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Chapter

Detection and Management of 
Early Glucose Abnormalities in 
Cystic Fibrosis
Katerina Theocharous, Bernadette Prentice, Charles F. Verge, 

Adam Jaffé and Shihab Hameed

Abstract

With advances in technology, it is now possible to detect the emergence of glucose 
abnormalities in cystic fibrosis with improved sensitivity, and from a very early age. 
These abnormalities are increasingly recognized as predictors of clinical decline, 
raising the possibility that early intervention may slow or prevent this deterioration. 
In this chapter, we will review the available literature on methods of detecting glu-
cose abnormalities in cystic fibrosis (random and fasting glucose, HbA1c, oral glucose 
tolerance testing, and continuous glucose monitoring), and detail their advantages 
and possible limitations in the interpretation of glycemic data. We will also discuss 
treatment outcomes of early intervention, prior to the diagnosis of diabetes as cur-
rently defined.

Keywords: cystic fibrosis-related diabetes, glucose, insulin, abnormal glucose 
tolerance, indeterminate glycaemia, impaired glucose tolerance, oral glucose tolerance 
test, continuous glucose monitoring

1. Introduction

Historically, cystic fibrosis (CF) caused fatal respiratory failure in early child-
hood [1, 2], but proactive multidisciplinary care has increased life expectancy to 
~44 years [3]. With longer survival, co-morbidities have become more prevalent, 
the commonest being cystic fibrosis-related diabetes (CFRD) [4, 5]. This is associ-
ated with poorer clinical status [6–21], quality of life [22, 23], and life expectancy 
[16, 24, 25] relative to non-diabetic CF patients.

CFRD is distinct from other diabetes mellitus etiologies, including type 1 (T1D) 
and type 2 (T2D) (see Table 1) [4, 5]. It is caused primarily by chronic pancreatitis 
[26–30] with progressive insulin deficiency [9, 11, 31], particularly during first-
phase insulin secretion [8, 9, 11, 19, 32–40]. Variations in peripheral insulin sensi-
tivity also contribute to CFRD [20, 41]; hyperglycemia progressively induces insulin 
resistance via downregulation of glucose transporters [42–44], and insulin sensitiv-
ity decreases with inflammation, use of exogenous glucocorticoids, and puberty 
[45–49]. In CF, the depleted and dysfunctional pancreatic β-cells may be unable to 
compensate for this, producing early intermittent hyperglycemia progressing to 
fasting hyperglycemia [35, 44, 50].
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CFRD is usually preceded by a spectrum of abnormal glucose tolerance (AGT) 
on oral glucose tolerance testing (OGTT), including impaired fasting glucose 
(IFG), indeterminate glucose tolerance (INDET), and impaired glucose tolerance 
(IGT) [4, 51]. There may be ‘waxing and waning’ of glucose tolerance between 
these categories [19, 52–55], probably due to variations in insulin sensitivity [35, 
44]. Nevertheless, large prospective cohort studies report overall deterioration 
in CF patients’ glucose tolerance over life [16, 20, 53, 54, 56]. The date of onset of 
CFRD is considered to be the first time a patient meets diagnostic criteria, even if 
glucose abnormalities subsequently resolve due to improvement in insulin sensitiv-
ity [4]. This is because studies utilizing this definition report correlations between 
CFRD duration, microvascular disease prevalence [57], and mortality [16, 56].

Taken together, these factors explain why CFRD becomes more common with 
age. Prevalence is ~1.5% in CF patients aged <10 years, but ~15% in those aged 
11–17 and ~50% in those aged ≥18 [8, 16, 58]. The American Diabetes Association 
(ADA) recommends annual screening from age 10, using 2-h OGTT [59]. CFRD 
can also be diagnosed using clinical status, random blood glucose, fasting plasma 

Type 1 diabetes Type 2 diabetes CFRD

Prevalence 0.2% 11% 35% (likely underestimated due 

to lack of testing)

Onset Usually acute Insidious Insidious

Peak age of 

onset

Childhood or 

adulthood

Adulthood Ages 18–24

Usual body 

habitus

Normal Overweight Underweight, normal, or 

sometimes overweight (due to 

CF therapy success)

