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1. Introduction 

Petri nets are an important formal paradigm for modeling and analysis of discrete event 
systems. The related areas of application of Petri nets include deadlock avoidance and 
prevention, supervisory control, forbidden state detection, different aspects of flexible 
manufacturing systems, and many others (Zhou & DiCesare, 1993; Holloway et al., 1997; 
Boel et al., 1995). Quite often, given a discrete-event system, the designer is interested in 
determining whether the system can transit from an initial state to another, target state as a 
result of some operations from a predefined set. In terms of Petri nets, the answer to this 
question is obtained as a solution of a reachability problem.  
The reachability problem in Petri nets is formulated as follows: for any  Petri net PN, with an 

initial marking  M0, and for some other marking  M,   determine whether the relation M ∈ 
R(PN, M0) is true, where  R(PN, M0)  is the reachability set of  PN  for its initial marking M0 

(Murata, 1989).  The decidability of the reachability problem has been proved for a number 
of restricted classes of Petri nets, and there are efficient algorithms for such classes as acyclic 
Petri nets,  marked graphs, and others (Kodama & Murata, 1988;  Caprotti et al., 1995; 
Kostin, 1997).  
It has been shown that the reachability problem is decidable for generalized Petri nets as 
well (Mayr, 1984). The fundamental contribution of the paper (Mayr, 1984)  is in proving 
that the reachability problem for generalized Petri nets  is decidable. However, being highly 
important theoretically,  the practical use of the algorithm described in that paper is limited.  
Actually, the algorithm creates a series of so called regular constrained refined graphs, each 
of which is a generalization of the basic coverability tree. As the author admits,  the first 
refined graph would enumerate the whole reachability set of the given Petri net.    
In practice, two different approaches are used most often to determine the reachability of a 
marking in Petri nets. The first approach is based on the creation and investigation of a 
complete or reduced reachability graph. The main drawback of this approach is a state 
explosion problem. A closely related technique is the use of stubborn sets. The main purpose of 
the stubborn sets technique is to choose, for each marking of the net, a set of transitions to 
fire that is large enough to preserve some desired information about the Petri net, but is as 
small as possible to get a significant reduction of the resulting reachability graph 
(Varpaaniemi, 1998). Unfortunately,  generation of minimal or reduced reachability graphs 
in finite state systems is known to be an NP-hard problem (Peled, 1993). If Petri net has no 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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specific properties like a symmetry or reversibility, the corresponding reduced reachbility 
graph will have almost the same size as that of the full reachability graph  (Schmidt, 2000). 
The second approach is based on methods of linear algebra. Given a pure Petri net (i.e. a  net 
without self-loops), with sets of  transitions  T  and  places  P, its structure is represented 
unambiguously  by the incidence matrix 

 D = [d(ti, pj)] = [dij],    i = 1, 2, ... , m = |T|,    j = 1, 2, ... , n = |P|,  (1) 

where   d(ti, pj) = Post(pj, ti) - Pre(pj, ti),  Pre and Post are the input and output functions of the 
Petri net, with  Pre(p, t) = v   if there is a directed arc from p to t with the weight v, and  
Post(p, t) = v if there is an arc from t to p with the weight v. Note that, in this matrix, rows 
correspond to transitions and columns correspond to places  (Murata, 1989). 
It is known that a necessary condition for reachability of  marking  M  from some other 
marking  M0  is the existence of a nonnegative integer solution of the matrix  equation 

 M = M0 + FD  (2) 

relative to  F, where F = [f1, f2, …, fm] is a nonnegative integer firing count vector.   Note that 
in this chapter, all vectors are considered as row vectors. In particular, markings of PN will 

be expressed as (1 × n)  vectors, so that we can write  

 ],...,,[ 00

2

0

1

0

nmmmM =     and     ],...,,[ 21 nmmmM = ,  (3) 

where  the  ith  entry in  vectors  M0  and  M denotes the number of tokens in place pi ∈ P. 
Equation (2), proposed in (Murata, 1977), is  called the fundamental equation of  Petri  net. It is 
of the paramount importance for the investigation of  the structural and behavioral 
properties of Petri nets with methods of linear algebra.  
With the use of linear algebra, rachability analysis is usually carried out in two stages. At the 
first stage, by solving the equation (2) or its related integer programming form, firing count 
vectors are obtained. At the second stage, the computed firing count vectors are used in an 
attempt to determine legal firing sequences that transform initial marking M0  into target 
marking   M. 
Unfortunately, the existence of a nonnegative integer solution of equation (2)  is  not a 
sufficient condition for  reachability of  marking M  from M0 (Murata, 1989).  That is, it is 
quite possible that, in a given Petri net, no legal firing sequences exist for the valid firing 
count vectors. In general, the equation (2) can have infinite number of nonnegative integer 
solutions. Some of these solutions can correspond to legal firing sequences, while others fail 
(Peterson, 1981). Thus, there is a challenging problem to select working firing count vectors. 
In (Kostin, 2003), with the use of linear algebra, a method was proposed to restrict the 
number of firing count vectors to be tried for the determination of legal firing sequences, 
without the loss of reachability information. The  method is applicable for reachability 
analysis of a particular class of place/transition Petri nets having no transition invariants, or 
T-invariants. Algebraically, T-invariants  of  a  Petri  net  with  incidence  matrix  D are 
nonnegative integer (1 × m)  vectors F  such that FD = 0 (Memmi & Roucairol, 1980).  
According to the scheme proposed in (Kostin, 2003), given a Petri net with an initial and a 
target markings, a so called complemented Petri net is created that consists of the given Petri 
net and an additional, complementary transition with some input and output places of the 
original Petri net, which are uniquely determined by the initial and target markings. Then 
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the reachability problem is reduced to  computation and investigation of T-invariants of the 
complemented Petri net. The main result of that paper is that legal firing sequences, if they 
exist,  can be found   using only those T-invariants of the complemented Petri net in which 
the complementary transition fires only once. It was shown that this set is finite. This 
chapter generalizes the approach described in (Kostin, 2003) for arbitrary place/transition 
nets, including Petri nets with T-invariants. The existence of T-invariants in the original Petri 
nets considerably complicates the reachability analysis. In contrast with the scheme in 
(Kostin, 2003), where the number of T-invariants of any complemented Petri net that are 
sufficient for performing the reachability analysis is proven to be finite, in the generalized 
scheme the set of T-invariants for investigation is theoretically infinite. Nevertheless, as will 
be shown in this chapter,  it is always possible to effectively limit this set without the loss of 
reachability information and then to use T-invariants from this finite set for  reachability 
analysis. 
This  chapter is an extended version  of the author’s article  published in Lecture Notes in 
Computer Science (Kostin, 2006). The use of the material of that article is done with  kind 
permission of Springer Science and Business Media. The rest of the chapter is organized as 
follows. In Section 2, notation and basic statements used in the chapter are given. Section 3 
explains how to compute so called minimal singular T-invariants of the complemented Petri 
net. In Section 4, a relation graph of T-invariants is introduced. Section 5 describes 
realization of T-invariants with borrowing of tokens. In Section 6, a scheme for linear 
combining of T-invarians is given.  Section 7 illustrates the scheme by two examples. The 
most important points in sections are put down as proven statements. Some of the proofs 
are just skeletons or, for simple statements, omitted altogether. 

