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Chapter

Derived Tensor Products
and Their Applications
Francisco Bulnes

Abstract

In this research we studied the tensor product on derived categories of Étale
sheaves with transfers considering as fundamental, the tensor product of categories
X⊗Y ¼ X � Y, on the category Cork, (finite correspondences category) by under-
standing it to be the product of the underlying schemes on k. Although, to this is
required to build a total tensor product on the category PST(k), where this
construction will be useful to obtain generalizations on derived categories using
pre-sheaves and contravariant and covariant functors on additive categories to
define the exactness of infinite sequences and resolution of spectral sequences.
Some concrete applications are given through a result on field equations
solution.

Keywords: algebraic variety, additive pre-sheaves, derived categories, derived
tensor products, finite correspondences category, schemes, singularities, varieties
2010 Mathematics Subject classification: 13D09, 18D20, 13D15

1. Introduction

This study is focused on the derived tensor product whose functors have images
as cohomology groups that are representations of integrals of sheaves represented
for its pre-sheaves in an order modulo k. This study is remounted to the K-theory on
the sheaves cohomologies constructed through pre-sheaves defined by the tensor
product on commutative rings. The intention of this study is to establish a method-
ology through commutative rings and their construction of a total tensor product
⊗ L, 1on the category PST(k), considering extensions of the tensor products ⊗ R Að Þ,
to obtain resolution in the projective sense of infinite sequences of modules of Étale
sheaves. These sheaves are pre-sheaves of Abelian groups on the category of smooth
separated schemes restricted to scheme X.

Likewise, the immediate application of the derived tensor products will be the
determination of the tensor triangulated category DM‐

́ett k,=mð Þ, of Étale motives
to be equivalent to the derived category of discrete =m‐ modules over the Galois

1
, is a Lefschetz motive  1ð Þ, [1].

1



group G ¼ Gal ksep=k
� �

, which says on the equivalence of functors of tensor
triangulated categories2.

Then the mean result of derived tensor products will be in tensor triangulated
category DMeff,�

Nis k,Rð Þ, of effective motives and their subcategory of effective
geometric motives DMeff,�

gm k,Rð Þ: Likewise, the motive M(X), of a scheme X, is an

object of DMeff,�
Nis k,Rð Þ, and belongs to DMeff,�

gm k,Rð Þ, if X, is smooth. However,
this requires the use of cohomological properties of sheaves associated with
homotopy invariant pre-sheaves with transfers for Zariski topology, Nisnevich and
cdh topologies.

Finally, all this treatment goes in-walked to develop a motivic cohomology to
establish a resolution in the field theory incorporating singularities in the complex
Riemannian manifolds where singularities can be studied with deformation theory
through operads, motives, and deformation quantization.

2. Fundaments of derived tensor products

We consider the Abelian category Ab, which is conformed by all functor images
that are contravariant additive functors F : A ! Ab, on small category of  Að Þ:
Likewise,  Að Þ, is the category of all additive pre-sheaves on A. Likewise, we can
define this category as of points space:

 Að Þ ¼ F F :j A ! Abf g, (1)

Likewise, we have the Yoneda embedding as the mapping3:

h : A !  Að Þ, (2)

which has correspondence rule

X↦⊕Xi, (3)

or

hX ¼ ⊕ hXi
, (4)

We need a generalization of the before categories and functors, therefore we
give a ring R, originating the ring structure A Rð Þ, to be the Abelian category of the
additive functors

F : A ! R�mod, (5)

being R-mod, the category of the modules that originate the ring structure. Then
hX, is the functor

2 Theorem. If 1=m∈ k, the space L, ⊗ Lð Þ, is a tensor triangulated category and the functors

D� G,=mð Þ !
π ∗

L ! D W ‐1
A

� �

¼ DMeff,�
́Et k,=mð Þ,

until the category D� Sh ́et Cork,=mð Þð Þ:

3 The obtained image by the Yoneda embedding has the pre-sheaf A⊕
⊂ Að Þ:

2
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hX : A↦R⊗ HomA A, Xð Þ, (6)

which is representable of the R-mod.
Likewise, the following lemma introduces the representable pre-sheaves and

functors and their role to construct pre-sheaves ⊗ R Að Þ, that can be extended to pre-
sheaves ⊗ L, first using the projective objects of R Að Þ, and define the projective
resolution to infinite complexes sequence.

