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Chapter

Kalman Filtering Applied to
Induction Motor State Estimation
Yassine Zahraoui and Mohamed Akherraz

Abstract

This chapter presents a full definition and explanation of Kalman filtering the-
ory, precisely the filter stochastic algorithm. After the definition, a concrete exam-
ple of application is explained. The simulated example concerns an extended
Kalman filter applied to machine state and speed estimation. A full observation of
an induction motor state variables and mechanical speed will be presented and
discussed in details. A comparison between extended Kalman filtering and adaptive
Luenberger state observation will be highlighted and discussed in detail with many
figures. In conclusion, the chapter is ended by listing the Kalman filtering main
advantages and recent advances in the scientific literature.

Keywords: Kalman filtering, stochastic algorithm, non-linear discrete system,
state variables estimation, standard Kalman filter, extended Kalman filter

1. Introduction

Kalman filtering is an algorithm that employs a series of observations over time,
containing noise and other inaccuracies, and generates approximations of unknown
variables that tend to be more accurate than those based on a single measurement
alone, by estimating a joint probability distribution over the variables for each time-
frame, as in [1].

The Kalman filter is a state observer which detects the presence of measurement
noises as well as uncertainties about an unknown dynamic state system, this system
is generally assimilated to state noise by stochastic algorithms tending to minimise
the variance of the estimation error, as described in [2].

The Kalman filter is suitable for recursive linear filtering of discrete data. It
provides an estimation of a state vector or a parameter and its error covariance and
variance matrix that contain information about the accuracy of its state variables, as
in [3]. The natural presence of noise when an induction machine is driven by an
inverter represents a strong argument for the choice of this kind of observers. Its
characteristics will relate to the observation of the speed and the components of the
rotor fluxes. The only needed measurements are the stator currents. Some state
variables will be provided directly by the control law. Thus, the stator voltages will
be considered as inputs for the filter. Table 1 shows a technical comparison between
the adaptive observer and the stochastic filter.
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2. Induction motor parts, features and mathematical model

2.1 Induction motor parts and features

Induction motors are the most commonly used electrical machines, they are
cheaper, rugged and easier to maintain compared to other alternatives. It has two
main parts: stator and rotor, stator is a stationary part and rotor is the rotating part.
Stator is made by stacking thin slotted highly permeable steel lamination inside a
steel or cast iron frame, winding passes through slots of stator. When a three phase
AC current passes through it, something very interesting happens. It produces a
rotating magnetic field, the speed of rotation of a magnetic field is known as
synchronous speed.

It is called an induction motor because electricity is inducted in rotor by mag-
netic induction rather than direct electric connection. To collapse such electric
magnetic induction, to aid such electromagnetic induction, insulated iron core
lamina are packed inside the rotor, such small slices of iron make sure that Eddy
current losses are minimal. And this is another big advantage of three phase induc-
tion motors.

The parts of a squirrel cage induction motor are shown in Figure 1.

2.2 Induction motor mathematical model

The induction motor has many state space mathematical models; each model is
expressed by assuming a certain state vector. The modelling of AC machines is based
mainly on the work of G. Kron, who gave birth to the concept of generalised machine
as described in [4]. Park’s model is a special case of this concept. It is often used for
the synthesis of control laws and estimators. Described by a non-linear algebra-
differential system, Park’s model reflects the dynamic behaviour of the electrical and
electromagnetic modes of the asynchronous machine. It admits several classes of state

Technical comparison

Features Adaptive Luenberger Observer Extended Kalman Filter

Response time Very well Very well

Tracking error Little Very little

Torque ripples Very high Medium

Robustness Robust Very robust

Noise sensitivity Very sensitive Not sensitive

aThe comparison is based on the obtained results.

Table 1.
Comparison between ALO and EKF.

Figure 1.
Squirrel cage induction motor parts.
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representations. These model classes depend directly on the control objectives
(torque, speed, position), the nature of the power source of the work repository and
the choice of state vector components (flux or currents, stator or rotor).