2. Notation and basic statements 

We adopt  here the notation and basic statements from  (Kostin, 2003). It is  assumed 
without losing generality that Petri nets are pure, i.e. they have no self-loops. As was stated 
in the previous section, the structure of any pure  Petri net is unambiguously represented by 
the incidence matrix (1).  
Let  M0 be an initial marking  and M be some other marking of given Petri net PN.  If we are 
interested in reachability of  M  from  M0  then marking M  will  be  called  the  target 

marking. It is assumed, throughout the chapter, that  M0 ≠ M.  
If  marking M is reachable from marking M0  in a Petri net PN, then  there  exists at least one 

sequence of markings   μ  = M0 M1 ... Mr with Mr = M, and a  legal firing sequence   

riii ttt ...
21

=τ , with the two sequences related by the state equation 

,][1 DieMM mk

kk += −
    k = 1, 2, ... , r.  Here  e[ik]m   is an (1 × m) control vector,  in 

which m - 1 entries are zero and the ikth entry is one, indicating that a transition  
ki
t    fires at 

step k . Sequences  μ and τ can be combined in one mixed sequence of interrelated markings 
and firing transitions that is called a reachability path  from marking M0  to marking Mr:  

 
rttt

MMM riii ⎯→⎯⎯→⎯⎯→⎯ ...21 20
.  (4) 

Its determination is the main problem of reachability analysis. As was stated in Section 1, 
with linear algebra methods, this analysis is usually carried out in two stages. At the first 
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stage, it is important to limit the number of firing count vectors, without the loss of 
reachability information. In the proposed approach, this stage is done with the use of T-
invariants of so called complemented Petri net which is a simple extension of the original 
net .   
Definition 1. For any Petri net PN with incidence matrix D specified by (1), and initial and 
target markings M0 and M  represented  by vectors (3), there exists a unique complemented 

Petri  net PNc  that  has  the   same set of places P as  PN, the set of transitions Tc = T ∪ {tm+1}, 
and is described structurally by the incidence matrix  

 ,⎥
⎦

⎤
⎢
⎣

⎡
Δ

=
M

D
Dc   (5) 

where  tm+1  is an additional, complementary transition, and ΔM = M0 - M  = [Δm1, Δm2, …, 

Δmn], with iii mmm −=Δ 0
,  i = 1, 2, …, n  (Kostin, 2003). ♦ 

Using   the   right   side  of  equation (2)  with marking M instead of  M 0,  control vector e[m 
+ 1]m+1  instead of  F and incidence matrix Dc  instead of  D, one can obtain 

 M  + e[m + 1]m+1 Dc  =  M  + ΔM  = M0 . (6) 

That is, a single firing of the complementary transition in  marking M  of PNc results in 
marking M0.  
It is known that the reproducibility of a firing sequence in a Petri net indicates the existence 
of a T-invariant (Memmi & Roucairol, 1980). Thus the following statement holds. 
Statement 1. Given a Petri net PN with an initial marking M0, a necessary condition for 
reachability of some other marking M  is the existence of a T-invariant of the complemented 
Petri net PNc,  with  a single firing of the complementary transition.  
Denote by  Fc  =  [f1,  f2, …, fm,  fm+1]  a firing count vector of the complemented Petri net PNc. 
Now Statement 1 may be reformulated as follows: given a Petri net PN with the incidence 
matrix D and an initial marking M0, a necessary (but generally not sufficient) condition for 
some other marking  M   to be reachable from M0 is the existence of an  integer solution of 
the matrix equation  

 Fc Dc = 0  (7) 

relative to Fc, such that Fc  ≥  0  and  fm+1 = 1. Here Dc is the incidence matrix of PNc as 

defined by (5). ♦ 
In sequel, each T-invariant of the complemented Petri net PNc having the last entry fm+1 = 1 
will be called a singular complementary T-invariant.   
The importance of Statement 1 is that the reachability analysis  of the original Petri net  PN 
can be reduced to the computation and investigation of T-invariants of the complemented 
Petri net PNc.  One advantage of this reduction is the existence of efficient techniques for the 
calculation of T-invariants (Alaiwan, 1985;  Krukeberg & Jaxy, 1987; Silva & Colom, 1991; 
Takano et al., 2001).  Algorithms for the calculation of T-invariants are implemented in 
many Petri net software tools such as INA (Roch & Starke, 2001); GreatSPN (Chiola et al., 
1995), TimeNET (German et al., 1995), and QPN (Bause & Kemper, 1994),  to mention only a 
few.  
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It is known that, in any Petri net with T-invariants, there are  minimal-support T-invariants 
which can be used as generators of all T-invariants of the given net ( Memmi & Roucairol, 

1980; Murata, 1989).  Let  Φ = {F1, F2, …, Fs} be  the  set of minimal-support T-invariants of 

some Petri net consisting of m = |T| transitions,  where ,0],...,,[ 21 ≠
>= imiii fffF  and s 

is the number of minimal-support T-invariants. We use here, for a vector X, a denotation 

0
≠
>X    if X ≥ 0  and  xi  ≠ 0  for some ith entry of X . Each Fi ∈ Φ specifies  a  nonempty 

subset  of  transitions  ║Fi║ ⊆ T  such  that tj ∈ ║Fi║ if and only if  fij > 0,  with ║Fi║ ⊄ ║Fk║  

and ║Fk║ ⊄ ║Fi║ for every pair of distinct indices i, k = 1, 2, …, s. Here ║Fi║ represents the 
minimal support of T-invariant Fi . 
Statement 2. In any Petri net the number of minimal-support T-invariants is finite (Kostin, 
2003). 
Statement 3. For any Petri net PN, its complemented net PNc includes all T-invariants of PN 
(Kostin, 2003). 
Statement 4. For every reachability path from an initial marking M0 to a target marking M  
of a given Petri net PN, there exists a T-invariant  F = [f1, f2, …, fm, fm+1] of  the corresponding 
complemented Petri net PNc, with fm+1 = 1. That is, F is a singular complementary T-
invariant of PNc. 
Let  

 ...21 10 MMMM kttt
kiii =⎯→⎯⎯→⎯⎯→⎯  (8) 

be some reachability path from M0 to  M in given Petri net PN,  such  that   Mj ≠ M   and 

1+≠ mi tt
j

 for j = 1, 2, …, k-1. Using this path, create an expanded reachability path 

 
0110 121 ... MMMMM ktkttt

kikiii =⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ ++ .  (9) 