Lemma 1.1. Every representable pre-sheaf hX, is a projective object of R Að Þ,
every projective object of R Að Þ is a direct summand of a direct sum of representable
functors, and every F, in R Að Þ, has a projective resolution.

Proof. We consider an analogue to (6) in the functor context:

HomR Að Þ hX, Fð Þ ffi F Xð Þ, (7)

Then each object hX, is a projective object in R Að Þ: Likewise, each F∈R Að Þ, is a
quotient

F ¼ hX=A
⊕ , (8)

then there exist a surjection x, such that

x : ⊕ hX ! F, (9)

Then from the additive category until functional additive category modulus
A⊕

⊂ Að Þ, we have:

F ¼ ⊕
X∈A

⊕ x∈ F Xð Þ

x 6¼ 0

hX, (10)

which proves the lemma.
■

Now suppose thatA, with an additive symmetric monoidal structure ⊗ , is such
that

A ¼ Cork, (11)

This means that ⊗ , commutes with direct sum. Let Nα, α∈A, and M, be
R-modules; then is clear that:

M⊗ ⊕
α∈A

Nα

� �

ffi ⊕
α∈A

M⊗Nαð Þ, (12)

We extend ⊗ , on A⊕ , in the same way, and this extends to tensor product
of corresponding projectives. Then ⊗ , can be extended to a tensor product on
all of R Að Þ.

Likewise, if F,G∈R Að Þ, then we have a pre-sheaf tensor product in the
following way:

F⊗ RGð Þ Xð Þ ¼ F Xð Þ⊗ RG Xð Þ, (13)

However, this does not correspond to R Að Þ, since F⊗ R G, is not additive.
However, this could be additive when one component F, or G, is element of A⊕ .
But if we want to get a tensor product on R Að Þ, we need a more complicated or
specialized construction. For this, we consider X, Y∈A, then hX ⊗ hY, of their

3
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representable pre-sheaves should be represented by X⊗Y. As a first step, we can
extend ⊗ , to a tensor product

⊗ : A⊕ �A⊕ ! A⊕ , (14)

commuting with ⊕ . Thus if L1,L2 ∈Ch� A⊕
� �

, of the above co-chain com-
plexes as follows:

… ! Fn ! 0 ! … , (15)

the chain complex L1 ⊗L2, is defined as the total complex of the double com-
plex L ∗

1 ⊗L ∗
2 .

Then we can define a legitimate tensor product between two categories
F,G∈R Að Þ, as follows:

Definition 1.1. Let be F,G∈R Að Þ, choosing projective resolutions

P ∗ ! F, Q ∗ ! G, (16)

we define F⊗ L G, 4to be P⊗Q, which means that the tensor product is total
having that Tot P ∗ ⊗Q ∗ð Þ: Then the tensor product to these pre-sheaves and the
Hom, pre-sheaves is defined as:

F⊗G ¼ H0 F⊗
LG

� �

, (17)

and

Hom F,Gð Þ : X↦HomR Að Þ F⊗ hX,Gð Þ, (18)

The relation (17) means the chain homotopy equivalent of the F⊗ L G, is well
defined up to chain homotopy equivalence, and analogous for Hom F,Gð Þ:

In particular, given that hX, and hY, are projective, we have

hX ⊗
LhY ¼ hX ⊗ hY ¼ hX⊗Y,

∀X,Y∈A⊕ :
(19)

Likewise, the ring R Að Þ, is an additive symmetric monoidal category.
We consider the following lemma.
Lemma 1.2. The functor Hom F, •ð Þ, is right adjoint to F⊗ •: In particular

Hom F, •ð Þ, is left exact and F⊗ •, is right exact.
Proof. Let be

F ¼ Hom hY,Gð Þ, (20)

Then5

HomR Að Þ hX, Fð Þ ¼ HomR Að Þ hX, Hom hY,Gð Þð Þ, (21)

We consider

Hom hY,Gð Þ ¼ HomR Að Þ hX ⊗ hY,Gð Þ, (22)

4
⊗ L, is a total tensor product.