Likely 

pathophysiology

β-cell dysfunction & 

destruction, primarily 

autoimmune with 

genetic & possible 

environmental causes

Peripheral insulin 

resistance & 

subsequent β-cell 

stress

β-cell destruction due to 

inspissated pancreatic 

secretions, inflammation, and 

replacement with fibrosis & 

amyloid, plus a component of 

β-cell dysfunction

Insulin 

deficiency

Nearly complete Partial and variable Severe but not complete

Insulin 

resistance

Variable Severe Variable depending on 

circumstances (e.g. glycemic 

control, pubertal stage, use of 

glucocorticoids, inflammation)

Ketoacidosis risk High Low Low

Pharmacological 

& dietary 

therapy

• Insulin

• Dietary monitoring 

to ensure appropriate 

insulin dosage

• Insulin or oral 

anti-hypoglycemics

• Low-calorie, 

low-carbohydrate, 

low-fat diet

• Insulin

• Continuation of CF-specific 

diet, designed to prevent 

wasting: high-calorie, high-

carbohydrate, high-fat

Complications Microvascular & 

macrovascular disease

Microvascular & 

macrovascular 

disease

• Decline in nutritional status & 

lung function, associated with 

early mortality

• Microvascular disease

Likeliest cause 

of death

Macrovascular disease Macrovascular 

disease

CF pulmonary disease

Table 1. 
Comparison of common etiologies of diabetes. Adapted from Moran et al. [4].
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glucose, and glycated hemoglobin (HbA1c) [4, 60, 61]. In clinically-stable outpa-
tients with CF, diagnostic criteria are identical to those used for other etiologies 
of diabetes mellitus [4], and are shown in Table 2. Recently, continuous glucose 
monitoring (CGM) has also been used to investigate glucose abnormalities in CF 
patients. This method is not yet widely recommended for diagnosis of diabetes, but 
it is often used to monitor glycemic control or assist insulin dosage [62]. Moreover, 
CGM often detects even earlier CF-related glucose abnormalities than OGTT, in the 
form of intermittent postprandial glucose excursions [63].

This chapter compiles research on use of each glucose measurement method in 
CF patients, with special focus on pre-diabetic patients. The benefits and limita-
tions of each method will be explored to help ascertain when their usage might be 
appropriate. In the process, we will examine correlations between early glucose 
abnormalities and clinical decline. Finally, we will review preliminary evidence of 
improved long-term outcomes with insulin treatment of early glucose abnormali-
ties, supporting their detection and management in routine practice.

Glucose 

measurement 

method

Diagnostic criteria

Normal ranges Pre-diabetic ranges Diabetic ranges

Clinical status Classical symptoms of hyperglycemia, including polyuria, polydipsia, and 

hyperglycemic crisis, may assist diagnosis of diabetes when combined with other 

positive diagnostic tests. Some CF-specific definitions also consider unexplained 

decline in lung function & nutritional status to be classical symptoms.

HbA1c ≤5.6% (38 mmol/

mol)

5.7–6.4% (39–46 mmol/mol) ≥6.5% (48 mmol/mol)

Random blood 

glucose

— — ≥11.1 mmol/L (200 

mg/dL)

Fasting plasma 

glucose

<5.6 mmol/L 

(100 mg/dL)

IFG: ≥5.6 mmol/L (100 mg/

dL), <7.0 mmol/L (126 mg/dL)

≥7.0 mmol/L (126 mg/

dL)

2-h OGTT 0 min: <5.6 mmol/L 

(100 mg/dL)

2 h: <7.8 mmol/L 

(140 mg/dL)

All categories constitute AGT

IFG:

0 min: ≥5.6 mmol/L (100 mg/

dL), <7.0 mmol/L (126 mg/dL)

2 h: N/A

INDET:

0 min: <7.0 mmol/L (126 mg/

dL)

OGTT midpoints: ≥11.1 mmol/L 

(200 mg/dL)

2 h: <7.8 mmol/L (140 mg/dL)

IGT:

0 min: <7.0 mmol/L (126 mg/

dL)

2 h: ≥7.8 mmol/L (140 mg/dL), 

<11.1 mmol/L (200 mg/dL)

0 min: ≥7.0 mmol/L

(126 mg/dL)

AND/OR

2 h: ≥11.1 mmol/L 

(200 mg/dL)

CGM Usually 

<7.8 mmol/L  

(140 mg/dL)

Elevations ≥7.8 mmol/L (140 mg/dL) are referred to as 

glucose excursions, but there are no standardized criteria 

correlating them with AGT or diabetes.