Since  Mk = M, marking Mk can be transformed, according to (6),   into marking M0 by a 

single firing of the complementary transition  11 +=
+ mi tt
k

. Consider now the firing count 

vector corresponding to the reachability path (9): 

 F = [f1,  f2, …, fm,  fm+1],  (10) 

where   fi   is   the   number  of  times  transition  ti   appears in the  sequence  
121

...
+kiii ttt ,  

with  fm+1 = 1.    Since, in the reachability path (9), initial marking M0 is   transformed  back  
into M0,  the corresponding  firing count vector (10) is a T-invariant. Further, since   the  last 
entry in this vector fm+1 = 1, the vector is a singular complementary T-invariant of the 
complemented Petri net PNc. ♦ 
Note that the reverse of Statement 4 is generally not true. That is, the existence of a singular 
complementary T-invariant does not guarantee that there exists a corresponding 
reachability path. 
Corollary 1.   For any Petri net, with given initial  and target markings M0  and  M 
respectively,  all  existing reachability  paths from M0 to M are the paths that can be created 
on the set of singular complementary T-invariants. This corollary is a generalization of the 
corresponding result for T-invariant-less Petri nets obtained in (Kostin, 2003). It means that, 
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to perform  reachability analysis of a Petri net,  it is sufficient to search for reachability paths  
only on the set of  singular complementary T-invariants. ♦  
The set implied by Corollary 1 is infinite in general and includes singular minimal-support 
complementary T-invariants and all linear combinations of minimal-support T-invariants 
that yield the last entry fm+1 = 1. As will be shown, it is sufficient to consider in this set, 
without losing reachability information, only a finite subset.  
Let  

 Φc = {F1, F2, …, Fw}  (11) 

be a set of all minimal-support  T-invariants of PNc, where 

 ,0],,...,,[ 1,21 ≠+ >= mjjmjjj ffffF   (12) 

with j = 1, 2, …, w. Notice that, according to the basic property of a T-invariant, each entry in 
vector Fj  may be only a  nonnegative integer (Memmi & Roucairol, 1980). 

Now, depending on the value of the last entry, the minimal-support T-invariants of  set Φc  
can be classified into the following three disjoint groups: 

 {Fj | fj,m+1 = 0,  j ∈ Iw},  (13) 

 {Fj | fj,m+1 = 1,  j ∈ Iw},  (14) 

 {Fj | fj,m+1 > 1,  j ∈ Iw}.  (15) 

where   Iw = {1, 2, …, w} is the indexing set of Φc. According to Statement 2, each of these  

groups is finite. Depending on the Petri net and its initial and target markings, some or even 

all these three groups can  be empty.  

Without the last, (m+1)th entry, T-invariants of group (13), by Statement 3, are minimal-

support T-invariants of the original Petri net PN. We will call members of group (13) non-

complementary minimal-support T-invariants of the complemented Petri net PNc. Group (14) 

consists of  singular complementary  T-invariants. Finally, members of group (15) are 

nonsingular complementary T-invariants in which the complementary transition fires more 

than once. Together, members of groups (14) and (15) are called minimal-support 

complementary T-invariants of PNc.  

3. Computing minimal singular T-invariants of a complemented Petri net 

By Corollary 1, the search for all reachability paths from initial marking M0 to target 

marking M in a given Petri net can be carried out only on singular T-invariants of the 

corresponding complemented Petri net.  These include, first of all, minimal-support T-

invariants of group (14). However, these are not the only singular T-invariants of the 

complemented Petri net. Indeed, linear combinations of minimal-support T-invariants of 

groups (13), (14), and (15) can yield additional singular T-invariants. The number of such 

combinations is infinite in general. In this section, we will show that there exists a finite set 

of  minimal singular T-invariants of the complemented Petri net. Then an approach to the 

computation of such a set will be described. In Section 6, it  will  be shown how the 

www.intechopen.com



 
Using Transition Invariants for Reachability Analysis of Petri Nets 

 

441 

computed minimal singular T-invariants can be combined with non-complementary T-

invariants of group (13) to produce new, non-minimal singular T-invariants.  

Consider a linearly-combined T-invariant  

 j

w

j jmm FkffffF ∑ =+ ==
1121 ],,...,,[   (16) 

with rational coefficients kj,  where  Fj  are minimal-support T-invariants of groups (13), (14) 
and (15), and w is the number of elements in the three groups.  In agreement with Corollary 
1, we are looking only for those combined T-invariants F  which yield  fm+1 = 1. Thus, the 
following constraint must hold for each linear combination F in (16):  

 .1
1 1,1 ==∑ = ++

w

j mjjm fkf   (17) 

With kj ≥ 0,  the product kjFj in (16) can be considered as a contribution of firings of 
transitions of  T-invariant Fj to firings of transitions of the combined T-invariant F. On the 
other hand, a negative coefficient kj in (16) may be interpreted as a reverse, or backward 
firing of transitions, corresponding to T-invariant Fj, and this is not legal in the normal 
semantics of Petri nets. Thus, for T-invariants of groups (14) and (15), taking into account 
(17), their  coefficients kj must be in the following range: 

 0 ≤ kj ≤ 1.  (18) 

That is, for  groups (14) and (15), in which fj,m+1 ≥ 1, to satisfy (17) the following inequality  
must hold:   

 1≤∑ jk .  (19) 

However, coefficients kj for T-invariants of group (13) in (16) may have arbitrary (non-
negative) values without affecting the constraint (17). As a particular case,  these T-

invariants can be combined in (16) with coefficients  kj ≤ 1.  The case when T-invariants of 
group (13) can be included into combination  (16) with arbitrary large coefficients is 
considered in Section 6. 
The linearly-combined T-invariants (16), with the constraints (17), (18) and (19), are called 
minimal singular T-invariants of the complemented Petri net. As a subset, they include all 
minimal-support T-invariants of group (14).  
Minimal singular T-invariants of the complemented Petri net can be computed in the 
following way. Rewrite  (16)  as a system of linear algebraic equations  

 Ψ KT = FT,  (20) 

where  Ψ    is  a  matrix  of  size  ((m + 1) × w)  whose columns are transposed minimal-
support T-invariants Fj  from groups (13), (14) and (15),   K = [k1, k2, …, kw],  and F is  vector 
(16),  with  fm+1 = 1.  
In the system (20), not only coefficient vector K, but also entries fi of F, for i = 1, 2, …, m, are 
not known. We will show, however, that the number of different integer-valued vectors F 
with  fm+1 = 1 is finite. Then we will explain how to compute the valid vectors in (20).  The 
word "valid" means here that, in addition to the requirement fm+1 = 1,  all   coefficients kj   in 
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(16) satisfy the constrains (18) and (19).  Taking into account (17) and (18), one can deduce 
that 

 ,...,,2,1;...,,2,1),(max0 miwjff ji
j

i ==≤≤   (21)  

where  entries fi  are  integer-valued components of vector F in (16). 
One can see now that the number of different integer-valued vectors F in the system (20) is 

 ]1)(max[
1

+=∏ = ji
j

m

i
fN .  (22) 

This number includes one vector F with all zero entries except the last one,  and  all   
minimal-support T-invariants of group (14). Among the remaining vectors F, there can be 
additional singular T-invariants. They can be computed in the following way. 