5 Hom hY,Gð Þ : Y ! HomR Að Þ F⊗ hY, Gð Þ:

4
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Then in (20) we have:

HomR Að Þ hX, HomR Að Þ hX ⊗ hY,Gð Þ
� �

¼ G X⊗Yð Þ, (23)

But also,

G X⊗Yð Þ ¼ HomR Að Þ hX ⊗ hY, Gð Þ, (24)

where the lemma is proved. ■

We consider the following examples.
Example 1.1. We consider the category A, of free R-modules over a commu-

tative ring R Að Þ. This category is equivalent to the category of all R-modules
where pre-sheaf associated to M, is M⊗ R, and Hom, and ⊗ , are the familiar
HomR, and ⊗ R:

Here, for any two modules A,B∈R Að Þ, we have:

A⊗ RB : A⊗B ¼ B⊗A, (25)

Example 2.1. Let A, be the category of R-modules M, such that:

K⊗ RM ffi K⊗ R M=Mtorð Þ, (26)

where K, is a fraction field6 and Mtor, is the torsion submodule of M: Then
associated to M, is 1⊗ RM, which is pre-sheaf. Here Hom: and ⊗ , are HomR,
and ⊗ tor:

Example 3.1. Let R, be a simplicial commutative ring and R Að Þ ! A, be a
category cofibrant replacement. Here, the pre-sheaf associated to M, which is the
Kähler 1-differentials module, is M⊗ L

R Að Þ, and here Hom, and ⊗ , are HomR, and

⊗ L
R Að Þ. Here the category is of the cotangent complexes of R.
Proposition 1.1. If Fi, and Gi, are in R Að Þ, then there is a natural mapping

Hom F1,G1ð Þ⊗Hom F2,G2ð Þ ! Hom F1 ⊗G1,F2 ⊗G2ð Þ, (27)

compatible with the monoidal pairing

HomA U � A1, X1ð Þ⊗HomA U � A2, X2ð Þ ! HomA U � U � A1 � A2, X1 � X2ð Þ
! HomA U � A1 � A2, X1 � X2ð Þ,

(28)

Proof. We have Hom, as defined in (18):

Hom F1,G1ð Þ : X1 ! HomR Að Þ F1 ⊗ hX1 ,G1ð Þ, (29)

and

Hom F2,G2ð Þ : X2 ! HomR Að Þ F2 ⊗ hX2 ,G2ð Þ, (30)

If F1,G1, F2,G2 ∈R Að Þ:, then

6 The field of fractions of an integral domain is the smallest field in which this domain can be embedded.
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Hom F1,G1ð Þ⊗Hom F2,G2ð Þ ¼ HomR Að Þ F1 ⊗ hX1 ⊗F2 ⊗ hX2 ,G1 ⊗G2ð Þ

¼ HomR Að Þ F1 ⊗F2 ⊗ hX⊗Y,G1 ⊗G2ð Þ

¼ Hom F1 ⊗F2,G1 ⊗G2ð Þ, (31)

We consider the Universal mapping which is commutative:

Then (31) is compatible with the monoidal pairing. ■

If the (projective) objects hX, are flat, that is to say, hX ⊗ •, is an exact functor
then ⊗ , is called a balanced functor [2]. Here F⊗ L G, agrees with the usual left
derived functor L F⊗ •ð ÞG: But here we do not know when the hX, are flat. This is
true in Example 1.1. But it is not true in PST kð Þ ¼  Corkð Þ: Then we need to extend
⊗ L, to a total tensor product on the category Ch�R Að Þ, of bounded above co-
chain complexes (15). This would be the usual derived functor if ⊗ , were balanced
[2], and our construction is parallel. Likewise, if C, is a complex in Ch�R Að Þ, there
is a quasi-isomorphism Pffi! C, with P, a complex of projective objects. Any such
complex P, is called a projective resolution of C, and any other projective resolution
of C, is chain homotopic to P [3].

Likewise, if D, is any complex in Ch�R Að Þ, and

Q !
ffi

D, (32)

is a projective resolution, we define

C⊗
L D ¼ P⊗Q, (33)

Now, how do we understand the extensions of these tensor products in chain
homotopy equivalence?

