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Chapter

Beyond Differential Privacy: 
Synthetic Micro-Data Generation 
with Deep Generative Neural 
Networks
Ofer Mendelevitch and Michael D. Lesh

Abstract

Recent advances in generative modeling, based on large scale deep neural net-
works, provide a novel approach for sharing individual-level datasets (micro-data) 
without privacy concerns. Unlike differential privacy, which enforces a specific 
query mechanism on data to ensure privacy, generative models can accurately learn 
the statistical patterns of such micro-data and then be used to generate “synthetic 
data” that accurately reflects these statistical patterns, yet contain none of the 
original data itself, and thus can be safely shared for analysis and modeling without 
compromising privacy. The successful application of these techniques to various 
industries including healthcare, finance, and autonomous vehicles is promising and 
results in continued investment in research and development of generative models 
in both academia and industry.

Keywords: generative models, synthetic data, deep neural networks, micro-data

1. Introduction

Differential privacy, created more than a decade ago, continues to play an 
important role in protecting privacy of micro-data while enabling statistical analy-
sis. Initially applied by statistics agencies such as the US census bureau, it is now 
well recognized that, although useful for some applications, differential privacy 
comes with significant limitation (e.g., [1]).

To understand some of the limitations of differential privacy, consider the 
following:

• Differential privacy is defined around the concept of a mechanism; as such, it is 
not intended to create “sharable datasets,” but instead allows a user (analyst) to 
submit various types of queries (via the defined query mechanism), requesting 
some kind of aggregate statistics, like summary statistics of the original data. 
This limits the usability of differential privacy to queries that are supported by 
that mechanism.

• An appropriate privacy budget needs to be decided upon, and in practice it’s 
often difficult to agree on what that budget needs to be. In fact, practical 
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use-cases demonstrate that due to concerns about risk, most implementations 
end up with much higher budget than is necessary.

• Many mechanisms of differential privacy require noise to be added to the data 
in cases where the original data is highly skewed, resulting in reduced utility of 
the outputs, and in some cases rendering the whole exercise useless.

• In many specific fields of statistical analysis, users of micro-data are highly 
trained to use specific tools (STATA, SAS, R and Python) and query proce-
dures, which often do not support the complexity of differential-privacy-
protected mechanisms. This presents a behavior-change challenge whereby 
analysts need to be convinced to abandon their familiar methods and tools 
(which they may have been using for decades) in favor of the interactive 
system where the privacy-protected data is available.

Fortunately, deep generative models – a recent and novel approach in deep 
neural networks – provide an alternative for direct sharing of micro-data without 
privacy risk.

With generative models, a deep neural network algorithm uses the existing 
micro-data to approximate, with high accuracy, the underlying probability dis-
tribution of the data in some high-dimensional latent space. Once the probability 
distribution is approximated, the trained model can be used to generate any number 
of synthetic records by randomly sampling from that distribution. Those generated 
records are related to the original data only through the shared underlying probabil-
ity distribution, and thus does not include any information that can be linked back 
to the original (private) records.

To further illustrate how synthetic data generation works, consider CelebA,1 
a dataset with more than 200,000 synthetic celebrity face images, each with 40 
automatically extracted attribute annotations. Using generative models, researchers 
have demonstrated the ability to learn the underlying distribution well enough to 
generate photorealistic celebrity faces as is shown in Figure 1 above.

1 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Figure 1. 
Fake celebrity images created using generative modeling; none of these images are real people.
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This same technique can be applied to many other types of data – music, text, 
videos as well as healthcare, financial or insurance data. In this chapter we will 
explore synthetic data generation and its application, and how releasing synthetic 
micro-data can provide an alternative to differential privacy.

In Section 2, we explore synthetic data in more detail, and how generative 
models can create synthetic data. In Section 3, we discuss using variational auto-
encoders as generative models, followed by Section 4, where we discuss generative 
adversarial networks. In Section 5, we discuss the application of generative models 
to healthcare data, and in Section 6, we discuss privacy in the context of synthetic 
data, and some approaches that combine differential privacy with synthetic data 
generation. Section 7 is a summary and discussion on future directions in synthetic 
data generation.