Assume that, in the system (20), K is a vector of unknowns. Then  Ψ can be considered as a 

coefficient matrix, so that the augmented matrix of the system (20) is  U  =  Ψ ¦ FT.  It is 
known that, by elementary row operations, each matrix can be transformed to an upper 
trapezoidal form (Goldberg, 1991). In particular, for the augmented matrix U the result of its 
transformation  U~ can be written as follows: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+1

3

2

1

~

...

...

...

*...**00

*...***0

*...****

m

m

y

y

y

y

y

U

ooooo

ooooo

oooooo

,  (23) 

where  the symbol  '*' stands for some value (this value is not zero if the symbol is the first in 

the row), the symbol   '°'  is a place holder, and    yi = yi( f1,  f2, …, fm,  fm+1)  is some linear 
function of its arguments, i = 1, 2, …, m+1.  Each row in U~ consists of w + 1 elements. 
For the system  (20) to be consistent, the following equation must hold for each ith row  of 
matrix U~ with all w leading elements equal to zero  (Goldberg, 1991): 

 yi (f1,  f2, …, fm,  fm+1) = 0.  (24) 

Collecting now all equations (24),  we  obtain a derived system of linear algebraic equations 

 

0),,...,,(

...................

0),,...,,(

0),,...,,(

121

121

121

2

1

=

=
=

+

+

+

mmj

mmj

mmj

ffffy

ffffy

ffffy

k

  (25) 

where k  ≤  m and   fm+1 = 1.  
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Integer solutions of this system relative to f1, f2, …, fm can be found using existing algorithms 
for integer systems of linear equations (Howell, 1971; Springer, 1986). With the  constraints 
(21), the system has a finite number of solutions or no solutions at all. Note that, with 

nonempty group (14), for all its members ],1,,...,,[ 21 jmjj fff   the system (25)  has 

solutions at least for the trivial linear combinations  

 ],1,,...,,[]1,,...,,[ 2121 jmjjm ffffffF ==   (26) 

since each  vector (26) is the solution of (20),  for which vector K has some entry  kj = 1, with 
all other coefficient entries equal to zero. 
To illustrate this method, consider a Petri net  of 6 transitions and 6 places having the 
incidence matrix 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−

−
−−

=

010000

111000

011100

000101

110110

000111

D
 

with the initial and target markings  M0 = [2, 0, 0, 0, 0, 0] and M = [0, 0, 0, 0, 0, 2],  

respectively.  The corresponding complemented Petri net has  two minimal-support  T-

invariants  F1 = [0, 0, 2, 2, 2, 0, 1] and F2 = [2, 2, 0, 0, 0, 2, 1]. Both are singular T-invariants 

(that is, they have fm+1 = f7 = 1). We will try to  determine whether there are some other 

minimal singular T-invariants. For this example, with w = 2, the augmented matrix of the 

system (20) and its upper trapezoidal form are  

    

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111

20

02

02

02

20

20

6

5

4

3

2

1

f

f

f

f

f

f

→

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+
−
−
−
−

200

00

00

00

00

20

111

31

61

54

43

21

1

ff

ff

ff

ff

ff

f

. 

Thus, the system (25) is 

2

0

0

0

0

31

61

54

43

21

=+
=−
=−
=−
=−

ff

ff

ff

ff

ff
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With the constraints   0 ≤ f1, f2, f3, f4, f5, f6 ≤ 2,  this system has the following three nonnegative 
integer solutions:  [0, 0, 2, 2, 2, 0, 1], [2, 2, 0, 0, 0, 2, 1] and [1, 1, 1, 1, 1, 1, 1]. Clearly, the fist 
two solutions are minimal-support T-invariants F1 and F2, and the third solution is a  
minimal singular T-invariant that is the linear combination F3 = 0.5F1 + 0.5F2.  Neither F1 nor  
F2 are realizable in given initial marking. However, their linearly  combined  T-invariant F3   
is realizable. One legal firing sequence is  t3 t1 t2 t4 t5 t6 t7.   

4. Relation graph of T-invariants 

In general, each singular T-invariant should be tested for the creation of a reachability path 
(or a legal firing sequence) not only alone, but also in different linear combinations with non-
complementary T-invariants (13), since these T-invariants can “help” the singular T-
invariant to become realizable in given initial marking M0 and to  eventually provide a 
reachability path from M0 to a target marking M. As will be shown in this section, in general 
not all  non-complementary T-invariants can affect  realization of the given singular T-
invariant.  
Definition 2.  Let F be a T-invariant of a Petri net, with the support  ║F║. Then 

 P(F) = {pj | ti ∈ ║F║, dij ≠ 0}  (27) 

is a set of places of this Petri net affected by F when it becomes realizable in some marking. 

Here, dij  is an element of the incidence matrix of the Petri net as specified by (1). ♦ 
Statement 5. Let F1 and F2 be some T-invariants of a Petri net, and let P1 and P2  be sets of 

places affected by  F1 and F2 respectively.  If  P1 ∩ P2 = ∅,  then T-invariants  F1  and  F2  have 
no direct effect on the realizability of each other. 
Assume  that, contrary to the statement, F1 can directly affect  the realizability of F2.  This is 
possible only if  F1, during its realization, will change the number of tokens in some places 

affected by F2. This can happen only if P1 ∩ P2 ≠ ∅. The contradiction proves the statement.♦ 

Even if P1 ∩ P2 = ∅,  T-invariants F1  and  F2 can  indirectly affect the realizability of each 
other through other T-invariants having common affected places with F1  and  F2. 

Corollary 2.  Let  
k

ncncnc FFF ,...,, 21
  be some non-complementary T-invariants of a 

complemented Petri net, with sets of places  
k

ncncnc PPP ,...,, 21
   affected by these T-

invariants, respectively. Let further Fc  be a singular complementary T-invariant of this Petri 

net, with the set of affected places Pc.  Denote by U
k

i

i

ncnc PP
1=

=  a set of places of this Petri 

net affected by  mentioned non-complementary T-invariants.  