Since P, and Q , are bounded above, each

P⊗Qð Þn ¼ ⊕
iþj¼n

Pi
⊗Q j, (34)

is a finite sum, and C⊗ L D, is bounded above. Then, since P, and Q , are
defined up to chain homotopy, the complex C⊗ L D, is independent (up to chain
homotopy equivalence) of the choice of P, and Q. Then there exists a mapping

C⊗
L D ! C⊗D, (35)

which extends the mapping

F⊗
L G ! F⊗G, (36)

of Definition 1.1.

6
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We consider the following lemma to obtain in the extension (36) a derived
triangulated category that will be useful in the context of derived tensor categories
whose pre-sheaves are Étale pre-sheaves.

The importance of a triangulated category together with the additional structure
as the given by pre-sheaves ⊗ L, lies in obtaining distinguished triangles of catego-
ries that generate the long exact sequences of homology that can be described
through of short exact sequences of Abelian categories. Likewise, the immediate
examples are the derived categories of Abelian category and the stable homotopy
category of spectra or more generally, the homotopy category of a stable
∞-category. In both cases is carried a structure of triangulated category.

3. Derived triangulated categories with structure by pre-sheaves ⊗ L,
and ⊗ tr

L,ét

We enounce the following proposition.
Proposition 3.1. The derived category D�R Að Þ, equipped with ⊗ L

‐ structure is
a tensor-triangulated category.

Proof. We consider a projective object X∈P, where P, is a projective category
defined as the points set

P ¼ X∈R Að Þ A is addative with ⊗ R � structurejf g, (37)

We consider the application Λ, defined by the mapping:

Λ : P ! K� Pð Þ, (38)

where the objects Λ Xð Þ, are those that are determined by

H0 Λ⊗
LQ

� �

¼ Hom hX, Hom Λ⊗ hY,Gð Þð Þ, (39)

or

Λ Xð Þ ¼ HomR Að Þ hX,Λð Þ∈D�R Að Þ, (40)

Then we have

D�R Að Þ ffi K� Pð Þ, (41)

via the chain homotopy. For other side

X ! Hom hX, Hom Λ⊗ hY,Gð Þð Þ, (42)

which is risked from ⊗ L� structure when ⊗ ffi ⊗ L, in P, which then is true
from the lemma 2.1. ■

Now, for bounded complexes of pre-sheaves we can give the following
definitions.

Definition 3.1. Let C, and D, be bounded complexes of pre-sheaves. There is a
canonical mapping:

C⊗ R D ! C⊗D, (43)

which was foresee in the Definition 1.1. By right exactness of ⊗ R, and ⊗ , given
in Lemma 1.1, it suffices to construct a natural mapping of pre-sheaves

7
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η : hX ⊗ RhY ! hX⊗Y, (44)

∀X,Y∈A⊕ :

For U, in A, ηU, is the monoidal product in A, followed by the diagonal
mapping of triangle:

η : U ! U⊗U, (45)

that is to say,

hX Uð Þ⊗ RhY Uð Þ ! HomA U, Xð Þ⊗ RHomA U, Yð Þ, (46)

satisfies the triangle7:

HomA U, Xð Þ⊗ RHomA U, Yð Þ !
⊗

HomA U⊗U, X⊗Yð Þ

Δ↘ ↓Δ

HomA U, X⊗Yð Þ

(47)

where

HomA U, X⊗Yð Þ ¼ hX⊗Y Uð Þ, (48)

With all these dispositions and generalities, nowwe can specialize to the case when8

A ¼ Cork, (49)

and ⊗ , is the tensor product

X⊗Y ¼ X� Y0, (50)

Then we have the Yoneda embedding:

PST kð Þ⊂Cork
⊕
⊂Cork, (51)

We denote as ⊗ tr, for the tensor product on PST kð Þ ¼  Corkð Þ, or

PST k,Rð Þ ¼ R Corkð Þ, (52)

and ⊗ tr
L, for ⊗ L. Then there is a natural mapping

C⊗
tr
L D ! C⊗

trD, (53)

Here ⊗ tr
L, is the tensor product induced to  Corkð Þ: But, before we will keep

using the product ⊗ tr, which we can define as:

X⊗Y ¼ X� Y:

Rtr Xð Þ⊗ tr Rtr Yð Þ ¼ Rtr X,Yð Þ, (54)

being hX ¼ Rtr Xð Þ, ∀hX ∈Hom, ∀X∈A⊕ :

7
ηU∘Δ ¼ Δ

0
.

