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post-pruning of the tree to have the best pruned sub-tree from the maximum tree to
the sense of the generalisation error, i.e. improving the predictive aspect of the tree,
on the one hand, and reducing its complexity, on the other hand. To this end,
several pruning methods have been developed, such as:

* Minimal cost complexity pruning (MCCP), also called as post-pruning for the
CART algorithm [4]. This method consists in constructing a nested sequence of
sub-trees using a formulation called minimum cost complexity. In Section
2.2.1, we detail the general concept of this method that Scikit-Learn Library
adopted in its implementation.

* Reduced error pruning (REP) consists of estimating the real error of a given sub-
tree on a pruning or test set. The pruning algorithm is performed as follows:
“As long as there is a tree that can be replaced by a leaf without increasing the
estimate of the real error, then prune this tree”. This technique gives a slightly
congruent tree in the sense that some examples may be misclassified. The study
of Elomaa and Kédiridinen [26] presents a detailed analysis of the REP method.
In this analysis, the two authors evoke that the REP method was introduced by
Quinlan [27] but the latter never presented it in an algorithmic way, which is a
source of confusion. Even though REP is considered a very simple, almost
trivial algorithm for pruning, many different algorithms have the same name.
There is no consensus whether REP is a bottom-up algorithm or an iterative
method. Moreover, it is not apparent that the training or pruning set is used to
determine the labels of the leaves that result from pruning.

* Pessimistic error pruning (PEP). In order to overcome the disadvantages of the
previous method, Quinlan [27] proposed a pruning strategy which uses a single
set of construction and pruning of the tree. The tree is pruned by examining
the error rate at each node and assuming that the true error rate is considerably
worse. If a given node contains N records in which E among them are
misclassified, then the error rate is estimated at E/N. The central concern of
the algorithm is to minimise this estimate, by considering this error rate as a
very optimistic version of the real error rate [28, 29].

* Minimum error pruning (MEP) was proposed by Niblett and Bratko [30],
critical value pruning (CVP) by Mingers [31] and error-based pruning (EBP)
proposed by Quinlan as an improvement of the PEP method, for the
algorithm C4.5.

2.2.1 Pre-pruning

Pre-pruning consists in fixing a stopping rule which allows to stop the growth of
a tree during learning phase by fixing a local stopping criterion which makes it
possible to evaluate the informational contribution of the segmentation relating to
the node that is being processed. The principle of the CHAID algorithm [32] is
based on the same principle by accepting segmentation if the measure of informa-
tion gain (y? difference in independence or ¢ from Tschuprow [3]) calculated on a
node is significantly higher than a chosen threshold. According to Rakotomalala
et al. [32, 33], formalisation involves a test of statistical hypothesis: the null
hypothesis is the independence of the segmentation variable with the class attribute.
If the calculated y? is higher than the theoretical threshold corresponding to the risk
of the first kind that we have set (respectively if the p-value calculated is lower than
the risk of first kind), we accept the segmentation.
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One of the cons of this algorithm is that it prematurely stops the building process
of the tree. Furthermore, the use of the statistical test is considered critical. This is a
classic independence test whose variable tested is produced at the end of several
optimisation stages: search for the optimal discretization point for continuous vari-
ables and then search for the segmentation variable which maximises the measure
used. The statistical law is no longer the same from one stage to another. The
correction of the test by the introduction of certain procedures known as the
Bonferroni correction [33] is recommended, but in practice, this type of correction
does not lead to improvement in terms of classification performance. We also cite
the work of [34], which proposes two pruning approaches: the first is a method of
simplifying rules by the test of statistical independence to modify the pruning
mechanism of the algorithm CHAID, and the second uses validation criteria
inspired by the discovery technique of association rules.

The depth (maximum number of levels) of the tree and the minimum number
of observations from which no further segmentation attempts are made also
remain two practical options that can be fixed at start learning to manage the
complexity of the model. However, the choice of these parameters remains a critical
step in the tree building process because the final result depends on these parame-
ters that we have chosen. To this is added the fact that the evaluation is local
(limited to a node) and we take more account of the global evaluation of the tree. It
is therefore necessary to propose a rule which is not too restrictive (respectively not
too permissive) to obtain a suitable tree and not undersized (respectively not
oversized).