If Pc ∩ Pnc = ∅, then realization of any linear combination of  T-invariants  
k

ncncnc FFF ,...,, 21
    

has no effect on realization of Fc. Therefore these T-invariants may be excluded from  

consideration in the reachability analysis with T-invariant Fc in  given Petri net.♦ 
To represent  formally the effects of different T-invariants on each other in a Petri net, it is 
instructive to introduce into consideration a relation graph of T-invariants. Nodes in this 
graph are T-invariants. Two nodes corresponding to T-invariants Fi and Fj are connected by 

a non-oriented edge if  P(Fi) ∩ P(Fj) ≠ ∅, and the corresponding T-invariants  Fi and Fj are 
called  directly connected T-invariants.  
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For a Petri net, such a graph generally consists of a number of connected components. A 
connected component may include complementary and non-complementary T-invariants, 
or only one type of T-invariants. We  say that two T-invariants Fi and Fj can affect 

realizability of each other  if they belong to the same connected component, even if  P(Fi) ∩ 

P(Fj) = ∅. On the other hand, if Fi and Fj belong to different connected components, they can 
not affect each other in no way, directly or indirectly. 
The algorithm for determining  all connected components of a graph is well known 
(Goodrich, 2002).  In our problem, the algorithm will determine a connected component 
consisting of nodes representing a given singular T-invariant and  non-complementary T-
invariants. For this purpose, the algorithm will use the incidence matrix of the original Petri 
net and the array of T-invariants. 

5. Realization of T-invariants with borrowing of tokens 

In this section, the meaning of the help provided by one T-invariant to another one to 
become realizable is explained. Let p be a place affected by two T-invariants Fi and Fj in a 
given Petri net. Assume that, in a given initial marking of the net, Fi is realizable, but Fj can 
become realizable if place p accumulates  rj tokens during realization of T-invariant Fi. 
Suppose further that, at some intermediate step during realization of Fi, ri tokens will be 
created in place p. If ri ≥ rj then, by temporary borrowing of rj tokens in place p, T-invariant  
Fj becomes realizable and, at the end of its realization,  will return the borrowed tokens to 
place p, so that  T-invariant Fi can complete its started realization. 
With ri < rj, T-invariant Fj cannot borrow the necessary number of tokens in place p. 
However, if T-invariant Fi, after creation of ri tokens in p at some step of its first realization, 
can start a new realization before the completion of the first one, then additional ri tokens 
will be created in place p, so that this place will now accumulate  2ri tokens. In general, if Fi 
can start z realizations before the completion of the previous ones, then place p will 
accumulate zri tokens. If, for some z,  zri ≥ rj then, after borrowing rj tokens in p, T-invariant 
Fj becomes realizable. After the completion of  its realization, all tokens borrowed by Fj will 
be returned to place p, and T-invariant Fi can complete all its started realizations.  
 

                                           
Fig. 1. Illustration of borrowing of tokens by a T-invariant. 

Borrowing of tokens by a T-invariant is illustrated  with a Petri net shown in Fig. 1, with arcs 
(p2, t3) and (t4, p2) having multiplicity 2.  This net has two minimal-support T-invariants F1 = 
[1, 1, 0, 0]  and F2 = [0, 0, 1, 1].  In the initial marking M0 = [2, 0, 1, 0],  F1 is realizable, but F2  

p1

2

2 

t1 

t2 

p2 p4

t4p3 t3
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becomes realizable only if it can borrow two tokens in place p2, affected by the both T-
invariants. These two tokens will be created here after T-invariant F1 starts two realizations 
by firing transition t1 two times. Afterwards, F2 becomes realizable by borrowing two tokens 
in p2. Then, after firing t3 and t4, the borrowed tokens reappear in p2, and F1 can complete its  
two started realizations. The corresponding sequence of transition firings for this example is 
t1t1t3t4t2t2.   
To  represent the relationship between connected T-invariants, when some non-realizable T-
invariants can become realizable in given initial marking of a Petri net by borrowing tokens 
in places affected by other T-invariants, we will introduce a two-dimensional borrowing 
matrix G. In this matrix, rows correspond to T-invariants and columns correspond to places 
of the given Petri net. Formally, for a group of connected T-invariants, 

 G = [gij], i = 1, 2, …, s;  j = 1, 2, …, n,  (28) 

where  s is the number of connected T-invariants in the group and n is the number of places 
in the net. The elements of matrix G are integers and have the following meaning. If gij > 0  
then, for its realization, T-invariant Fi needs to borrow gij tokens in place pj affected by some 
other T-invariant of the considered group. If gij < 0 then T-invariant Fi, at some intermediate 
step of its single realization, creates |gij| tokens in place pj.  Finally, gij = 0 means that Fi does 
not affect place pj.  
As an example, matrix G for minimal-support T-invariants of the Petri net shown in Fig. 1 is: 
 

 p1 p2 p3 p4 

F1 -1 -1 0 0 

F2 0 2 -1 -1 

One can see from this matrix that the number of tokens created in place p2 during a single 
realization of F1 is 1 and is not sufficient for F2 to borrow two tokens. In this example 
borrowing is possible if  T-invariant F1 starts two interleaved realizations. The maximal 
number of realizations that can be started by F1 depends on the initial marking of place p1. In 
particular, if this place initially contains  only one token, then F1 is still realizable, but it will 
never create, during its realizations, more than one token in p2.   
 For a  group of connected T-invariants of a complemented Petri net,  the borrowing matrix 
can be created with the use of the incidence matrix of the given original Petri net. Due to a 
relative simplicity of the underlying procedure and to space limitation, the details of this 
procedure are omitted. 

6. Combining a singular complementary T-invariant with 
 non-complementary T-invariants 

Denote by Fc  a singular T-invariant of some complemented Petri net. It can be a member of 
group (14) or a minimal T-invariant calculated as was described in Section 3. Clearly, if 
group (13) is not empty, then the following linear combination  

  
j

ncjc FkFF ∑+= ,  (29) 
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with coefficients kj ≥ 0,  is also a  singular T-invariant, if components of F are nonnegative 

integers. Here 
j

ncF  is a T-invariant of group (13). According to Corollary 2, it is sufficient to 

include in (29) only those T-invariants from (13) that belong to the same group of connected 
T-invariants together with  Fc. 
The expression (29) implies that the singular T-invariant Fc in general should be tested for 
the determination  of a reachability path  not only alone, but also in different linear 
combinations with non-complementary T-invariants (13), since these T-invariants can 
“help” the non-realizable   T-invariant Fc   to become realizable in  given initial marking M0 
and to eventually provide a reachability path from M0 to a target marking  M of the given 
Petri net.   
Without loosing generality, we assume that coefficients kj in (29) are nonnegative integers. 

Indeed, if a singular T-invariant Fc  is realizable with some non-integer values of coefficients 

kj in (29), then it will remain realizable when these coefficient values are replaced by the   

nearest integer values not less than kj.  The case when kj ≤ 1 was considered in Section 3. 

With integer coefficients kj > 1, the product 
j

ncjFk  in (29) corresponds to a multiple 

realization of T-invariant 
j

ncF . A multiple realization is  a series of kj sequential or 

interleaved single realizations. Interleaved realizations of a T-invariant, if they are possible, 

can have a different effect on place marking in comparison with sequential realizations. 