8 Def. If X, Y∈Cork, their tensor product X⊗Y, is defined to be the product underlying schemes over k,

X⊗Y ¼ X� Y:

8
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The above can be generalized through the following lemma.
Lemma 3.1. The pre-sheaf tr X1, x1ð Þ∧⋯∧ Xn, xnð Þð Þ, is a direct summand of

tr X1 �⋯� Xnð Þ. In particular, it is projective object of PST. Likewise, for the
following sequence of pre-sheaves with transfers, the exactness is explicit9:

0 ! tr X1 �⋯� Xnð Þ ! ⊕
i
tr Xið Þ ! ⊕

i, j
tr Xi � X j

� �

! …

! ⊕
i, j
tr X1 � … � X j � … � X j � … � Xn

� �

! ⊕
i
tr X1 � … � X̂ j � … � Xn

� �

! tr X1 �⋯� Xnð Þ ! tr X1∧⋯∧Xnð Þ ! 0,

(55)

Then, it is sufficient to demonstrate that ⊗ tr
L,ét, preserve quasi-isomorphisms.

Definition 3.2. A pre-sheaf with transfers is a contravariant additive functor:

F ¼ Cork ! Ab, (56)

we write

PreSh Corkð Þ ! PST kð Þ ¼ PST, (57)

to describe the functor category on the field k, whose objects are pre-sheaves
with transfer and whose morphisms are natural transformations.

Likewise, analogously we can define to the tensor product ⊗ tr, their extension
to ⊗ tr

ét:
Likewise, we have the definition.
Definition 3.3. If F, andG, are pre-sheaves of R-modules with transfers, we write:

F⊗
tr Gð Þét ! F⊗

tr
étG, (58)

the Étale sheaf associated to F⊗ trG:
If C, and D, are bounded above complexes of pre-sheaves with transfers, we

shall write C⊗ tr
ét D, for C⊗ trDð Þét, and

C⊗
tr
L D

� �

ffi P⊗
tr
étQ, (59)

where P, and Q , are complexes of representable sheaves with transfers, P ffi C,
and Q ffi D: Then there is a natural mapping

C⊗
tr
L,ét D

� �

! C⊗
tr
étD, (60)

induced by

C⊗
tr
L, D

� �

! C⊗
trD, (61)

Lemma 3.2. If F, and F0, are Étale sheaves of R-modules with transfers, and F, is
locally constant, the mapping:

hX Uð Þ⊗ R hY Uð Þ ¼ HomA U, Xð Þ⊗HomA U, Yð Þ !
⊗

HomA U⊗U, X⊗Yð Þ

!
Δ

0

HomA U, X⊗Yð Þ ¼ hX⊗Y Uð Þ, (62)

9
tr Xð Þ ffi tr ⊕tr X, xð Þ, tr X1 � X2ð Þ ffi tr ⊕tr X1, x1ð Þ⊕tr X2, x2ð Þ⊕tr X1∧X2ð Þ:
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induces an isomorphism

F⊗ ́etF
0 !

ffi
F⊗

tr
étF

0, (63)

Remember that a pre-sheaf is defined as:
Definition 3.4. A pre-sheaf F, of Abelian groups on Sm=k, is an Étale sheaf if it

restricts to an Étale sheaf on each X, in Sm=k, , that is if:

i. The sequence

0 ! F Xð Þ !
diag

F Uð Þ !
þ, ‐ð Þ

F U�XUð Þ, (64)

is exact for every surjective Étale morphism of smooth schemes,

U ! X, (65)

ii. F X∪Yð Þ ¼ F Xð Þ⊕F Yð Þ, ∀X,Y, schemes.

We demonstrate Lemma 3.2.
Proof. We want the tensor product ⊗ tr

L,ét, which induces to tensor triangulated
structure on the derived category of Étale sheaves of R-modules with transfers10

defined in other expositions [4]. Considering Proposition 3.1, we have:

C⊗
tr
L,ét D

� �

! D⊗
tr
L,étC, (66)

Then, it is sufficient to demonstrate that ⊗ tr
L,ét, preserve quasi-isomorphisms.