2.2.2 Post-pruning

The algorithm for building a binary decision tree using CART browses for each
node the m attributes (x1,x2, ...,%,) one by one, starting with x; and continuing up
to x,,. For each attribute, it explores all the possible tests (splits), and it chooses the
best split (dichotomy) which maximises the reduction in impurity. Then, it
compares the 7 best splits to choose the best of them. The function that measures
impurity should reach its maximum when the instances are fairly distributed
between the different classes and its minimum when a class contains all the
examples (the node is pure). There are different functions which satisfy these
properties. The function used by CART algorithm is Gini function (Gini impurity
index). Gini function on a node ¢ with a distribution of class probabilities on this
node P (j|t), c =1, ..., kis:

G(p) = ¢(P(1]t), P(2[t), ..., P(k|t))
=3 "P(clr).(1 — P(clr)) 1)

If a split s on a node ¢ splits the subset associated with this node into two subsets,
left t; with a proportion p and right tp with a proportion p,,, we can define the
impurity reduction measure as follows:

AG(s,t) = G(t) —ps *G(tg) — pp *G(tp) (2)

On each node, if the set of candidate splits is S, the algorithm searches the best
split s* such that:

AG(s™,t) = max;csAG(s,t) (3)
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Suppose we got some splits and came up with a set of terminal nodes T. The set
of splits, used in the same order, determines the binary tree T. We have I(¢) =
G(t)p(t). So the impurity function on the tree is:

I(T)=Y It)=) G(t)*p(t) (4)

teT teT

G(t) is the impurity measure on the node ¢, and p(t) is the probability that an
instance belongs to the node t.

It is easy to see that the selection of the splits which maximise A;(s, ¢) is equiva-
lent to the selection of the splits which minimise the impurity I(T') on all the trees. If

we take any node ¢ € T and we use a split s which partitions the node into two parts
tp and tg, the new tree T has the following impurity:

I(T) = 1) + I(tp) + I(t6) (5)

T—{t}

Because we have partitioned the subset arrived at ¢ and ¢p and t¢, reducing the
impurity of the tree is therefore:

I(T) ~1(T) = I(T) ~ I(ep) — I(tc) 6)

It only depends on the node ¢ and the splits s. So, to maximise the reduction of
impurity in the tree on a node ¢, we maximise:

Al(s,t) =1(t) — I(tg) — I(tp) @)

The proportions p, are defined as follows: p, = p(tp)/p(t), p; = p(tc)/p(t) and
pPe +pp = 1. So, Eq. (7) can be written as follows:

Al(s,t) = [G(t) —pg * Glte) — pp *Gltp)] *p(2)
= AG(s,t) *p(2)

(8)

Since p(t) is the only difference between (s, ) and (s, ), the same splits s*
maximises both expressions.

The stop splitting criterion used by CART was very simple: for a threshold > 0,
a node is declared terminal (leaf) if maxAI(s,t) < . The algorithm assigns to each
terminal node the most probable class.

Post-pruning is a procedure that appeared with the CART method [4]. It was
very widely taken up in different forms thereafter. The principle is to build the tree
in two phases. (1) The first phase of expansion consists in producing the purest
possible trees and in which all segmentations are accepted even if they are not
relevant. This is the principle of hurdling building. (2) In the second phase, we try
to reduce the tree by using another criterion to compare trees of different sizes. The
building time of the tree is of course longer. It can be penalising when the database
is very large while the objective is to obtain a tree that performs better in classifica-
tion phase.