2. Generative models for synthetic data

Generative models are a class of mathematical models that approximate a prob-
ability distribution of some dataset and can be used to generate samples of data 
according to the modeled (or approximated) distribution. Such generated data is 
often called “synthetic data,” “fake data,” or “realistic but not real.”

For a given data domain, consider a dataset A with N data records. For most 
practical cases, the dataset can be assumed to be drawn from some (usually 
unknown) probability distribution P(x). A synthetic dataset S is a dataset similar to 
A in terms of fields or structure, where records in S are randomly drawn from some 
probability distribution Q(x).

In an ideal world where Q(X) = P(X) we can clearly use S for various purposes of 
analysis and modeling, because they are sampled from the same distribution. The 
key idea behind generating synthetic data is as follows: can we accurately estimate 
this probability distribution P(x), such that Q(X) ≈ P(X), with high fidelity?

Let us look at a simple example – consider a one-dimensional series of values A, 
where A is drawn from a normal (Gaussian) distribution with mean  μ  and standard 
deviation  σ . In other words, we know in this case that P(x) is the normal distribu-
tion with   P  μ,σ   (x)  =   1 _ 

σ  √ 
_

 2π  
    e   −  1 _ 

2
    (  

x−μ
 _ σ  )    

2
   , and that the values in A should fit this distribution. 

We can then use Gaussian fitting to estimate the values of  μ  and  σ  from the data, as 
is demonstrated in Figure 2.

Figure 2. 
Sample Gaussian fitting.



Security and Privacy From a Legal, Ethical, and Technical Perspective

4

Once we have a good approximation for the parameters of the distribution  
( μ  and  σ ), we can sample from this distribution to generate completely new data 
points that are fully consistent with the Gaussian distribution describing the 
original data.

This is of course a simplified example for two reasons. First, with a real generative 
model we do not know the actual form of the distribution function (e.g., Gaussian 
in this case); instead we use the neural network to estimate that function. Second, in 
the real world the data is not one-dimensional, but of much higher dimension.

So how do we approximate an unknown probability distribution from high-
dimensional data?

The traditional approach to approximating data distribution is simple frequency 
counting (histograms), but of course this approach does not work in high dimen-
sions due to the curse of dimensionality, namely the fact that most statistical 
methods fail in high-dimensional data due to increasing sparseness. This is also the 
case here with frequency counting, where with many dimensions the amount of 
histogram needed quickly explodes to make the method unfeasible.

Instead, the approach used in modern generative modeling research is to assume 
a functional form of the distribution   P  θ   (x)   and learn the parameters  θ  of the func-
tion from the data. This set of parameters  θ  is in essence a compressed representa-
tion for the original dataset, often called “latent space representation.”

To further illustrate this, let us go back to our example of celebrity images. Assume 
that the images are black and white (so that each pixel is represented by either 0 or 1), 
and of size 28 × 28 = 784 pixels. If we represent each image as a vector of 784 binary 
values, the number of possible values for a vector in this space is   2   784  =  10   236  ; if we 
want to approximate P(x) for each possible vector x in this space, we would need to 
estimate it for   10   236   such vectors, which is clearly not realistic in practice (thus “the 
curse of dimensionality”). Instead, we can define some   P  θ   (x)   with a much smaller 
set of parameters  θ  and estimate those parameters in such a way that   P  θ   (x)  ≈ P (x)  . It 
turns out that deep neural networks are a good match for this kind of problem, and 
can be used to accurately estimate the parameters of the distribution   P  θ   (x)  ; there are 
many possible neural network architectures suitable for this task, most common of 
which are auto-encoders and generative adversarial networks.

Images are a very vivid (pun intended) demonstration of the power of genera-
tive models and how they can generate high utility synthetic data; but these tech-
niques can also be successfully applied to many other fields such as music, poetry, 
cartoon characters, or even synthetic “video miles” for self-driving cars.

The performance of recent techniques in generative modeling is quite impres-
sive, and their success led to a growth in applications of generative models in 
industry. For example, self-driving car companies use synthetic data to significantly 
increase the size of training data they have available, covering many more scenarios 
and edge-cases for improving their self-driving algorithms.