The details can be found in [5].
Then the tensor product ⊗ tr

ét, as pre-sheaf to Étale sheaves can have a homology
space of zero dimension that vanishes in certain component right exact functor
Φ Fð Þ ¼ Rtr Yð Þ⊗ tr

étF, from the category PST k,Rð Þ, of pre-sheaves of R-modules
with transfers to the category of the Étale sheaves of R-modules and transfers. Then
every derived functor LnΦ, vanishes on H0 ~C

� �

, to certain complex of Étale.
Then, all right exact functors Rtr Yð Þ⊗ tr

étF, are acyclic. This is the machinery to
demonstrate the functor exactness and resolution in modules through of induce
from ⊗ tr

L,ét, a tensor-triangulated structure to a derived category more general that
D�R Að Þ:

Also we have:
Lemma 3.3. Fix Y, and set Φ ¼ Rtr Yð Þ⊗ tr

ét: If F, is a pre-sheaf of R-modules with
transfers such that Fét ¼ 0, then LnΦ Fð Þ ¼ 0, ∀n:

4. Some considerations to mathematical physics

Remember that in the derived geometry we work with structures that must
support R-modules with characterizations that should be most general to the case of
singularities, where it is necessary to use irregular connections, if it is the case, for
example in field theory in mathematical physics when studying the quantum field
equations on a complex Riemann manifold with singularities.

10 Definition. A pre-sheaf with transfers is a contravariant additive functor from the category Cork, to

the category of abelian groups Ab.

10
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Through the characterization of connections for derived tensor products, we
search precisely generalize the connections through pre-sheaves with certain special
properties, as can be the Étale sheaves.

Remember we want to generalize the field theory on spaces that admit
decomposing into components that can be manageable in the complex manifolds
whose complex varieties can be part of those components called motives, creating a
decomposition in the derived category of its spectrum considering the functor Spec,
and where solutions of the field equations are defined in a hypercohomology.11

Likewise, this goes focused to obtain a good integrals theory (solutions) in the
hypercohomology context considering the knowledge of spectral theory of the cycle
sequences in motivic theory that searches the solution of the field equations even
with singularities of the complex Riemann manifold.

We can demonstrate that ⊗ tr
L,ét, induces a tensor-triangulated structure to a

derived category more general than D�R Að Þ, as for example, DMeff
ét

,�
k,=mð Þ,

which is our objective. In this case, we want geometrical motives, where this last
category DMeff

ét

,�
k,=mð Þ, can be identified for the derived category DM�

gm k,Rð Þ.
We consider and fix Y, and the right exact functor Φ Fð Þ ¼ Rtr Yð Þ⊗ tr

étF, from the
category PST k,Rð Þ, of pre-sheaves of R-modules with transfers to the category of
the Étale sheaves of R-modules and transfers. Likewise, their left functors LPΦ Fð Þ,
are the homology sheaves of the total left derived functor Φ Fð Þ ¼ Rtr Yð Þ⊗ tr

L,étF:

Considering a chain complex C, the hypercohomology spectral sequence is:

E2
p,q ¼ LpΦ HqC

� �

, (67)

then

LpþqΦ Cð Þ ¼ 0, (68)

Then the corresponding infinite sequence is exact.
We consider A, and B∈A, where A, is a category as has been defined before.
We have the following proposition.

Proposition 4.1.There is equivalence between categories Ab CRingA==B
� �

ffi ModB:

Then a hypercohomology as given to dda ¼ 0, can be obtained through double
functor work A ! B ! B, through an inclusion of a category ModB, in CRingA==B:
Then is had the result.

Theorem 4.1. The left adjoint to the inclusion functor ModB, CRingA==B: is
defined by X↦ΩX=A ⊗ XB: In particular, the image of A ! B ! B, under this
functor is B↦ΩX=A:

The derived tensor product is a regular tensor product.
Theorem 4.2. The character for an adjoint lifts for a homotopically meaningful

adjunction complies:

Ch Bð Þ
≥B $ sCRingA==B, (69)

11 Definition. A hyperhomology or hypercohomology of a complex of objects of an abelian category is

an extension of the usual homology of an object to complexes. The mechanism to give a

hypercohomology is suppose that A, is an abelian category with enough injectives and Φ, a left exact

functor to another abelian category B. If C, is a complex of objects of A, bounded on the left, the

hypercohomology Hi Cð Þ, of C, (for an integer i) is calculated as follows: take a quasi-isomorphism ψ :

C ! I, where I, is a complex of injective elements of A. The hypercohomology Hi Cð Þ, of C, is then the

cohomology Hi
Φ Ið Þð Þ, of the complex Φ Ið Þ:
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Meaning that, it is an adjunction of categories, which induces an adjunction to
level of homotopy categories.