In this chapter, the mathematical model of the machine in use is described in the
stator fixed reference frame (α, β) (stationary frame) by assuming the stator
currents and the rotor fluxes as state variables:

_X ¼ A:X þ B:U

Y ¼ C:X

(

(1)

Where X, U and Y are the state vector, the input vector and the output vector,
respectively:

X ¼ isα isβ ϕrα ϕrβ

� �t
; U ¼ usα usβ

� �t
; Y ¼ isα isβ

� �t
(2)
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; C ¼
1 0 0 0

0 1 0 0

� �

(3)

With:

λ ¼
Rs

σ:Ls
þ
1� σ

σ:Tr
;K ¼

1� σ

σ:Lm
; σ ¼ 1�

L2
m

Ls:Lr
;Tr ¼

Lr

Rr
: (4)

The rotor motion is expressed by:

J:
dΩr

dt
¼ Tem � TL � f :Ωr (5)

Where J is the motor inertia,Tem is the electromagnetic torque,TL is the load
torque, and f is the friction coefficient.

Figure 2 shows the state space mathematical model of an induction motor.

3. Standard Kalman filter

In this chapter, the process to be observed is an induction motor. Its state is
composed of stator currents and rotor fluxes in α-β reference frame, the motor
model and its components are shown in Figure 3. The motor model is defined by a

Figure 2.
Induction motor state space mathematical model.
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discrete time linear state model composed of two additional terms for taking into
account discrete state noise Wk and discrete state measurement Vk.

Xkþ1 ¼ Ad � Xk þ Bd � Uk þWk

Yk ¼ Cd � Xk þ Vk

�

(6)

The addition of noise is necessary, since the noise-free equations (deterministic
model) define an ideal system. A more realistic model (stochastic model) is
obtained by adding the noise vectors. Some assumptions are made about discrete
noises: they are white, Gaussian, their average is zero and they are correlated
neither with each other nor with the state variables. These properties derive the
following equations:

E Wkf g ¼ 0;E Vkf g ¼ 0;E W �W tf g ¼ Q;E V � V tf g ¼ R� (7)

E Wk � V
t
k�τ

� �

¼ 0;E Wk � X
t
k�τ

� �

¼ 0;E Vk � X
t
k�τ

� �

¼ 0� (8)

E represents the expectation value operator.
The implementation of the Kalman filter algorithm requires two phases, the first

one is a prediction phase which consists in determining the prediction vector Xkþ1∣k

from the process state equations and also the previous values of the estimated states
Xk∣k at time k. In addition, the predicted state covariance matrix P is also obtained
before the new measurements are made, for this purpose the mathematical model
and also the covariance matrix Q of the system are used.

Xkþ1∣k ¼ Ad � Xk∣k þ Bd �Uk (9)

Pkþ1∣k ¼ Ad � Pk∣k � A
t
d þ Q (10)

The second phase then consists of the correction. It consists in correcting the

prediction vector by the measurement vector by adding a correction term K �

Figure 3.
Induction motor model with input, state and output components.

Figure 4.
Standard Kalman filter principle.
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Y � Ŷ
	 


to the predicted states Xkþ1∣k obtained in the first phase. This correction
term is a weighted difference between the actual output vector Y and the predicted

output vector Ŷ. Thus, the predicted state estimate and also its covariance matrix
are corrected by a feedback correction system to obtain the estimate of the state
vector Xkþ1∣k at the present moment kþ 1. Figure 4 below shows the principle of
the standard Kalman filter.

Kkþ1 ¼ Pkþ1∣k � C
t
d � Cd � Pkþ1∣k � C

t
d þ R

� ��1
(11)

Xkþ1∣kþ1 ¼ Xkþ1∣k þ Kkþ1 � Ykþ1 � Cd � Xkþ1∣k

� �

(12)

Pkþ1∣kþ1 ¼ Pkþ1∣k � Kkþ1 � Cd � Pkþ1∣k (13)

Where K denotes the gain matrix of the Kalman filter, P is the estimation error
covariance matrix, Q and R are, respectively, the covariance matrices of the state
and the measurement noises. The gain matrix K is chosen so as to minimise the
variance of the estimation error. This minimization will focus on the diagonal
elements of the estimation matrix. Thus, the Kalman filter algorithm uses on one
hand the knowledge of the process to predict the state vector, and on other hand the
actual measurements to correct the predicted vector. The standard Kalman filter
previously described allows estimation of the state of a linear system. If we want to
estimate an additional parameter outside the state vector, as the rotational speed of
an induction motor, one solution is to extend the estimated state vector to the speed
of rotation. The model then becomes non-linear and in this case, the extended
Kalman filter is required.