The usefulness of synthetic data generally falls into one of 3 important categories:

• Replacement. If access to the real dataset is limited or restricted (e.g., when 
data access is highly regulated), synthetic data often provides an excellent 
alternative. A good example comes from healthcare – access to medical records 
is often heavily restricted because of personal identifiers and the risk of 
linkage attacks. Synthetic medical records with high fidelity can provide the 
medical and bio-pharma research community with a replacement dataset that 
accurately reflects the statistical properties of the original data. This opens up 
an enormous opportunity to share and aggregate medical data from various 
clinical care sources and unlock important insights such as how effective are 
various therapeutics like drugs, medical devices or clinical care protocols.
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• Augmentation. In many predictive modeling use-cases, the dataset available 
for training the model is relatively small in size, which often results in lower 
accuracy of the model. This phenomenon is further exacerbated when using 
deep learning for predictive modeling, where small datasets tend to overfit 
quite easily. Creating synthetic training examples and combining the real and 
synthetic data points (“augmenting” the real dataset with synthetic data), 
resulting in a much larger training dataset overall, can significantly improve 
the accuracy of the predictive models.

• Equalization/reshaping. An interesting aspect of using generative models is 
that we can generate as much data as is desired; often many more records than 
exist in the original dataset. A key characteristic of generative models is that 
we can direct them to shape the output dataset to certain desired criteria. For 
example, if the original dataset has 60% male and 40% female, we can con-
trol the gender distribution and generate a 50%/50% synthetic dataset. This 
enables users of the synthetic data to battle bias in the original dataset.

Equipped with a basic understanding of what synthetic data is, and how it’s cre-
ated using generative models, let us look in more detail at two of the most common 
types of generative models: variational auto-encoders and generative adversarial 
networks.

3. Variational auto-encoders

An autoencoder is a specific type of deep learning architecture which is split into 
two distinct neural networks: one is called the “encoder” and the other “decoder,” as 
is shown in Figure 3.

In this architecture, the encoder   E  θ    is a deep neural network that encodes the 
input data (X) into some intermediate representation (Z, often referred to as “latent 
representation”) in a reduced dimensional space, and the decoder   D  θ    is also a deep 
neural network that decodes the vector Z back into the output vector Y. X and Y are 
of the same dimensionality. The goal of training the auto-encoder is to reconstruct 
the input X in the output Y, while transitioning through the lower dimensional-
ity representation Z, so that we get as close as possible to  Y =  D  θ   ( E  θ   (X) )  . If you 
optimize this auto-encoder in such a way that the loss of data between input X and 

Figure 3. 
Auto-encoder architecture.
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output Y (reconstruction error) is minimized, then it’s as if you are trying to find an 
optimal compressed representation for the input data.

Traditional auto-encoders have been around since the early days of neural 
networks and in their basic form they cannot be used to generate synthetic data; In 
2013 the idea of variational auto-encoders (VAE) started to take shape, primarily 
with the work of [2, 3], as a way to use auto-encoders as generative models.

With VAEs, instead of mapping the input vector X to a fixed vector Z, we want 
to map it into a distribution   q  θ   (z | x)  , often assumed to be a multivariate normal dis-
tribution with mean  μ  and standard deviation  σ ; then to generate synthetic outputs 
Y we just randomly sample this learned distribution and decode the sampled vector 
to arrive at a synthetic output Y, as shown in Figure 4.

VAEs, being one of the first deep neural network architectures for practical 
generative models, created a lot of excitement about synthetic data, and was used 
primarily to generate synthetic images. Although elegant and theoretically pleas-
ing, the synthetic images generated by VAEs tend to be blurry, which very quickly 
became a limiting factor for their use in synthetic imaging. Various improvements 
to the basic VAE approach have been proposed such as beta-VAE [4] and VQ-VAE 
[5] to address these issues; however, this also led researchers to the idea of genera-
tive adversarial networks, which we discuss next.

4. Generative adversarial networks

The idea of a generative adversarial network is inspired by game theory: we 
build two models, a generator and a discriminator, that compete with each other in 
an adversarial manner to collaboratively optimize the whole system. The generator 
G is a generative neural network that outputs synthetic samples given a noise vari-
able Z. The discriminator D is a different neural network that is trained to discrimi-
nate between real and synthetic samples. During training, the generator is trying to 
generate samples that mimic as much as possible the real data, so that it can fool the 
discriminator, whereas the discriminator is trained not to be fooled and be able to 
distinguish between real and synthetic data samples. This is shown in Figure 5.