Consider, for example, a simple Petri net consisting of two transitions t1, t2 and one place p 

that is the output place for t1 and the input place for t2. This Petri net has a T-invariant F = 

[1, 1] realizable in any initial marking of p. In particular, with the zero initial marking, place 

p will never have more than one token if single realizations of F are strictly sequential as in 

t1t2t1t2t1t2. However, if single realizations of F are interleaved, place p can accumulate an 

arbitrary large number of tokens at some intermediate step.  

In general, the number of valid combinations (29) is infinite. This section describes how to 

limit the values of coefficients kj  in  (29) without the loss of reachability information using 

the concept of structural boundedness of Petri nets. 

It is known (Murata, 1989) that a Petri net is structurally bounded if and only if there exists a 

(1 × n) vector  Y = [y1, y2, …, yn] of positive integers, such that   

 D Y T ≤  0,  (30) 

where D is the (m × n) incidence matrix of the Petri net with m transitions and n places. 

A Petri net is said to be not structurally bounded if and only if there exists a (1 × m) vector of  

(nonnegative) integers  ,0],...,,[ 21 ≠
>= mxxxX   such that 

 
TTT MXD Δ=   (31) 

for some ,0
≠
>ΔM where m is the number of transitions in the Petri net, and ΔM  is a (1 × n) 

vector of marking increments as a result of firing of all transitions corresponding to vector 
X. 
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In a structurally unbounded Petri net, at least one place is structurally unbounded. A place 

pi  in  such  a   Petri  net is said to be structurally unbounded if and only if there exists a (1 × m) 

vector 0
≠
>X  of nonnegative integers, such that 

 
TTT MXD Δ=   (32) 

for some Δmi > 0 in  0),...,,...,,( 21 ≠
>ΔΔΔΔ=Δ ni mmmmM .  

The structural unboundedness can be tested separately for each place pi of the Petri net,  by 

setting  an appropriate integer Δmi > 0  and Δmj = 0 for all j ≠ i in (32) and then  trying to 

solve the system (32). The test may be done  also simultaneously for a few desired places or 

even for all places of the net.    

It is known that, according to Minkowski-Farkas' lemma (Kuhn & Tucker, 1956), one of the 

systems (30) or (31) has  solutions. For our problem, we do not need to know all solutions of 

(30) or (31). Rather, it is sufficient  to find only one, "minimal" solution of (30) or (31).   

The minimal solutions of (30) or (31) can be found as solutions of integer linear 

programming (ILP) problems. For the system (30), the corresponding ILP problem can be 

formulated as follows: 

 minimize    ,
1∑ =

=
n

i iya   (33) 

subject  to:  .,...,2,1,1,0 niyDY i

T =≥≤   

For the system (31), the corresponding ILP problem is: 

 minimize    ,
1∑ =

=
m

i ixb   (34) 

subject to:   .,...,2,1,0,1,0
1

mixxXD i

m

i i

TT =≥≥> ∑ =≠
  

The property of structural  boundedness can be considered  also for subnets of a Petri net. 

We are interested in this property only for the subnets corresponding to non-

complementary T-invariants 
j

ncF  in (29).  For a non-complementary T-invariant 
j

ncF , the 

related subnet consists of transitions of the support |||| j

ncF   and places )( j

ncFP  affected  

by 
j

ncF . The expressions (30) - (34) remain valid for the subnet corresponding to 
j

ncF   with 

the following restrictions: in the incidence matrix D rows are taken for transitions 

corresponding to nonzero entries in 
j

ncF , and columns are taken for places affected by 
j

ncF . 

Let us consider initially the case when the subnet corresponding to 
j

ncF  is not structurally 

bounded and describe how to determine coefficients kj for  non-complementary T-invariants 
j

ncF  in  the linear combination (29). If 
j

ncF  and cF  belong to different connected 
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components of the graph of relation of T-invariants then  j

ncF   should  be  ignored at all, by 

setting  kj = 0  in (29). 

If j

ncF
 and 

cF
 belong to the same connected component of the graph of relation of T-

invariants then the subnet corresponding to j

ncF
 will have common places with the subnets 

corresponding to 
cF

 or other non-complementary  T-invariants belonging to the same 

connected component. Thus, j

ncF
 can affect realizability of 

cF
, directly or indirectly, and 

therefore should be included in (29) with kj > 0.  

Suppose  for definiteness that  T-invariant j

ncF
 has the support   {t1, t2, …, tl},  l ≤ m, and the 

set of affected places 

 {p1, p2, …, pq},  q ≤ n,  (35)  

where m and n are the numbers of transitions and places in the original (non-
complemented) Petri net.  Assume  that Fc, to become realizable, needs to borrow ni > 0, i = 
1, 2, …, h,   tokens at least in places  

 {p1, p2, …, ph},    h ≤ q,  (36)  

that belong to the set (35) and in which j

ncF
 can create tokens during its realization. Then, to 

facilitate the realizability of 
cF

, j

ncF
 should be included in the linear combination (29) with 

a positive integer coefficient kj determined by applying the following steps. 
1. Try to solve an ILP problem: 

 minimize    ,
1∑ =

=
l

i ixb   (37)  

subject to:   ,0,1,
1

≥≥Δ≥ ∑ = i

l

i i

TTT xxMXD   

where ΔM = [Δm1, Δm2, .., Δmh, Δmh+1, …, Δmq] = [n1, n2, …., nh, 0, …, 0] is a vector of the 
desired numbers of tokens which are expected to be created in places (36) as a result of 

one or more realizations of 
j

ncF ,  l is the number of transitions in the subnet 

corresponding to 
j

ncF , and q is the number of places affected by 
j

ncF . In the matrix 

multiplication, only those rows and columns of D are used which correspond to the 

support  of 
j

ncF  and to places affected  by  
j

ncF . 

2. If, for the specified  vector ΔM, the problem (37) has a solution ],,...,,[ **

2

*

1

*

lxxxX =  

then components of 
*X  represent the total numbers of firings of respective transitions 

sufficient to accumulate the desired number of tokens in places of set (36) in a few  

realizations of 
j

ncF , and   ratio  ⎥
⎥

⎤
⎢
⎢

⎡
j

i

i

f

x*

 is the number of  realizations of  
j

ncF  to provide 

the necessary number of firings of transition ti,  i = 1, 2, …, l. In this case,  
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 )....,,2,1|max(
*

li
f

x
k

j

i

i
j =⎥

⎥

⎤
⎢
⎢

⎡
=   (38) 

3. If, on the other hand, the problem (37) has no feasible solution then it means that at 
least one of places in set (36) pi is structurally bounded and can not accumulate the 

desired number of tokens Δmi in multiple realizations of 
j

ncF . In this case, using (32), 

determine all structurally unbounded places in set (36). Since, as is assumed, the subnet 

for 
j

ncF  is not structurally bounded, there is at least one structurally unbounded place 

in this subnet. 
4. Solve the ILP problem (37) simultaneously for all structurally unbounded places found 

at the previous step, to obtain a solution vector .*X  That is, in solving (37), vector ΔM 

should have nonzero entries Δmi = ni only for structurally unbounded places. According 
to Minkowski-Farkas’ lemma, this solution always exists. Then coefficient kj is 
determined by the use of expression (38).  