The idea that was introduced by Breiman et al. [4] is to construct a sequence of
trees To, .., T}, .., Tt, which minimise a function called cost complexity metric (previ-
ously mentioned). This function combines two factors: the classification error rate
and the number of leaves in the tree using a parameter.
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For each internal node, Ne and T, the relationship is defined as:

ARfmp
a(p) = T, -1 9)

where ARfmp is the number of additional errors that the decision tree makes on
the set of samples S when we prune it at position p. [p| — 1 measures the number of
sheets deleted. The tree T}, is obtained by pruning T; at its node which has the
smallest value of a(p) parameter. We thus obtain a sequence T, .., T}, .., T; of
elements of T, the last of which is reduced to a leaf. To estimate the error rate for
each tree, the authors suggest using two different methods, one based on cross-

validation and the other on a new test base.

3. Decision tree classifier building in Scikit-Learn

Today there are several best machine learning websites that propose tutorials to
show how decision trees work using the different modules of python. We quote for
example three popular websites: Towards Data Science,* KDnuggets,” and Kaggle.®
Developers offer in a few lines of optimised code how to use decision tree method
by covering the various topics concerning attribute selection measures, information
gain, how to optimise decision tree performance, etc.

From our side, we choose Pima Indians Diabetes datasets (often used in classifi-
cation problems) to examine the various tuned parameters proposed as arguments
by Scikit-Learn package. The Pima are a group of Native Americans living in
Arizona. A genetic predisposition allowed this group to survive normally to a diet
poor of carbohydrates for years. In the recent years, a sudden shift from traditional
agricultural crops to processed foods, together with a decline in physical activity,
made them develop the highest prevalence of type 2 diabetes, and for this reason
they have been subject of many studies. The original dataset is available at UCI
Machine Learning Repository and can be downloaded from this address,” “diabetes-
data.tar.Z”, containing the distribution for 70 sets of data recorded on diabetes
patients, several weeks to months worth of glucose, insulin and lifestyle data per
patient. The dataset includes data from 768 women with 8 characteristics, in par-
ticular:

1.Number of times pregnant (NTP)

2.Plasma glucose concentration in 2 h in an oral glucose tolerance test (PGC)
3. Diastolic blood pressure (mm Hg) (DBP)

4.Triceps skinfold thickness (mm) (TSFT)

5.Two-hour serum insulin (mu U/ml) (HSI)

6.Body mass index (weight in kg/(height in m)?) (BMI)

* https://towardsdatascience.com/decision-tree-algorithm-explained-83beb6e78ef4
> https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
® https://www.kaggle.com/dmilla/introduction-to-decision-trees-titanic-dataset

7 http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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7.Diabetes pedigree function (DPF)
8.Age (years)

The last column of the dataset indicates if the person has been diagnosed with
diabetes or not.

Without any data preparation step (cleaning, missing values processing, etc.),
we partitioned the dataset into a training data (75%) to build the tree and test data
(25%) for prediction. Then we kept the default settings which we can see through
the profile class function (Figure 2).

The Scikit-Learn documentation® explains in detail how to use each parameter
and offers other modules and functions to search information and internal struc-
tures of classifier from training to building step. Among these parameters, we
highlight in this review the following four we use to optimise the tree:

* criterion: Optional (default = “gini”). This parameter allows to measure the
quality of a split, use the different-different attribute selection measure and
supports two criteria, “gini” for the Gini index and “entropy” for the
information gain.

* max_depth: Optional (default = None), the maximum depth of a tree. If None,
then nodes are expanded until all the leaves contain less than
min_samples_split samples. A higher value of maximum depth causes
overfitting, and a lower value causes underfitting.

* min_samples_leaf: Optional (default = 1), the minimum number of samples
required to be at a leaf node. A split point at any depth will only be considered
if it leaves at least min_samples_leaf training samples in each of the left and
right branches. This may have the effect of smoothing the model, especially in
regression.

* min_impurity_decrease: Optional (default = 0.0). A node will be split if this
split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:

N, /N s (impurity — Nr /Ny % vight mpurity — Nyi, /N, * left,;mpurity) (10)

where N is the total number of samples, N; is the number of samples at the
current node, Ny, is the number of samples in the left child and Ny is the number of
samples in the right child. N, N;, Nz and Ny, all refer to the weighted sum, if
sample_weight is passed.

DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
max_features=None, max_leaf nodes=None,
min_impurity decrease=0.8, min_impurity split=None,
min samples leaf=1, mn samples split=2,
min weight fraction leaf=0.8, presort=False,
random_state=None, splitter='best')

Figure 2.
Default setting to create decision tree classifier without pruning.

® https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html
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In this example, each internal node has a decision rule that divides the data. The
node impurity is set by default at Gini ratio. A node is pure when all the objects
belong to the same class, i.e. impurity = 0. The unpruned tree resulting from this
setting is inexplicable and difficult to understand. In Figures 3 and 4, we will show
you how to adjust some tuned parameters to get an optimal tree by pruning.

“export_graphviz” and “pydotplus” modules convert the decision tree classifier
to a “dot” file and in “png/pdf/..” format. Using various options of this modules,
you can adjust leaf colours and edit leaf content, important descriptors, etc.
Personally, I really enjoyed doing it during my R&D works.

Figure 3.
Decision tree without pruning. Accuracy = 0.72.

Most important features - Decision Tree

PGC
Bl H

DPF

DEP | -
NTP 1 .
Hﬁl | .

TSFT

T T
00 007 013 02 027 03F 04 047 053 06
Impartance

Figure 4.
Feature importance. Decision tree without pruning.
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We will now adjust only one parameter, the maximum depth of the tree. This
will control the tree size (number of levels). On the same data, we set
maximum_depth at 4. Next, we set “min_impurity_decrease” at 0.01 and
min_samples_leaf at 5. We will see that this pruned tree is less complex and easier to
understand by a field expert than the previous flowchart. We will see that we have
good accuracy with this setting. Accuracy can be computed by comparing actual
test set values and predicted values (Figures 5-8).

Most important features of Pima Indians Diabetes dataset is shown in
Figures 4, 6 and 8. We can see the root node is glucose, which can show the glucose
has the max information gain, so it confirm the common sense and the clinical

True, Fale

node #1
Age <= 28.5
gini = 0.325
samples =382
value = [304, 78)
class = 0
node #2 node #9
BMI <= 454 BMI <= 26.2
gini=0.191 gini = 0,442
samples = 215 samples = 167
value = [192, 23] value = [112, 5]
class = 0 class =0
node #3 node #6 node #10 node #13
BMI <= 30.45 Age<=22.5 BMI <= 9.65 DPF <= 0.563
i = 0,165 oini=0.32 gini=0.111 i = 0.479 gini=0.233
samples = 210 samples = 5 samples =34 | | samples = 133 samples = 67
value = [191, 19] value = [1, 4] valie = [32,2] | | value= [80, 53] value = [9, 58]
class =0 class = | class = 0 class = 0 class = |
Pl / | ] .
node #4 node #5 node #7 node #12 node #14 node £28
gini= 0.05 gini= 0,282 gini=0.0 gini = 0.0 gini = 0.424. gini=
samples = 116 samples = 94 samples = | samples = 32 samples = 95 samples = 1
vale =[113,3] | | value= (78, 16] | | value =1, 0] value = (32,0 | | value=[66, 29) value = [1, 0)
class = 0 class =0 class = 0 class = 0 class = 0 class = 0

Figure 5.
Decision tree pruned by mean of maximum depth parameter. Accuracy = 0.79.

Most important features - Decision Tree
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HSI
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Figure 6.
Feature importance. Decision tree after pruning (corvesponding to Figure 5 results).
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True False
node #1 node #8
Age <= 28.5 BMI <= 29.95
gini = 0.325 gini = 0.469
samples = 382 samples = 194
value = [304, 78] value = [73, 121]
class =0 class = 1
node #2 BMn?ii#Z% 2 node #9
gini = 0.191 ni=0 44'2 gini = 0.459
samples = 215 s agm les - 167 samples = 56
value = [192, 23] P! value = [36, 20]
Shss=0 value = [112, 55] -
class =0
/ node #5
gigfj%#l“” DPF <= 0.563
samples = 34 g1m1= 0;4?23
value = [32, 2] bocrun. sk
olgs = 6 value = [80, 53]
class =0
node #6
gini = 0.424
samples = 95
value = [66, 29]
class =0
Figure 7.