We define the cotangent complex required in derived geometry and QFT.
Definition 4.1. The cotangent complex LA=B, is the image of functor A ! B !

B, under the left functor of the Kahler differentials module M⊗ L
R Að Þ, . Likewise, if

P• ! B, be a free resolution then

LA=B ¼ ΩP•=A ⊗ P•
B, (70)

The cotangent complex as defined in (69) lives in the derived category ModB:
We observe that choosing the particular resolution of B, then ΩP•=A, is a co-fibrant
object in the derived category ModP•

, which no exist distinction between the
derived tensor product and the usual tensor product. Then to any representation
automorphic of G Að Þ, the G Fð Þ=G Að Þ, can be decomposed as the tensor product
⊗ n

i¼1πI: This last fall in the geometrical Langlands ramifications.
Example 4.1. (66) in the context of solution of field equations as dda ¼ 0, has

solution in the hypercohomology of a spectral sequence of D�R Að Þ, (established on
the infinite sequence … ! Fn ! 0 ! … : [6]) when its functors whose image ΩB=A,
have as its cotangent complex the image under of the functor LA=B, which is the
functor image A ! B ! B, under the left derived functor of Kahler differentials.

To demonstrate this, it is necessary to define an equivalence between derived
categories in the level of derived categories D LBun,D

� �

, and D LLoc,O
� �

, where
geometrical motives can be risked with the corresponding moduli stack to
holomorphic bundles. The integrals are those whose functors image will be in
SpecHSymT OPLG

Dð Þð Þ, which is the variety of opers on the formal disk D, or
neighborhood of all points in a surface Σ, in a complex Riemannian manifold [6].

5. Applications

As was shown, the geometrical motives required in our research are a result of
embedding the derived category DM�

gm k,Rð Þ, (geometrical motives category) in the

DMeff
ét

,�
k,=mð Þ, considering the category of smooth schemes on the field k.

We consider the following functors. For each F∈D� ShNis Cor kð Þð Þ
� �

, there is

LA1
F∈Deff

� kð Þ, the resulting functor is:

LA1
: D� ShNis Cor kð Þð Þ

� �

! Deff
� kð Þ, (71)

which is exact and left-adjoint to the inclusion

Deff
� kð Þ ! D� ShNis Cor kð Þð Þ

� �

, (72)

Also the functor (70) descends to an equivalence of triangulated categories. This
is very useful to make Deff

� kð Þ, into a tensor category as follows. We consider the
Nisnevich sheaf tr kð Þ, with transfer tr : Y ! c Y,Xð Þ: We define

tr kð Þ⊗tr kð Þ≔tr X�kYð Þ, (73)

Then it can be demonstrated that the operation realized in (70) can be extended

to give D� ShNis Cor kð Þð Þ
� �

, with the structure of a triangulated tensor category.

12
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Then the functor LA1 , induces a tensor operation on D�
A1 ShNis Cor kð Þð Þ
� �

, making

that D�
A1 ShNis Cor kð Þð Þ
� �

also a triangulated tensor category. Likewise, explicitly in

DMeff
� kð Þ, this gives us the functor

m : Smk ! DMeff
� kð Þ, (74)

defined by

m Xð Þ≔CSus Ztr Xð Þð Þ, (75)

where we have the formula

m X�kYð Þ ¼ m Xð Þ⊗m Yð Þ, (76)

If we consider the embedding theorem, then we can establish the following
triangulated scheme

Smk ! DMeff
gm kð Þ

m↘ ↕ Id
DMeff

gm kð Þ

(77)

which has implications in the geometrical motives applied to bundle of geomet-
rical stacks in mathematical physics.