HbA1c = glycated hemoglobin. OGTT = oral glucose tolerance testing. IFG = impaired fasting glucose. 
AGT = abnormal glucose tolerance. INDET = indeterminate glucose tolerance. IGT = impaired glucose tolerance. 
CGM = continuous glucose monitoring.

Table 2. 
Diagnostic criteria of glucose measurement methods commonly used in CF. Diagnosis must occur during 
clinical stability, defined as no pulmonary exacerbations during the past 6 weeks and no current systemic 
glucocorticoids. It is also recommended that any positive fasting plasma glucose, HbA1c, or OGTT is repeated at a 
later date. Non-CGM diagnostic criteria are from the American Diabetes Association [59, 64]. CGM diagnostic 
criteria are from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group [65].
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2.  Benefits and limitations of conventional methods used to diagnose 
glucose abnormalities in CF

2.1 Clinical status and/or random blood glucose

The ADA allows diagnosis of CFRD following one random blood glucose mea-
surement ≥11.1 mmol/L, provided that it is combined with polyuria, polydipsia, or 
hyperglycemic crisis [59]. However, symptomatic hyperglycemia or hyperglycemic 
crisis is extremely rare in CFRD [4]. In Lanng et al.’s seminal 5-year prospective 
cohort study of 191 CF patients receiving annual OGTT, only 33% of those diag-
nosed with CFRD had polyuria or polydipsia [54]. Moreover, in a cross-sectional 
study of all 60 patients aged ≥10 years at a Brazilian CF center, age at diagnosis was 
significantly lower for patients diagnosed using OGTT as opposed to clinical criteria 
(13.5 years vs. 22.3 years), implying much earlier detection of disease [66].

Some centers compensate by accepting unexplained decline in lung function or 
nutritional status as classical symptoms of hyperglycemia (see Section 3) [67]. In 
one cross-sectional study of 91 CF patients not known to be diabetic, these modi-
fied clinical criteria detected OGTT-diagnosed CFRD with 58% sensitivity [68], 
which is an improvement over other studies but still suboptimal for a screening test.

2.2 HbA1c

HbA1c, i.e. glycated hemoglobin as a percentage of total hemoglobin, is com-
monly used to monitor glycemic control in diabetes mellitus. It usually reflects aver-
age blood glucose over the life of an erythrocyte (~3 months) [64, 69]. However, 
CF patients with CFRD, INDET or IGT rarely have a significantly-higher HbA1c 
than those with normal glucose tolerance (NGT) [11, 70–73], and even statistically-
significant differences tend to be of <1% magnitude [8, 34, 40, 74, 75]. Godbout 
et al.’s study of 13 CFRD patients also found that HbA1c did not correlate with mean 
plasma glucose, as calculated using fingerprick self-monitoring [76].

Numerous hypotheses have been espoused to explain HbA1c’s relatively poor cor-
relation with glucose tolerance in CF. These include insufficient duration of tran-
sient CF-related post-prandial hyperglycemia, which is often limited to the early 
phase of insulin secretion; alteration of hemoglobin glycation by hypoxia; iron defi-
ciency, which is a common comorbidity of CF; and increased erythrocyte turnover 
in the context of chronic inflammation [1, 4, 5, 76, 77]. This implies that HbA1c may 
vary with degree of inflammation [78], and that trends in HbA1c may be more useful 
for predicting deterioration in glucose tolerance. Supporting this, Lanng et al.’s 
5-year prospective cohort study found significant differences in median HbA1c 
between patients who consistently had NGT (5.2%), patients who varied between 
NGT and IGT (5.3%), patients who developed CFRD during the study (5.8%), and 
patients who entered the study with a diagnosis of CFRD (6.5%) [54].

It has also been hypothesized that poor correlation between mean plasma glu-
cose and HbA1c may be confounded by use of fingerprick tests to measure glucose, 
since these can easily miss CF-related hyperglycaemic peaks due to their relative 
infrequency [76]. In two studies of CF and CFRD patients, mean plasma glucose 
was estimated using 2–7 days of CGM rather than fingerprick self-monitoring, and 
strongly correlated with HbA1c (r = 0.86–0.89) [75, 79].