4. The extended Kalman filter

The extended Kalman filter performs an estimation of the state of a non-linear
process. It allows in particular to add, to the state vector, another variable that we
wish to estimate. This filter is widely used for estimating the various quantities of
the induction machine, such as: rotor speed, load torque, electrical and mechanical
parameters. Given that the extended Kalman filter is only the application of the
standard Kalman filter previously described in the case of a non-linear system, it is
then necessary to perform a linearization of this system at each step around the
operating point defined in the previous step. Let the non-linear model of the system
to be observed defined by the following equation of state:

Xekþ1
¼ f Xek ,Uk

	 


þWk

Yk ¼ h Xek

	 


þ Vk

(

(14)

Such as:

Xek ¼ Xk Θk½ �t: (15)

Where f and h are non-linear functions, Xek designates the extended state vector,
Xk and Θk are considered, respectively, as the main state vector and the parameter
vector (composed of parameters and unknown inputs to be estimated). These
parameters vary very little with respect to other quantities, for that reason we put
Θkþ1 ¼ Θk. The following discrete augmented state model is constructed:
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Xkþ1

Θkþ1

� �

¼
Ad 0

0 I

� �

Xk

Θk

� �

þ
Bd

0

� �

Uk þWk (16)

Yk ¼ Cd 0½ �
Xk

Θk

� �

þ Vk (17)

Ad, Bd and Cd are, respectively, the state, the input and the discrete output
matrices. I is the identity matrix.

The implementation of the extended Kalman filter algorithm to the discrete non-
linear system requires the execution of the following steps:

• Initialization of the states X0∣0, the parameters Θ0∣0 and the covariance
matrices P0∣0, Q and R

• Prediction of the states and the parameters

Xkþ1∣k ¼ Ad � Xk∣k þ Bd �Uk (18)

Θkþ1∣k ¼ Θk∣k (19)

• Prediction of error covariance matrix

Pkþ1∣k ¼ Fk � Pk∣k � F
t
k þQ (20)

Fk is the gradient matrix defined as follows:

Fk ¼
∂f Xek ,Uk

	 


∂Xek

�

�

�

�

Xek∣k

¼
Ad

∂

∂Θk
Ad � Xk∣k þ Bd � Uk

	 


�

�

�

Θk∣k

0 I

2

4

3

5 (21)

• Calculation of Kalman gain

Kkþ1 ¼ Pkþ1∣k �H
t
k þ Hk � Pkþ1∣k �H

t
k þ R

� ��1
(22)

Hk is the gradient matrix defined as follows:

Hk ¼
∂h Xek

	 


∂Xek

�

�

�

�

Xek∣k

¼
Cd

∂

∂Θk
Cd � Xk∣k

	 


�

�

�

Θk∣k

0 I

2

4

3

5 (23)

• Estimation of the states and the parameters

Xkþ1∣kþ1

Θkþ1∣kþ1

� �

¼
Xkþ1∣k

Θkþ1∣k

� �

þ Kkþ1 � Ykþ1 � Cd � Xkþ1∣k

� �

(24)

• Estimate of the error covariance matrix

Pkþ1∣kþ1 ¼ Pkþ1∣k � Kkþ1 � Kk � Pkþ1∣k (25)

• Update matrices at instant k ¼ kþ 1
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Xk∣k ¼ Xkþ1∣kþ1

Θk∣k ¼ Θkþ1∣kþ1

Pk∣k ¼ Pkþ1∣kþ1

(26)

5. Application to the estimation of induction machine speed and flux

5.1 Induction machine extended model

The continuous model of the induction machine extended to the electrical
rotational speed is represented by a non-linear system of state equations:

_Xe tð Þ ¼ f Xe tð Þ,U tð Þð Þ ¼ A � Xe tð Þ þ B �U tð Þ

Y tð Þ ¼ h Xe tð Þð Þ ¼ C � Xe tð Þ

8

<

:

(27)

In which:

Xe ¼ X Θ½ �t ¼ isα isβ ϕrα ϕrβ ωr

� �t
Y ¼ isα isβ½ �

tU ¼ usα usβ½ �
t (28)

With:
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(29)