Decision tree pruned by mean maximum depth and impurity pavameters. Accuracy = 0.80.

diagnosis basis. Body mass index (BMI) and age are also found among the first
important variables. According to consulting relevant information, we know there
are three indicators to determine the diabetes mellitus, which are fasting blood
glucose, random blood glucose and blood glucose tolerance. Pima Indians Diabetes
dataset only has blood glucose tolerance. Prevalence of diabetes mellitus, hyperten-
sion and dyslipidaemia increase with higher BMI (BMI 25 kg/m?). On the other
hand, type 2 diabetes usually begins after age 40 and is diagnosed at an average age
of 65. This is why the French National Authority for Health recommends renewing
the screening test every 3 years in people over 45 years and every year if there is
more than one risk factor.

Despite the stop criterion of tree depth, the trees generated may be too deep for
a good practical interpretation. The notion of “accuracy” associated with each level
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Most important features - Decision Tree

BMI
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Figure 8.
Feature importance. Decision tree after pruning (corresponding to Figuve 7 results).

Prédit/réel Classe A Classe B

Classe A VA (Vrais A) FA (Faux A)

Classe B FB (Faux B) VB (Vrais B)
Table 1.

Confusion matrix.

of the tree will make it possible to present a partial tree sufficiently precise. This is
based on the confusion matrix: The accuracy P is the ratio of well-classified

elements to the sum of all elements and is defined by the following expression
(Table 1):

VA + VB

P =VAT VBT FAT B

(11)

The accuracy associated with a level of the tree is calculated by summing the VA,
VB, FA and FB taking into account the labels A or B of each node, and we add to VA
or VB the elements corresponding to pure nodes A or B in the previous levels. We
can thus decide to choose the partial tree according to the desired accuracy.

4, Discussions

Decision trees accept, like most learning methods, several hyper-parameters that
control its behaviour. In our use case, we used Gini index like information criteria to
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split the learning data. This criterion has directed the method to build a tree with a
maximum of 15 levels and to accept a node as a leaf if it includes at least five
learning instances. Impurity (entropy) is a measure of disorder in dataset; if we
have zero entropy, it means that all the instances of the target classes are the same,
while it reaches its maximum when there is an equal number of instances of each
class. At each node, we have a number of instances (from the dataset), and we
measure its entropy. Setting impurity to a given value (chosen according to exper-
tise and tests) will allow us to select the questions which give more homogeneous
partitions (with the lowest entropy), when we consider only the instances for which
the answer to the question is yes or no, that is to say when the entropy after answer
to the question decreases.

During my previous R&D work, we used the CART algorithm implemented in
the scikit-learn library. This implementation is close to the original one proposed by
[4]; however there is no parameter for penalising the deviance of the model by its
complexity (number of leaves) in order to build a sequence of trees nested in the
prospect of optimal pruning by cross-validation. The generic function of k-fold
cross-validation “GridSearchCV” can be used to optimise the depth parameter but
with great precision in pruning. The depth parameter eliminates a whole level and
not the only unnecessary leaves to the quality of the prediction. On the other hand,
the implementation anticipates those of model aggregation methods by integrating
the parameters (number of variables drawn, importance, etc.) which are specific to
them. On the other hand, the graphical representation of tree is not included and
requires the implementation of another free software like “Graphviz” and
“Pydotplus” modules.