These findings have regenerated interest in potentially using HbA1c to screen for 
CF-related glucose abnormalities, especially because it is much more convenient 
than OGTT. However, computing HbA1c thresholds suitable for CFRD screening 
has proved challenging. Some studies do report almost 100% sensitivity for OGTT-
defined CFRD using HbA1c thresholds of 6.0–7.5% [40, 80–82], but all have small 



5

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

sample sizes, and most either did not calculate sensitivity to CF-related AGT [81] or 
report low values, ~20–50% [80, 82]. Therefore, HbA1c may not detect CFRD and its 
complications until late. Moreover, most evidence suggests that the diagnostic thresh-
old for CFRD, HbA1c ≥6.5%, has poor sensitivity compared to OGTT [54, 83–85].

Lowering the diagnostic threshold for HbA1c abnormalities does increase 
sensitivity to both CFRD and AGT, but the thresholds required to achieve sufficient 
sensitivity for screening generally have unacceptably low specificity [60]. There is 
also wide variation in the sensitivities and specificities reported by different studies 
using the same HbA1c threshold; this may be due to differences in type of HbA1c 
assay [74, 86] and timing of the studies relative to the institution’s routine OGTT 
screening [87]. Yung et al., conducting a cross-sectional study of 91 CF patients 
not known to be diabetic, but also not previously routinely screened, found that 
HbA1c ≥6.1% had 83% sensitivity for OGTT-diagnosed CFRD [68]. However, more 
recent studies with similar designs report only 30–50% sensitivity [39, 82, 88, 89].

Given this uncertainty, the current advice from the ADA is that HbA1c should not 
be used to screen for CF-related glucose abnormalities [59]. HbA1c is still recom-
mended for monitoring glycemic control in CFRD, although normal results must 
be interpreted with caution [4, 78]. It has also been suggested that HbA1c might be 
a useful adjunct to OGTT in screening, as its results may fluctuate less and hence, 
may more accurately predict long-term risk of glucose abnormalities. In a recent 
6-year retrospective cohort study of 50 NGT adults with CF followed up with 
annual OGTT, HbA1c ≥5.6% had OR 3.49 for development of IGT or CFRD [90].

2.3 Fasting glucose

In 2003, the ADA briefly sanctioned fasting plasma glucose as an alternative to 
OGTT in CFRD screening, because there were insufficient data supporting insulin 
therapy for CFRD without fasting hyperglycemia [91]. However, subsequent studies 
have demonstrated similar insulin-induced clinical improvements in patients with 
and without fasting hyperglycemia [16, 92], and treatment of CFRD without fast-
ing hyperglycemia is now standard practice [4]. Only 16–25% of patients diagnosed 
with CFRD on OGTT have fasting hyperglycemia [8, 54, 68, 81].

Use of fasting glucose to detect pre-diabetic stages on the glucose tolerance spec-
trum remains somewhat contentious in CF. Most studies report that fasting plasma 
glucose does not significantly differ between CF patients with NGT, INDET or IGT 
[39, 72, 93]. The ADA does use fasting glucose to define one pre-diabetic glucose tol-
erance category, IFG (5.6–6.9 mmol/L), and suggested in 2003 that screening OGTTs 
could be limited to IFG patients [94]. A prospective cohort study of 1128 CF patients 
aged 10–64 found that this approach would reduce number of OGTTs by 67%, but 
miss 17.8% of CFRD and IGT [94]. In a cross-sectional analysis of 73 children with 
CF, IFG had 100% sensitivity for CFRD, but only 25% sensitivity for IGT [11].

Finally, like HbA1c, there is debate regarding the utility of IFG as an adjunctive 
test for predicting long-term risk of CFRD. Frohnert et al. found no significant rela-
tionship [95], but Schmid et al. found that IFG generated OR 2.72 for CFRD [96].

2.4 Oral glucose tolerance testing

As discussed above, other conventional diagnostic tests have <100% sensitivity for 
CFRD compared to OGTT. Therefore, OGTT remains the recommended screening 
test in CF. It is also the only test with standardized definitions of multiple pre-diabetic 
glucose abnormalities, all demonstrated to predict development of CFRD [96].