Theorem 5.1 (F. Bulnes). Suppose that M, is a complex Riemannian manifold
with singularities. Let X, and Y, be smooth projective varieties in M 12. We know
that solutions of the field equations dda ¼ 0, are given in a category Spec Smkð Þ,
(see Example 4). Context Solutions of the quantum field equations for dda ¼ 0, are
defined in hyper-cohomology on ‐ coefficients from the category Smk, defined on
a numerical field k, considering the derived tensor product ⊗ tr

ét, of pre-sheaves.
Then the following triangulated tensor category scheme is true and commutative:

DQFT

i↙ ↘ F

MDgm ð Þ $ MD OYð Þ

(78)

The category DMeff
gm k,Rð Þ, has a tensor structure and the tensor product of its

motives is as defined in (75) m Xð Þ⊗m Yð Þ ¼ m X� Yð Þ.
Triangulated category of geometrical motives DMgm k,Rð Þ, or written simply as

DMgm kð Þ, is defined formally inverting the functor of the Tate objects13 (are objects
of a motivic category called Tannakian category)  1ð Þ, to be image of the complex

12 Singular projective varieties useful in quantization process of the complex Riemannian manifold. The

quantization condition compact quantizable Käehler manifolds can be embedded into projective space.
13 Let MT ð Þ, denote the category of mixed Tate motives unramified over . It is a Tannakian category

with Galois group GalMT:

The inverting of the objects �⊗: 1ð Þ:

Remember that a scheme is a mathematical structure that enlarges the concept of algebraic variety in

several forms, such as taking account of multiplicities. The schemes can to be of a same algebraic variety

different and allowing “varieties” defined over any commutative ring. In many cases, the family of all

varieties of a type can be viewed as a variety or scheme, known as a moduli space.
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ℙ
1

� 	

! Spec kð Þ½ �, where the motive in degree p ¼ 2, 3, will be m pð Þ ¼ m⊗ 1ð Þ⊗ p ,
or to any motive m∈DMeff

gm kð Þ,∀p∈ℕ:

Likewise, the important fact is that the canonical functor DMeff
gm kð Þ, !

DMgm kð Þ, is full embedding [7]. Therefore we work in the category DMgm kð Þ.
Likewise, for X, and Y, smooth projective varieties and for any integer i, there

exists an isomorphism:

HomDMeff
gm kð Þ m Xð Þ,m Yð Þ ið Þ 2i½ �ð Þ ffi Amþi X� Yð Þ, m ¼ dimY, (79)

We demonstrate the Theorem 5.1.
Proof. ∀ X∈ Smk, the category Smk, extends to a pseudo-tensor equivalence of

cohomological categories over motives on k, that is to say, MM kð Þ, is the image of
functors

DMeff kð Þ ! DMgm kð Þ, (80)

which is an equivalence of the underlying triangulated tensor categories.
On the other hand, the category DQFT can be defined for the motives in a

hypercohomology from the category Smk, defined as:

HomDMeff
gm kð Þ m Xð Þ, qð Þ p½ �ð Þ ffi H•

Nis X,, qð Þð Þ ¼ p,q XNis,, qð Þð Þ, (81)

which comes from the hypercohomology

H
p,q
L X,ð Þ ¼ p,q X,ð Þ, (82)

We observe that if a Zariski sheaf of ‐modules with transfers F, is such that
F ¼ HqC, for all C, a complex defined on  qð Þ‐modules (being a special case when
C ¼  qð Þ), where the cohomology groups of the isomorphism H

p
ét X,Fétð Þ ffi

H
p
Nis X,FNisð Þ, can be vanished for p>dim Yð Þ.
Then survives a hypercohomology q X,ð Þ: If we consider Spec Smkð Þ, we can

to have the quantum version of this hyper-cohomology with an additional work on
moduli stacks of the category ModB, in a study on equivalence between derived
categories in the level of derived categories D LBun,D

� �

, and D LLoc,O
� �

, where
geometrical motives can be risked with the corresponding moduli stack to
holomorphic bundles14.

For other way, with other detailed work of quasi-coherent sheaves [6] we can to
obtain the category MOO Yð Þ: The functors are constructed using the Mukai-Fourier
transforms. ■

14 We consider the functor F, defined as:

where K Frð Þ, the kernel space of the functor Fr, is the functor that induces the equivalence

ModT D X�YXð Þð Þffi⊥K Frð Þ, and the operator T ¼ Fr
∘F, acting on category D X�YXð Þ.

14
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