5.2 Discretization of the continuous model

The previous model of the induction machine must be discretized for the imple-
mentation of the extended Kalman filter. If quasi-constant control voltages are
assumed over a sampling period Ts as in [5], the discrete augmented state model can
be approximated by:

Xekþ1
¼ f Xek ,Uk

	 


¼ Ad � Xek þ Bd �Uk

Yk ¼ h Xek

	 


¼ Cd � Xek

8

<

:

(30)

The matrices of this model are obtained by a limited development in Taylor
series of order one:

Ad ≈ eA�Ts ¼ I þ A � Ts;Bd ¼ B � Ts;Cd ¼ C� (31)

This leads to:
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Ad ¼

1� Ts � γ 0 Ts �
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(32)

5.3 Implementation of the extended Kalman filter to the induction machine
discrete system

The application of the extended Kalman filter to the discrete system of the
induction machine, taking into account the presence of state noise Wk and
measurement noise Vk. This leads to the following expressions:

Xekþ1
¼ f Xek ,Uk

	 


þWk ¼ Ad � Xek þ Bd � Uk þWk

Yk ¼ h Xek

	 


þ Vk ¼ Cd � Xek þ Vk

(

(33)

With:

Xekþ1
¼ Xk Θk½ �t; Yk ¼ isαk isβk

� �t
; Uk ¼ usαk usβk

� �t
; Wk ¼ Wxk WΘk

½ �t

(34)

Similarly, the linearization matrix Hk is written as follows:

Hk ¼
1 0 0 0 0

0 1 0 0 0

� �

(35)

In the determination of the initial covariance matrix P0∣0, it is generally limited
to the choice of elements on the diagonal. These elements are chosen in such a way
that they correspond to the uncertainty about estimates of initial state variables.

5.3.1 Choice of covariance matrices Q and R

It is via these matrices that the various measured, predicted and estimated states
will pass. Their goals are to minimise the errors associated with approximate model-
ling and the presence of noise on the measurements. This is the most difficult point of
applying the Kalman filter to observation. The matrix Q linked to the noises tainting
the state, allows adjusting the estimated quality of the modelling and discretization. A
strong value of Q gives a high value of the gain K stimulating the importance of the
modelling and the dynamics of the filter. A high value of Q can, however, create an
instability of the observation. The matrix R regulates the weight of the measure-
ments. A high value indicates a great uncertainty of the measurement. On the other
hand, a low value makes it possible to give a significant weight to the measurement.

5.3.2 The reference recursive recipe (RRR) method for the EKF

We can consider the choice of the Kalman filter calibration matrices Q and R, as
well as the initial values of the estimated state vector Xe0∣0 and the matrix P0∣0, as
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degrees of freedom of the Kalman filter. The following steps explain the recursive or
iterative RRR algorithm for the EKF [6]:

• Given the system model and the measurements, the first filter pass through the
data of EKF is carried out using guess values of Xe0∣0 , P0∣0, Θ, R and Q .

• The RTS smoother is used backwards to get smoothed state and covariance
estimates.

• If Xe0∣0 is unknown, then the smoothed state values can be used as the initial

state values.

• The estimated smoothed P0∣0 is scaled up by the number of time points N and
further all elements except the diagonal terms corresponding to the parameters
are set to zero. Due to the effect of statistical percolation effect, the estimated R
and Q will in general be full. But, only the diagonal terms in Q need to be used
in the basic state equations and not in the parameter states. Only the diagonal
terms in R need to be used in the measurement equations. These are
summarised as below. The quadrant on the upper left denotes the state, the
bottom right the parameter states, and the others the cross terms.

Xe0∣0 ¼ 0 0 0 0 0½ �t;P0∣0 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

6

6

6

6

6

6

6

6

4
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7

7

7

7

7

7

7

7

5

; (36)

Q ¼

q11 0 0 0 0

0 q22 0 0 0

0 0 q33 0 0

0 0 0 q44 0

0 0 0 0 q55
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;R ¼
r11 0

0 r22

� �

(37)

• Then, the filter is run again using the above updates of Xe0∣0 , P0∣0, Θ, Q and R

till statistical equilibrium is reached.

Figure 5 illustrates the state space mathematical model of the observer.