Nevertheless, there are several issues with the 2-h OGTT. It may be more incon-
venient and resource-intensive than other glucose measurement methods, which is 
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of particular concern in CF because patients and clinics already face a high treatment 
burden from other aspects of CF care [97]. It also requires patient co-operation, 
which can be difficult when assessing children [93]. Patients are expected to con-
sume at least 150 g (600 kcal) of carbohydrates for 3 days before an OGTT, then 
fast for 8 h overnight and be tested early the next morning [59]. They must drink a 
solution containing a 1.75 g/kg glucose load, preferably within 5 min, then lie or sit 
quietly for 2 h [64]. In a standard OGTT, venous blood is sampled twice: immedi-
ately before ingestion of the load, and at 120 min (BG120). Many CF centers also take 
hourly or 30-minutely samples to detect post-prandial hyperglycemia that resolves 
before 2 h [59]. As described earlier, these transient post-prandial glucose excursions 
are very common in CF, due to selective impairment of early insulin secretion. Our 
group previously performed OGTT with 30-minutely sampling in 33 children with 
CF aged 10–19, and found that peak venous insulin concentration was delayed until 
90–120 min, producing an early venous glucose peak at 60–90 min [9] (Figure 1).

The inconvenience of OGTT may contribute to poor patient uptake of CFRD 
screening [98–100]. In 2018, the Cystic Fibrosis Foundation Patient Registry 
reported that the average CF center was screening just 61.3% of adolescents and 
32.8% of adults [100]. Rates of utilization of other glucose measurement methods, 
such as HbA1c and fasting glucose, were much higher (92.3% for adolescents and 
89.6% for adults), suggesting that the main barrier to screening is the OGTT itself 
[100]. Suggested solutions include shortening the OGTT to 60 or 90 min [83] or 
replacing it with the 50-g non-fasting 1-h glucose challenge test [89, 101], which is 
currently used to screen for gestational diabetes mellitus in healthy women [101]. 
These modified OGTT protocols are not standard recommended practice [4].

There are also other issues with the OGTT that likely cannot be resolved by 
simply shortening it. Its diagnostic thresholds are not specific to CF and may be 
insensitive to CF-related clinical decline (see Section 3). OGTT results also fre-
quently fluctuate in CF, with a large multicenter prospective cohort study finding 
a variability coefficient 1.5–1.8 times higher than in the general population [55]. 
Similarly, in two 4–5 year prospective cohort studies, 18–58% of AGT patients dem-
onstrated overall improvement in glucose tolerance category, while only 14–22% 
demonstrated deterioration [19, 54].

Finally, even with venous sampling at additional timepoints, the peak blood 
glucose measurements recorded during OGTT may poorly reflect peak blood glucose 
achieved by CF patients in daily life [4, 60, 61]. After all, the OGTT’s 1.75 g/kg 
load contains less glucose than most CF patients’ everyday meals [61, 98]. This has 
prompted research into CF-related glucose abnormalities using CGM, a technology 
that can screen for glucose excursions over a longer interval of everyday life and high 
calorie CF diet.

Figure 1. 
Venous blood glucose (□) and insulin ( ▓ ) in 30-minutely samples over a 2-h oral glucose tolerance test, as 
measured in 33 children with CF aged 10–19. Boxes indicate interquartile range, horizontal lines indicate 
median, whiskers indicate 5th and 95th percentiles. Figure taken from Hameed et al. [9].
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2.5 Continuous glucose monitoring

Most CGM systems consist of two parts: a sterile sensor, worn subcutaneously 
for up to 14 days, and a transmitter attached to the sensor that measures interstitial 
fluid glucose every 30 s, recording an average every 5 min [97] (Figure 2). Some 
systems do not require a separate sensor, instead measuring interstitial fluid glucose 
via an electrical current applied across intact skin, but issues have been reported 
with skin reactions and inaccuracy [102]. Interstitial fluid glucose reflects capillary 
glucose with a 4–20 min delay [103].

CGM has been validated against OGTT in children with CF of all glucose 
tolerance categories [104] and non-diabetic adolescents and adults with CF [105]. 
A subsequent study of this latter group found that they differed significantly from 
healthy controls in mean CGM glucose (+14.1%) and presence of CGM peaks 
≥11.1 mmol/L (+33%), but not in the conventional diagnostic measures of fast-
ing glucose, BG120, and HbA1c [106]. Moreover, 70% of CF patients undertaking 
simultaneous CGM and OGTT had their CGM peak outside OGTT [106]. This was 
the beginning of a substantial body of evidence demonstrating the superior sensi-
tivity of CGM to CF-related glucose excursions above OGTT diagnostic thresholds, 
with numerous studies finding CGM glucose peaks ≥7.8 or 11.1 mmol/L in 71–93% 
of patients classified as NGT on recent OGTT [14, 31, 85, 98, 107, 108]. In a 5-year 
prospective cohort study of 21 adults with CF, 83% had their CGM peak and BG120 
fall in different diagnostic categories, and for 93% the CGM-identified category was 
worse. Again, this suggests the superior sensitivity of CGM over OGTT [98].