The pros and cons of decision trees are known and described in almost all the
articles and works developed in this field. We highlight some that we consider
important for industrial applications. Selecting features is an extremely important
step when creating a machine learning solution. If the algorithm does not have good
input functionality, it will not have enough material to learn, and the results will not
be good, even if we have the best machine learning algorithm ever designed. The
selection of characteristics can be done manually depending on the knowledge of
the field and the machine learning method that we plan to use or by using automatic
tools to evaluate and select the most promising. Another common problem with
datasets is the problem of missing values. In most cases, we take a classic imputation
approach using the most common value in the training data, or the median value.
When we replace missing values, we should understand that we are modifying the
original problem and be careful when using this data for other analytical purposes.
This is a general rule in machine learning. When we change the data, we should
have a clear idea of what we are changing, to avoid distorting the final results.
Fortunately, decision tree requires fewer data preprocessing from users. It is used
with missing data, and there is no need to normalise features. However, we must be
careful in the way we describe the categorical data. Having a priori knowledge of
the data field, we can favour one or more modalities of a descriptor to force the
discretization process to choose a threshold, which highlights the importance of the
variables. Moreover, Geurts [21] has shown that the choice of tests (attributes and
thresholds) at the internal nodes of the tree can strongly depend on samples, which
also contributes to the variance of the models built according to this method.

Decision tree can easily capture nonlinear patterns, which is important in big
data processing. Nevertheless it is sensitive to noisy data, and it can overfit it. In big
data mining, online data processing is subject to continuous development (upgrade,
environment change, catching up, bugs, etc.) impacting the results expected by
customers and users. To this, the problem of variation that can be reduced by
bagging and boosting algorithms (that we mentioned in Section 2.1) is added.
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Decision tree is biased with imbalance dataset. It is recommended to balance
dataset before training to prevent the tree from being biased towards the classes
that are dominant. According to scikit-learn documentation “class balancing can be
done by sampling an equal number of samples from each class, or preferably by
normalising the sum of the sample weights (sample_weight) for each class to the
same value. Also note that weight-based pre-pruning criteria, such as
min_weight_fraction_leaf, will then be less biased towards dominant classes than
criteria that are not aware of the sample weights, like min_samples_leaf”.

5. Conclusions

Decision trees simply respond to a classification problem. Decision tree is one of
the few methods that can be presented quickly, without getting lost in mathematical
formulations difficult to grasp, to hearing not specialised in data processing or
machine learning. In this chapter, we have described the key elements necessary to
build a decision tree from a dataset as well as the pruning methods, pre-pruning and
post-pruning. We have also pointed to ensemble meta-algorithms as alternative for
solving the variance problem. We have seen that letting the decision tree grow to
the end causes several problems, such as overfitting. In addition, the deeper the tree
is, the more the number of instances (samples) per leaf decreases. On the other
hand, several studies have shown that pruning decreases the performance of the
decision tree in estimating probability.

Decision tree properties are now well known. It is mainly positioned as a refer-
ence method despite the fact that efforts to develop the method are less numerous
today. The references cited in this chapter are quite interesting and significant.
They provide a broad overview of statistical and machine learning methods by
producing a more technical description pointing the essential key points of tree
building. In spite of the fact that the CART algorithm has been around for a long
time, it remains an essential reference, by its precision, its exhaustiveness and the
hindsight which the authors, developers and researchers demonstrate in the solu-
tions they recommend. Academic articles also suggest new learning techniques and
often use it in their comparisons to locate their work, but the preferred method in
machine learning also remains C4.5 method. The availability of source code on
the web justifies this success. C4.5 is now used for Coronavirus Disease 2019
(COVID-19) diagnosis [35, 36].

Finally, we would like to emphasise that the interpretability of a decision tree is a
factor which can be subjective and whose importance also depends on the problem.
A tree that does not have many leafs can be considered easily interpretable by a
human. Some applications require good interpretability, which is not the case for all
prediction applications. On industrial problems, an interpretable model with great
precision is often necessary to increase knowledge of the field studied and identify
new patterns that can provide solutions to needs and to several expert questions.
We continue to put a lot of effort (scientific researchers, developers, experts,
manufacturers, etc.) to make more improvements to this approach: decision tree
induction. This chapter opens several opportunities in terms of algorithms and in
terms of applications. For our use case, we would like to have more data to predict
the type of diabetes and determine the proportion of each indicator, which can
improve the accuracy of predicting diabetes.
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