In case, when the subnet for 
j

ncF  is found to be structurally bounded, then the number of 

tokens in each of its places is bounded. However, this bound generally depends on 
realizations of other, connected T-invariants and is not known in advance. For such a 
subnet, coefficient kj  can be evaluated with the use of the borrowing matrix (28) computed 

for Fc and all its connected non-complementary T-invariants, including 
j

ncF .   Let, in this 

matrix, c and j be indexes of rows corresponding to 
j

ncF  and Fc, respectively. Then it is 

sufficient to include 
j

ncF  in the linear combination (29) with coefficient kj computed with the 

use of the expression  

 ∑
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

|| ji

ci
j

g

g
k ,  (39) 

where gci and gji are entries in the borrowing matrix, and the sum is computed for all pairs 
gci > 0 and gji < 0.  Indeed, with this coefficient, the sufficient number of interleaved 

realizations of  
j

ncF  are allowed to accumulate the required numbers of tokens in places 

which are common for Fc and 
j

ncF  and in which T-invariant Fc can borrow them during its 

realization.   

However, the possibility of realizations of 
j

ncF  depends on  marking of places in its subnet. 

For example, in the Petri net of Fig. 1, T-invariant F2 can become realizable only with the 
help of T-invariant F1 for which the corresponding subnet is structurally bounded. The 
borrowing matrix for this example has only one pair of non-zero entries g12 = -1 (for F1)  and 
g22 = 2 (for F2). Thus, using (39), one can obtain k1 = 2. That is, two interleaved realizations of 
F1 are sufficient to create two tokens in place p2 to make F2 realizable. But this is possible 
only if place p1 holds initially at least two tokens. If this place holds one token, F1 is 
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sequentially realizable but it can never create two tokens in p2 to facilitate the realizability of 
F2.  
In general, coefficient kj calculated as was described  for the two cases can result in a larger 

number of realizations of T-invariant  
j

ncF   than is actually necessary. The  reason is that 

other T-invariants in (29) can also create tokens in places (36) and contribute to the 
realizability of Fc.  
After computing  coefficients kj in (29), an appropriate method  can be applied to find a 
reachability path (or a legal firing sequence) for the combined T-invariant F if such a path 
exists. The task here is the following. For a Petri net with given initial and target markings 
M0 and M and a combined T-invariant F, find a legal firing transition sequence.  To find a 
legal firing transition sequence, or reachabiity path as  defined in (4),  known  computational 
techniques  can be used (Kostin, 2003; Taoka et al., 2003; Watanabe, 2000;  Huang & Murata, 
1998).  

7. Examples 

This section illustrates the proposed reachability analysis scheme by two examples. The 
examples were tested in Windows XP OS with a prototype C program that implemented  
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Fig. 2. Petri net of Example 1 and its incidence matrix. 

almost all steps of the scheme, with the major exception of the sub-algorithm for solving an 
ILP problem. To solve this problem, the interactive system QS was used (Chang & Sullivan, 
1996).   For the first example, Fig. 2 shows a Petri net consisting of   m = 10 transitions and n 
= 9 places, with its incidence matrix (recall that rows correspond to transitions), and the 
initial and target markings M0 = [2, 0, 0, 0, 0, 0, 0, 0, 0] and M = [2, 0, 0, 0, 0, 0, 0, 0, 1], 

respectively.  To  get   the   complemented  Petri   net,  the algorithm appends a row ΔM = 
M0 – M = [0, 0, 0, 0, 0, 0, 0, 0, -1] to the original incidence matrix. Minimal-support T-
invariants of the corresponding complemented Petri net are two non-complementary T-
invariants F1 = [0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] and F2 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], and one 
singular complementary T-invariant F3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], with the sets of affected 
places {p1, p3, p4, p5, p6}, {p1, p2, p3, p5, p6}  and {p6, p7, p8, p9}, respectively. Thus, all these T-
invariants are connected and should be considered together.  The borrowing matrix G for 
this example contains the following data: 

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

F1 -1 0 -1 -1 2 -1 0 0 0 

F2 -1 -1 1 0 -1 -1 0 0 0 

F3 0 0 0 0 0 2 -1 -1 -1 

Thus, each of these T-invariants can become realizable if it borrows tokens in some of  
common affected places.  Specifically, F1 needs to borrow two tokens in place p5, F2  needs to 
borrow one token in place p3, and F3 borrows two tokens in place p6.  Note that a token 
borrowed by F2 in place p3 can be produced  by F1 in a single realization.  In its turn, F2 is 
capable, in a single realization, to lend  one token to F1, instead of necessary two tokens. 
Therefore, F1 and F2 can help each other to become realizable. Together, they are capable to 
produce 2 tokens in place p6 to be borrowed by F3. 
The desired number of  tokens in p5 can be accumulated if the subnet corresponding to F2 is 
not structurally bounded. To check this,  the ILP problem (33) for  F2 is solved, in the 
following form: 
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minimize a = y1 + y2 + y3 + y5 + y6, 

subject to: -y1 + y2 – y3 ≤ 0, -y2 + y3 + y5  + y6 ≤ 0, -y5 ≤ 0, y1 – y6 ≤ 0,  y1, y2, y3, y5, y6 ≥ 1. 

This ILP problem has no feasible solution. Thus, the subnet corresponding to F2 is not 
structurally bounded, so that at least one of its affected places  is not structurally bounded.  

We are interested in accumulating two tokens in p5, so that ΔM = [0, 0, 0, 2, 0]. Therefore, 
now the ILP problem (37) should be attempted, in the following form: 

minimize b = x1 + x2 + x6 + x7, 

subject to: -x1 + x7 ≥  0, x1 – x2   ≥  0, -x1 + x2  ≥  0, x2 – x6    ≥  2, x2 – x7    ≥  0,  

x1 + x2 + x6+ x7 ≥ 1. 

This ILP problem has the optimal (minimal) solution  
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Now, using (38), one can find that 
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Since T-invariant F2 borrows only one token in place p3 and this token can be created during 
a single realization of F1, it is sufficient to have k1 = 1. Thus, the combined T-invariant (29), 
with Fc = F3,  is F = F1 + 2F2 + F3 = [2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1]. For this T-invariant, a legal 
firing sequence can be found consisting of  15 firing transitions t3t1t2t7t1t2t4t5t6t6t8t9t10t7t7 and 
transforming M0 into M. This is the shortest sequence although  there exist other sequences 
of the same length. Using the computed sequence, the corresponding reachability path (4) 
from M0 to M can be easily found. 
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Fig. 3. Petri net of Example 2 and its incidence matrix. 