Most of this evidence, particularly in children, is limited by small sample sizes 
[14, 85, 98, 107, 108] and lack of non-CF controls [14, 85, 98, 108]. However, it is 
logical that the increased duration and frequency of glucose monitoring facilitated 
by CGM, and the opportunity to incorporate the patient’s usual diet and physical 
activity, facilitates more sensitive detection of glucose excursions [109]. CGM 
is also generally easier and better tolerated than OGTT [78]. While sensors and 
transmitters are expensive, and staff do require training on their usage, they have 
become more user-friendly, smaller and cheaper over time [73, 110]. The newest 
devices can be inserted rapidly during a clinic appointment, do not require calibra-
tion against fingerpricks, and can be removed by patients or carers without medical 
supervision [97].

CGM does have one major disadvantage compared to OGTT. The clinical 
significance of the mild glucose excursions that it detects are still being determined; 
consequently, there is no standardized system for recognizing and describing clini-
cally relevant CGM findings, and no universally accepted threshold for initiation 

Figure 2. 
Continuous glucose monitor sensor, before and after attachment of the transmitter. ‘CGM set’ and ‘Continuous 
Glucose Monitor’ by Sara Bassett are licensed under CC BY-NC-SA 2.0.
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of treatment [97]. Common variables computed by CGM software include aver-
age sensor glucose, maximum glucose, area under the curve of glucose per day 
(AUCglucose/day), percentage time spent above thresholds (e.g. 7.8 or 11.1 mmol/L), 
number of excursions ≥11.1 mmol/L, and measures of glycemic variability, such as 
standard deviation of average sensor glucose [103]. All these parameters have been 
correlated with HbA1c in CF patients [75], and many have been correlated with 
clinical outcomes. However, these studies report heterogeneous findings and rarely 
include substantial prospective follow-up (see Section 3) [84].

Given all these factors, CGM is not yet widely recommended for CFRD diagnosis 
or screening [4]. However, it is used in some centers for diagnosis and screening, 
follow-up of borderline diagnostic tests, and investigation of patients who cannot 
or refuse to undergo OGTT [31, 111, 112]. Like HbA1c, it may also be useful as an 
adjunctive test for predicting long-term risk of CF-related glucose abnormalities. In 
a prospective cohort study of 17 children with CF, all those who had glucose excur-
sions ≥11.1 mmol/L on CGM developed either CFRD or IGT with INDET over a 
period of 2.5 years, irrespective of their glucose tolerance at baseline [107].

3.  Clinical significance of early glucose abnormalities in CF, as detected 
using various glucose measurement techniques

3.1  Defining clinically significant sequelae of CFRD: the importance of lung 
function & nutritional status

CFRD is well-understood to have a differing profile of sequelae as compared 
to T1D or T2D. Macrovascular disease is uncommon outside of case reports  
[1, 4, 5, 113], and although screening for microvascular disease should be 
routinely undertaken [59], microvascular complications are uncommon until at 
least 5–10 years of CFRD with fasting hyperglycemia [57, 114, 115]. Therefore 
they are substantially predated by declines in lung function [6–21, 116–118] and 
nutritional status [7, 9–12, 14, 117], both of which are significant predictors 
of early mortality in CF [10, 11, 16, 18, 25, 56, 119]. Four large cohort studies 
also report higher annual frequency in diabetic vs. non-diabetic CF patients of 
pulmonary exacerbations requiring intravenous antibiotics or hospitalization 
[10, 21, 39, 120], and it was recently demonstrated that diabetic CF patients have 
reduced recovery of baseline forced expiratory volume in 1 sec as a percentage of 
predicted (FEV1%) following pulmonary exacerbations [116].

A causative relationship between CFRD, impaired lung function, and poor 
nutritional status is implied by the clinical improvements seen following insulin 
therapy [13, 92, 120–122], and is also biologically plausible on several accounts. 
Insulin is a powerfully anabolic hormone, therefore insulin deficiency combined 
with CF’s increased metabolic requirements promotes catabolism with nutritional 
decline [9, 93, 123, 124]. Regarding lung function and pulmonary exacerbations, 
hyperglycemia is known to promote respiratory tract infections (RTIs) both 
systemically, via pro-inflammatory and immunosuppressive effects [125, 126], 
and locally, via glucose leakage into airway secretions, which could promote 
pathogen growth [125, 127–130]. Several cohort studies report higher prevalence 
in diabetic vs. non-diabetic CF patients of certain RTIs, including Pseudomonas 
aeruginosa [10, 19, 117, 131], Staphylococcus aureus [132, 133], and Burkholderia 
cepacia [10, 117, 132].