As you can see from Figure 5, a key idea in this architecture is that the discrimi-
nator D shares gradient updates with the generator, such that the generator can 
“understand” how its generated data fails to fool the discriminator and improve its 
generation over time resulting in better and better synthetic samples.

Figure 4. 
Variational auto-encoder architecture.
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GANs were first formulated by Ian Goodfellow and colleagues [6], and since 
then have been an active area of research; they have demonstrated the ability to 
generate significantly better synthetic images than VAEs, and have been used in 
a variety of applications like generating synthetic celebrity faces, fake Pokémon 
characters, time-series medical events [7] and electronic medical records [8].

Due to the impressive realism in synthetic data generated by GANs, they have 
also initiated an active and important discussion of malicious use of generative 
models, and privacy implications. We will discuss this important aspect of genera-
tive models in Section 6.

One difficulty with GANs is that they are quite difficult to train, and often 
require significant time and effort to manually tune until they reach the desired 
outcome; some of the most common issues when training GANs are:

• Nash Equilibrium: the Generator and Discriminator work against each other 
in a competitive manner, and it is often rather difficult to reach the Nash 
equilibrium of this 2-player minimax game. Training GANs to achieve this 
equilibrium tends to require extensive experimentation and good intuition 
about how GANs work.

• Vanishing gradient: when the Discriminator is doing very well in its role to 
discriminate between real and synthetic data, its gradients are very close to 0 
and thus learning in the Generator slows down significantly or sometimes even 
stops completely.

• Mode collapse: a common failure mode in GANs where the Generator gener-
ates samples that “fool” the Discriminator but fails to generate the full breadth 
of such possible samples and thus gets stuck in a local sub-space of synthetic 
samples possible. For example, consider an image face generator that generates 
excellent photorealistic images of faces but only focuses on faces of people with 
gray hair. Since the images are of great quality, the discriminator will consider 
them of great quality and indistinguishable from real images, however they 
only represent a fraction of the types of images in the training set, which 
include many more hair colors.

Figure 5. 
Generative adversarial networks.
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Various approaches and hacks have been proposed to address the vulnerabilities 
in GANs with varying levels of success. One important improvement over the basic 
GAN approach is Wasserstein GAN (WGAN [9]) which uses a different loss func-
tion based on Wasserstein distance, and has been shown to be more robust to mode 
collapse.

5.  Industry example: applications of generative models to  
healthcare data

Healthcare is one of the most popular area of application for analytics and 
machine learning, driving improved outcomes for patients, lower cost of care, and 
improved patient experience. There are a vast number of applications for data in 
healthcare, such as measuring quality of care metrics, developing predictive models 
for better diagnosis, or analyzing data to understand the differences in clinical care 
protocols.

Due to the highly regulated nature of healthcare data, and various regulations 
that govern health data privacy (such as HIPAA, GDPR, CCPA), most healthcare 
data are locked down in silos. Many healthcare organizations have used de-
identification as a way to reduce privacy risks, typically through the modification of 
potentially identifiable attributes (e.g., dates of birth) via generalization, suppres-
sion or randomization. However, this approach is susceptible to linkage attacks, as 
was demonstrated in [10], and it is accepted by many risk experts that the risk of 
re-identification is high and in fact they treat de-identified medical data the same 
way they do fully identifiable medical data.

This presents an enormous challenge to realizing the promise of understanding 
and using data in healthcare to drive better outcomes and achieving the vision of 
precision medicine.

There are many types of medical data that is useful, and herein we focus on three 
types of data that are quite common:

• Tabular data: large amounts of medical data are collected in table format, 
including clinical trial data and other data used for observational studies. 
In clinical trials, for example, the researchers review the individual patient 
records from the trial, and perform statistical analysis to understand whether 
the hypothesized outcome of the trial is confirmed or rejected with statistical 
significance given the data. Being able to share the vast amount of clinical 
trial data that is currently locked down in medical centers and biopharma 
companies to the research community, as well as combining these datasets, can 
unlock advances in design and speed-to-market for many necessary drugs and 
medical devices.