Fig. 3 shows the second example of a Petri net, consisting of m = 13 transitions and n = 9 
places. With the initial and target markings M0 = [1, 0, 0, 0, 0, 0, 0, 0, 0] and M = [1, 0, 0, 0, 0, 
0, 0, 0, 1],  there are  seven minimal-support  T-invariants in the corresponding 
complemented Petri net: six non-complementary T-invariants  F1 = [1, 1, 1, 2, 2, 3, 0, 0, 0, 0, 0, 
0, 0, 0],  F2 = [2, 2, 2, 1, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0], F3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0], F4 = [0, 
0, 0, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0],  F5 = [0, 0, 0, 3, 3, 6, 0, 1, 1, 0, 2, 0, 0, 0], F6 = [2, 2, 2, 1, 1, 0, 0, 1, 
1, 2, 0, 0, 0, 0], and one singular complementary T-invariant F7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
1, 1], with the sets of affected places {p1, p2, p3, p4, p5}, {p1, p2, p3, p4, p5},   {p3, p6, p7}, {p3, p6, p7}, 
{p3, p4, p5, p6, p7}, {p1, p2, p3, p4, p5, p6, p7}, and {p5, p7, p8, p9},  respectively.  
Thus, all these T-invariants are connected. Linear combinations of F7 with non-
complementary T-invariants, according to Section 3, yield four additional minimal singular 
T-invariants F8 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1], F9 = [2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1], F10 
= [0, 0, 0, 2, 2, 4, 1, 1, 1, 0, 2, 1, 1, 1] and F11 = [0, 0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 1, 1].  
For reachability analysis, consider the  singular complementary T-invariant F7. For F7 and its 
connected non-complementary T-invariants, the borrowing matrix G contains the following 
data: 

 p1 p2 p3 p4 p5 p6 p7 p8 p9 

F1 -1 -1 -2 -1 -2   0  0  0  0 

F2 -1 -1 -2 -1 -2   0  0  0  0 

F3  0  0  3  0  0  -1 -2  0  0 

F4  0  0  6  0  0  -1 -2  0  0 

F5  0  0  6 -1 -2  -1 -2  0  0 

F6 -1 -1 -2 -1 -2  -1 -2  0  0 

F7  0  0  0  0  1   0  2 -1 -1 
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Thus, T-invariant F7 can become realizable if only it borrows tokens. Specifically, F7 needs to 
borrow one token in place p5 and two tokens in place p7. The  necessary number of tokens in 
the both places can be produced by realizable T-invariant F6 alone. Indeed, F6 creates, in a 
single realization,  two tokens in place p5 and two tokens in place p7. However, at this point 
we cannot say that there exist a state of the Petri net in which places p5  and p7 hold  at least 
one and two tokens, respectively. To learn this possibility, it is necessary initially to test the 
structural boundedness of the subnet corresponding to F6,  by attempting to solve the ILP 
problem (33), in the following form: 

minimize a = y1 + y2 + y3 + y4 + y5 + y6 + y7, 

subject to: y1 – y5 ≤ 0, -y1 + y2 + y3  ≤ 0, -y2 + y3  ≤ 0, -y3 + y4 + y5  ≤ 0, -y4 + y5  ≤ 0,  

-3y3 + y6 + y7 ≤ 0, -y6 + y7 ≤ 0, -y7 ≤ 0,  y1, y2, y3, y4, y5, y6, y7 ≥ 1. 

This ILP problem has no feasible solution. Thus, the subnet corresponding to F6 is not 
structurally bounded, so that at least one of its affected places  is not structurally bounded.  

We are interested in having at least one token in p5 and at least two tokens in p7,  so that ΔM 
= [0, 0, 0, 0, 1, 0, 2]. Therefore,  now it is necessary  to try to solve  the ILP problem (37), in 
the following form: 

minimize b = x1 + x2 + x3 + x4 + x5 + x8 + x9 + x10, 

subject to: x1 – x2  ≥  0, x2 – x3   ≥  0, x2 + x3 – x4  - 3x8 ≥  0, x4 – x5  ≥  0, -x1 + x4 + x5 ≥ 1, 

x8 – x9    ≥  0, x8 + x9 – x10 ≥ 2, x1 + x2 + x3+ x4 + x5 + x8+ x9 + x10 ≥ 1. 

This ILP problem has the optimal (minimal) solution  
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 Now, using (38), we can  find that 

.2)10,9,8,5...,,2,1|max(
6

*

6 ==⎥
⎥

⎤
⎢
⎢

⎡
= i

f

x
k

i

i  

Thus, the combined complementary T-invariant (29), with Fc = F7,  is F = 2F6 + F7 = [4, 4, 4, 2, 
2, 0, 0, 2, 2, 4, 0, 1, 1, 1]. For F,  a legal firing sequence can be found consisting of 26 transition 
firings and transforming  M0 into M. This is not the shortest sequence. The shortest sequence 
exists for the decremented value of coefficient k6 = 1 and consists of 14 transition firings 
t2t3t4t1t2t3t5t8t9t12t13t1t10t10.  
Although non-complementary T-invariants F1 and F2 are realizable as well, they are not 
appropriate to be combined with F7 to create a realizable combined complementary T-
invariant since they cannot produce tokens in place p7. The necessary number of tokens 
could be produced  in p7  also by F5  but it needs itself to borrow six tokens in place p3.  
In this way, one can proceed with the remaining singular  T-invariants F8, F9, F10, and F11. 
Calculating coefficient k6 = 2 and  combining each of these T-invariants with F6, it will be 
possible to successfully find  the corresponding legal firing sequences and, if necessary, 
reachability paths. In all cases, coefficient k6 can be decremented to one, to get the shortest 
legal firing sequence. 
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This example shows that, in general, it is not necessary to compute coefficients kj for all T-

invariants 
j

ncF  in (29). The reachability test can be done as soon as coefficient kj is computed 

for the first 
j

ncF . If this test fails, then coefficient kj is computed for the next 
j

ncF , until the 

reachability test is successful or all connected non-complementary T-invariants in (29) are 
considered. 

8. Conclusion 

A new approach to reachability analysis in general Petri nets is proposed, formally  
described, and illustrated by examples tested with a prototype program.  For a given 
original Petri net, the reachability analysis  is reduced to the computation and investigation 
of T-invariants of the complemented Petri net consisting of the original Petri net and an 
additional, complementary transition with input and output arcs depending on the given 
initial and target markings. It is shown that, without the loss of reachability information, one 
can carry out reachability analysis using only  a finite number of T-invariants.  
We did not address, in this chapter, complexity aspects of the proposed approach to 
reachability analysis. Complexity of some problems of Petri nets, including the reachability 
problem, was investigated elsewhere (Jones et al., 1977). Most of the running time in the 
proposed reachability analysis scheme will be spent in computing minimal-support T-
invariants and their linear combinations, solving ILP problems, and trying to find legal 
firing sequences for the computed  T-invariants. This can be done with the use of existing 
methods (Watanabe, 2000; Yamauchi & Watanabe, 1998; Huang & Murata, 1998). 
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