Finally, hyperglycemia can also impair lung function through non-infective 
pathways. It has been associated with restrictive lung disease in T1D and T2D (via 
non-enzymatic glycation of collagen and elastin) [134], and with inflammatory and 
proteolytic lung destruction in CFRD [135–137]. Lung proteolysis may be exacerbated 
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by protein catabolism [19, 122], which can furthermore weaken respiratory muscles 
[138, 139] and impair immunoprotein synthesis during RTIs [61]. This may explain 
why lung function in CF also correlates with nutritional status [6, 7, 140–142].

3.2 Decline in clinical status prior to diagnosis of CFRD

Numerous cohort and case-control studies examining the 1–5 years before CFRD 
diagnosis report decline in lung function [19, 35, 38, 92, 143–146] and nutritional 
status [19, 35, 38, 92, 143, 144] in pre-diabetic patients, or significantly reduced 
values compared to non-diabetic CF controls [12, 17]. This suggests that pre-
diabetic glucose abnormalities are clinically significant. Two case-control studies 
focusing specifically on pediatric populations also report that pre-diabetic children 
with CF have significantly lower height and weight velocities than non-diabetic CF 
controls [145, 146], with one study demonstrating differences up to 11 years before 
CFRD diagnosis [146]. These differing velocities produce steadily-widening gaps 
in height-for-age and weight-for-age, reaching statistically-significant sizes after 
CFRD diagnosis, usually around ages 15–19 [18, 146]. Importantly, this grow-
ing disparity seems to occur even if aggressive insulin therapy is commenced at 
diagnosis [144], and although it may narrow with prolonged therapy, it may not 
fully correct [18, 144, 147]. Therefore, optimizing clinical outcomes in CFRD may 
require treatment of pre-diabetic abnormalities, highlighting the importance of 
glucose measurement systems that can sensitively predict clinical decline.

3.3 Clinically significant pre-diabetic markers detectable using OGTT

Traditional OGTT diagnostic thresholds are not specific to CF – in fact, they 
were originally designed to predict T2D-associated microvascular disease in Pima 
Native Americans [148]. This may explain their apparent insensitivity to CF clinical 
outcomes. A few studies do report poorer lung function or nutritional status in IGT 
vs. NGT CF patients [37, 72], and several more identify IGT as a significant risk fac-
tor for substantial decline in FEV1% over 4–5 years [19, 149]. However, most studies 
attempting to correlate IGT with contemporary lung function and nutritional status 
find no significant relationship [19, 33, 34, 39, 53, 70–73, 150–152].

A more successful non-conventional OGTT parameter is the additional glucose 
tolerance category of INDET, defined as blood glucose ≥11.1 mmol/L at an OGTT 
midpoint – most commonly 60 min (BG60) – as opposed to 0 or 120 min [4]. BG60 
has been shown to inversely correlate with BMI in children with CF, and correlates 
with FEV1% and forced vital capacity as a percentage of predicted (FVC%) in 
both children [7] and adults [150]. In a subsequent study, INDET patients had 
mean FEV1% comparable to CFRD patients, representing a significant reduction 
compared to NGT and IGT patients [71]. INDET has also been confirmed to predict 
development of CFRD (OR 2.81 over ~3.5 years) [93, 96].

Other OGTT parameters shown to predict FEV1% in non-diabetic CF patients 
include higher peak glucose (BGmax) [9, 33, 72, 153], higher AUCglucose [124, 153], 
and reduced insulin secretion [34, 35, 72, 124]. Finally, a few studies have correlated 
FEV1% with trajectories of deterioration in glucose tolerance [41, 154]. One pro-
spective cohort study recruited 152 non-diabetic CF patients, and stratified them 
according to whether their glucose tolerance on OGTT improved, deteriorated or 
remained stable over 2 years [41]. While all patients experienced a decline in FEV1%, 
the extent of decline only reached statistical significance in patients of stable or 
deteriorating glucose tolerance, and those of deteriorating glucose tolerance also had 
a much larger drop than those of stable glucose tolerance (−6.1% vs. −1.6%) [41].