5.3.3 Simulation results

In this section, an extended Kalman filter is implemented in an induction motor
vector control scheme. The EKF is designed to observe the motor states: the d-q
stator phase current components ids, iqs, the d-q rotor flux components ϕdr, ϕqr and

the mechanical speed ωr. The control law and the observer are implemented in
MatLab/Simulink software. A load torque of +10 N �m is applied at t1=0:6s and
removed at t2=1:6s in order to show the system robustness against the external
perturbation. Table A1 lists the parameters of the machine used in simulation.

The torque reference T ∗
em is generated by the speed controller, while the stator

voltage references V ∗
ds and V ∗

qs are generated by the stator current controllers.
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The observed speed Ω̂r and rotor flux ϕ̂r are served for speed and flux regulators
[7, 8]. The coordinate transformation generates the abc components needed by the
PWM modulator.

The slip frequency is delivered by an integrator, this slip is the most important
parameter for the indirect vector schemes. it depends on the observed rotor flux
generated by the EKF observer.

Figures 6–19 illustrate a performance comparison between the two observers:
EKF in the left and ALO in the right. Figure 7 shows the speed response according
to the step speed reference of +100 rad=s. Both observers show good dynamic at
starting up and the speed regulation loop rejects the applied load disturbance
quickly. The two observers kept the same fast speed response since the same PI
speed controller is used for both speed loops, there is no difference in the transient
response. The system response time is very quick and does not exceed 0:2s, the
sufficient time to achieve the permanent regime.

Figure 8 shows the rotor flux response, it achieves the reference which is 1Wb
very quickly. Even the step speed reference starts at 0:2 s, the rotor flux response is
independent to the speed application. It must reach the reference very rapidly at the
starting up. Then, Figure 9 shows the torque responses with the load application. At

Figure 6.
Speed response.

Figure 5.
The observer state space mathematical model.
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Figure 8.
Electromagnetic torque response.

Figure 9.
Stator phase currents response.

Figure 7.
Rotor flux response.
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Figure 10.
ids current response.

Figure 11.
iqs current response.

Figure 12.
ϕdr flux response.
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Figure 13.
ϕqr flux response.

Figure 14.
Mechanical speed error.

Figure 15.
Rotor flux error.
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the beginning, the speed controller operates the system at the physical limit since
the step reference is the hardest for most control processes.

Until now, no apparent difference in the performance of the two observers,
Figures 11–19 will reveal this difference. Figures 11 and 12 illustrate, respectively,
the observed stator current components ids and iqs. We can notice clearly the

Figure 16.
ids component error.

Figure 17.
iqs component error.

Figure 18.
ϕdr component error.
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superiority of the EKF, no fluctuations seen around the reference. EKF uses a series
of measurements containing noise and other inaccuracies contrary to ALO that
employs only free noise measurements. Figures 13 and 14 illustrate, respectively,
the observed rotor flux components ϕdr and ϕqr. No fluctuations seen around the

reference for both observers, only a small static error of observation. Finally,
Figures 15–19 illustrate the static error of all the observed components: the machine
state parameters, the rotor flux and the mechanical speed.

All the quantities observed by the EKF are filtered and precise, the EKF is a very
good observer for the systems that present any kind of noise. It will exploit the noise
in order to estimate the quantity. The process of observation of the EKF is given in
two stages, prediction and filtering. The prediction stage is aimed to obtain the next
predicted states and predicted state-error covariance, while in the filtering stage,
the next estimated states is obtained as the sum of the next predicted states and a
correction term.

6. Conclusions

All the closed-loop observers are classified as deterministic observers, they can
be easily corrupted by measuring noise and require parameter adaptation algo-
rithms. The Kalman filter observer has high convergence rate and good disturbance
rejection, which can take into account the model uncertainties, random distur-
bances, computational inaccuracies and measurement errors. These properties
are the advantages of extended Kalman filters over other estimation methods.
For these reasons, it had wide application in sensorless control in spite of its
computational complexity. For non-linear problems Kalman filtering can
overcome this difficulty by using a linearized approximation, where, the stochastic
continuous time system must be expressed in the discrete form in order to fit with
the structure of the EKF. The process of observation of the EKF is given in two
stages, prediction and filtering. The prediction stage is aimed to obtain the next
predicted states and predicted state-error covariance, while in the filtering stage,
the next estimated states is obtained as the sum of the next predicted states and a
correction term.