• Electronic Medical Records: electronic medical records (EMR) are now 
mandated by regulatory bodies; a vast number of such records is collected 
every day around the world, and stored in EMR systems by vendors like EPIC, 
Cerner and Allscripts. EMR are difficult to access due to privacy regulations, 
yet they represent a gold-mine of aggregated knowledge about health outcomes 
and can open up enormous opportunities for precision medicine.

• Medical imaging: medical imaging diagnostics using MRI, CT and other types 
of scanning are critical in diagnosis and following the response of treatment, 
and where advanced AI and machine learning are poised to provide significant 
gains in the near future (see e.g., [11]). Yet many diagnostics providers are 
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starving for highly quality and diverse labeled medical images to improve their 
diagnostics models, leaving a huge gap in advancing the state of the art.

By providing synthetic EMR, clinical trial or medical imaging data that accu-
rately mimics the statistical properties of the real data, one can perform the same 
analysis or modeling on the synthetic data, achieving near- identical results, without 
the risk of exposing patient privacy. Even more exciting is the ability to augment 
small medical datasets with synthetic data, which is useful for example in the case of 
relatively rare medical conditions where the number of patients available is limited.

It’s interesting to note that there is previous work on synthetic data generation in 
the healthcare domain, notably the work done on Synthea described in [12]. These 
early techniques, while recognizing the importance of high fidelity synthetic data, 
used domain-specific knowledge to drive simulated data, but have unfortunately 
failed to achieve the kind of fidelity that is required for any meaningful analytics 
(see [13]), and thus have proven to be of limited use in practice where patient-level 
analysis is required.

More recently, generative adversarial networks and variational auto-encoders 
have been applied to medical datasets, which have demonstrated the potential 
to provide much higher fidelity synthetic data and thus more useful in practice. 
We now quickly review two of these more recent techniques: generating medical 
records with discrete values (MedGAN), and work by Nvidia to generate synthetic 
medical imaging.

5.1 MedGAN: generating discrete medical variables with GANs

Electronic medical records include vast amounts of structured data about 
patients such as diagnoses, drugs, lab results, and procedures. Most of this data is 
encoded in commonly shared data dictionaries such as ICD9 or ICD10 for diagnosis 
codes, NDC for drug codes, and similar dictionaries for procedure codes and labs. 
Although some variables in this data are continuous (like lab results), most of it is 
represented as discrete variables with very large dictionary sizes.

MedGAN [8] was developed with the recognition of the potential that genera-
tive adversarial networks have to model electronic medical records, while trying to 
adapt the GAN approach to deal with discrete variables, which it’s not typically very 
good at. MedGAN aims to learn the probability distribution of data that include 
high-dimensional, multi-label discrete variables, and specifically supporting both 
binary (e.g., variables that represent whether you have a certain diagnosis or not), 
and count variables (i.e., variables that represent how many times a patient took 
a medication over time, or total number of risk factors for some disease). This 
approach proposes combining an auto-encoder within a generative adversarial 
network architecture and demonstrates how to deal with situations of overfitting 
and mode collapse in this scenario.

It is noteworthy that in addition to MedGAN, several researchers proposed 
additional similar approaches to modeling medical records and other tabular data, 
for example EhrGAN proposed in [14] and TableGan proposed in [15].

5.2 Medical image synthesis with GANs

It is widely recognized in AI and machine learning that insufficient data volume 
as well as imbalanced or non-diverse data often leads to poor predictive perfor-
mance and lack of model generalization. This often proves to be a critical issue in 
the development of medical imaging algorithms where abnormal findings are by 
definition rare, and high-quality training images are hard to find.
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In [16], Nvidia researchers demonstrate generation of synthetic MRI images 
with brain tumors using generative adversarial networks, trained on two publicly 
available datasets of brain MRI: ADNI and BRATS. Two distinct benefits of syn-
thetic data are highlighted in this work: improved performance leveraging synthetic 
images as a form of data augmentation, and the value of synthetic data as a tool for 
reducing privacy risk while achieving comparable tumor segmentation results when 
trained on the synthetic data versus when trained on real data.

The results from [16] are quite impressive, and some synthetic images taken 
from that paper are shown in Figure 6.

Clearly more work remains in this area, especially in generating higher resolu-
tion synthetic images, tackling all imaging modalities as well as addressing many 
other clinical use-cases; nonetheless, this work demonstrates excellent initial results 
for synthetic image generation in medical research with the potential to improve 
medical imaging diagnostics and significantly reduce privacy risks.

5.3 Other approaches

Recently, neural language models with attention (i.e., Transformers [17]) have 
been used to for a variety of language tasks, including synthetic text generation, 
sequence to sequence translation, question answering and many others. One 
potential application of language models in medicine is the generation of free-text 
clinical notes based on structured data. Instead of generating synthetic versions of 
the structured medical EMR record, the goal is to translate the input structured data 
into a clinically correct and useful text summary of the patient information, in a 
form physicians are used to reading. Although early experiments with human-like 
language generation with models like GPT2 are showing good initial results, there’s 
still a lot of work to do in this area.

It’s worth mentioning one other generative modeling approach called flow-
based generative models; this technique is quite complex mathematically, and 
is in early stages of research, but can potentially provide an additional set of 

Figure 6. 
Examples of synthetic abnormal brain MRI images.
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methods for synthetic data generation. The interested reader is referred to [18, 19] 
for more details.

Another recent area of research in deep learning and privacy aims to integrate 
differential privacy into training procedures of deep neural networks [20]. This is 
particularly important for generative models and can be used to constrain the learn-
ing process around certain privacy guarantees, ensuring that the learning process 
does not just memorize the input data.

6. Privacy of synthetic data

With differential privacy, our goal is to define a query mechanism that guaran-
tees certain privacy levels if the users are restricted to access micro-data through the 
specified mechanism only. Synthetic data generation is different in that it assumes 
synthetic data is published directly to users, and thus access to the data is virtu-
ally unlimited. We now want to inspect those differences in more detail to better 
understand the implications of privacy for synthetic data generation.

We start with an important, fundamental recognition. With real datasets 
(either de-identified or available through differential privacy mechanisms), an 
attacker knows for sure that each row in the datasets represents a real instance 
or person, only the privacy mechanisms attempt to conceal the privacy informa-
tion in different ways. With synthetic datasets that is not the case, as the samples 
are randomly chosen from a probability distribution, and thus by definition do 
not reflect real people. In fact, as described at the beginning of this chapter, if 
we assume the real data and synthetic data are both sampled from a theoretical 
(unknown) distribution P(X), and that distribution is very high dimensional (as it 
often is for micro-data), then the only hypothetical risk is that by a stroke of luck 
a synthetic record exactly matches the values in one of the original values, which 
is very unlikely. And its occurrence could not be recognized with any assurance by 
an attacker.

Nonetheless, there is an important privacy consideration – unintended memori-
zation [21]. A deep generative learning model might unintentionally memorize the 
training set (of real data) and thus instead of approximating a distribution and then 
sampling from that distribution, it instead just copies one or more of the original 
data records into the synthetic dataset.

It is possible to test for memorization pro-actively as part of training the genera-
tive model (as proposed in [21]) and optimize the generative model in such a way as 
to remove any memorization or minimize it to a level which presents minimal risk.

To further enhance privacy guarantees, we can apply a k-anonymity [22] to the 
synthetic dataset. It’s common to use generalization or obfuscation of variables 
to achieve the desired levels of k-anonymity; however both techniques result in 
reduced utility. With synthetic data, however, one can instead generate additional 
records in a way that improves the privacy guarantees without compromising utility.

7. Summary and conclusion

In this chapter we provided an overview of synthetic data and how it may 
provide an alternative to differential privacy as a method for sharing micro-data for 
the purpose of analysis and machine learning applications.

We discussed two of the most common techniques used in deep generative 
modeling, namely variational auto-encoders and generative adversarial networks, 
and highlighted some of the remarkable success in the space of modeling medical 
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data. We then discussed why synthetic data provides privacy by design and some 
areas of research in privacy of synthetic data generation.

As research in the space of generative models continues at a neck-break pace at 
companies like OpenAI, Google, Facebook, Microsoft and others, we expect to see 
tremendous prosgress in this field on the research side as well as in applications of 
synthetic data across many areas of industry.
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