However, the high degree of complexity of EKF structure and the high system
orders cause a higher computational requirement (the sampling time). Thus,

Figure 19.
ϕqr component error.
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additional challenges and problems are introduced, such as the reduction of
dynamic performance and the increase of harmonics. Nevertheless, the develop-
ment of new processors technology (DSPs and FPGA) solves this problem due to
the powerful calculations processing.

Recently, different works have been conducted to improve the effectiveness and
the performance of the sensorless EKF for IM drive control. A bi-input EKF esti-
mator, which deals with the estimation of the whole state of the machine together
with stator and rotor resistances is presented. Another multi-model EKFs are pro-
posed in order to improve EKF performance under different noise conditions. Then,
a Kalman filter estimator has been designed for DTC controlled induction motor
drives.
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Notations and symbols

isα, isβ stator current components in α� β reference frame
ϕrα, ϕrβ rotor flux components in α� β reference frame

usα, usβ stator voltage components in α� β reference frame
Rs, Rr stator and rotor resistances
Ls, Lr, Lm stator, rotor and mutual inductances
Tr rotor time constant
Tem electromagnetic torque
TL load torque
ωr electrical speed
Ωr mechanical speed
σ Blondel’s coefficient
p pole pair number
J inertia moment
f friction coefficient
A, B, C control, input and output matrices of the induction motor model

Abbreviations

EKF extended Kalman filter
ALO adaptive Luenberger observer
IM induction motor
PI proportional-integral
d-q direct-quadrature
MatLab matrix laboratory
DSP digital signal processor
FPGA field-programmable gate array
DTC direct torque control
AC alternating-current
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A. Appendix

A. Computer program

function [sys,x0]=EKF(t,x,u,flag)

global a1 a2 a3 a4 a5 b1;

global F C K R Q P Ts B n p;

if flag==0

% Machine parameters————————————————————————

Rs=2.2;Rr=2.68;M=0.217;Ls=0.229;Lr=0.229;p=2;

% Initiating the state error covariance matrix———————————————

P=eye(5);

% State noise covariance matrix————————————————————

Q=diag([1e-6 1e-6 1e-6 1e-6 1e6]);

% Measure noise covariance matrix———————————————————

R=diag([1e6 1e6]);

% Sampling period

Ts=1e-5;

% Defining A and B matrices——————————————————————

Tr=Lr/Rr;

Sigma=1-M^2/(Ls*Lr);

a1=-(Rs/(Sigma*Ls)+(1-Sigma)/(Sigma*Tr));

a2=M/(Sigma*Ls*Lr*Tr);

a3=M/(Sigma*Ls*Lr);

a4=M/Tr;

a5=-1/Tr;

b1=1/(Sigma*Ls);

% Input Matrix—————————————————————————————————

B=[b1 0;0 b1;0 0;0 0;0 0];

Parameter a Rated value

Power 3 kW

Voltage 380 V

Frequency 50 Hz

Pair pole 2

Rated speed 1440 rpm

Stator resistance 2.20 Ω

Rotor resistance 2.68 Ω

Stator inductance 0.229 H

Rotor inductance 0.229 H

Mutual inductance 0.217 H

Moment of inertia 0.047 kg:m2

Viscous friction coefficient 0.004 N:s=rad

aUsed induction motor rated parameters.

Table A1.
The parameters of the used induction motor in simulation.
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% Measure Matrix——————————————————————————

C=[1 0 0 0 0;0 1 0 0 0];

% Loop ———————————————————————————————

n=0;

x0=[0 0 0 0 0];

sys=[0,5,5,4,0,0];

elseif flag==2

n=n+1;

U=[u(1);u(2)];

Y=[u(3);u(4)];

F=eye(5)+Ts*A;

G=Ts*B;

% State prediction——————————————————————————

x_1=[F(1:4,1:4)*x(1:4);x(5)]+G*U;

% Covariance prediction———————————————————————

P_1=F*P*F'+Q;

% Kalman gain matrix—————————————————————————

K=P_1*C0/(C*P_1*C0+R);

% State estimation——————————————————————————

x=x_1+K*(Y-C*x_1);

% State error covariance estimation———————————————————

P=P_1-K*C*P_1;

sys=x;

elseif flag==3

sys=x;

elseif flag==9

sys=[];

end
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