It is rarer for studies to report correlations between OGTT parameters and 
nutritional status [33–35, 41, 71, 72, 154], possibly because intensive dietician 
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management of CF mitigates nutritional decline [133, 154]. Nevertheless, one 
seminal prospective cohort study inversely correlated age-adjusted height and 
BMI with AUCglucose [8], and a recent cross-sectional study found that lower-than-
median insulin secretion at 60 min is independently associated with worse BMI 
[150]. In children, BMI (calculated as weight in kg divided by the square of height in 
meters) may be a less sensitive measure of nutritional status than weight-for-age, as 
poor linear growth may mask decline [146]. Nevertheless, Wooldridge et al. report a 
direct correlation between AUCinsulin and BMI z-score in 146 NGT children with CF 
aged 5–20 [123], and our group has found that AUCglucose inversely correlates with 
age-adjusted weight, height and BMI in children aged ≤10 years [153]. Furthermore, 
in an earlier cohort study of 33 children aged 10–19, we found that higher BGmax 
was associated with decline in weight z-score, FEV1% and FVC% over the past 12 
months, and BGmax ≥8.2 mmol/L had 87% sensitivity and 70% specificity for a 
clinically significant decline in weight z-score [9]. By contrast, BG120 was no better 
than chance at detecting decline in weight z-score, and the conventional diagnostic 
threshold of 11.1 mmol/L had only 10% sensitivity [9]. These findings led us to 
propose an alternative system for classifying CF-related glucose abnormalities on 
OGTT, the Cystic Fibrosis Insulin Deficiency (CFID) stages (Table 3) [9].

3.4 Clinically significant pre-diabetic markers detectable using CGM

Six main studies have explored the clinical significance of CGM-based measures 
of CF-related early glucose abnormalities [9, 98, 111, 152, 155, 156]. Their results are 
compelling but heterogeneous. Taylor-Cousar et al. conducted a 5-year prospective 
cohort study of 17 originally non-diabetic CF patients, 7 of whom developed CFRD 
during observation [98]. In this subgroup, there was significant inverse correlation 
between peak glucose and BMI, and a trend towards correlation with FEV1% [98]. 
Leclercq et al. also examined peak glucose, stratifying 38 NGT CF patients accord-
ing to whether they had any peaks ≥11.1 mmol/L during 72-h CGM [155]. In the 
‘yes’ group, there was significantly lower FEV1% and FVC%, and increased risk of 
colonization with P. aeruginosa [155].

In the aforementioned study undertaken by our research group in 33 children 
with CF aged 10–19, we also showed that percentage time ≥7.8 mmol/L on CGM 
predicted 12-month rate of decline in weight z-score, FVC%, and FEV1%. Similarly, 
on receiver operator characteristic (ROC) analysis, ≥4.5% time at ≥7.8 mmol/L on 
CGM was a sensitive and specific predictor of clinically significant decline in weight 
z-score and FVC% [9]. Frost et al. subsequently used these parameters to interpret 
the CGM results of 59 adults being investigated for CF-related glucose abnormali-
ties [112]. They found that percentage time ≥7.8 mmol/L on CGM correlated with 
baseline FEV1% and 12-month rate of decline [112].

In Chan et al.’s study of 88 children with CF aged 10–18, 12-month decline in 
FEV1% and FVC% was predicted by multiple other CGM parameters: peak glucose, 
number of daily glucose excursions >11.1 mmol/L, mean amplitude of glycemic 

Diagnostic category o-min OGTT glucose Max OGTT glucose 2-h OGTT glucose

CFID1 <7.0 mmol/L ≥8.2 mmol/L <11.1 mmol/L

CFID2 <7.0 mmol/L ≥11.1 mmol/L <11.1 mmol/L

CFID3 <7.0 mmol/L N/A ≥11.1 mmol/L

CFID4 ≥7.0 mmol/L N/A N/A

Table 3. 
Cystic fibrosis insulin deficiency (CFID) classification system of CF-related glucose abnormalities, as proposed 
by Hameed et al. [9].
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excursions, and standard deviation [152]. Brugha et al. investigated another gly-
cemic variability measure, glucose interquartile ranges, in a 7-year retrospective 
cohort study [111]. On ROC analysis, ranges >1.95 mmol/L predicted CFRD with 
60% sensitivity and 98% specificity, but did not correlate with BMI or FEV1% [111].

Finally, our group recently conducted a cross-sectional study of 18 children 
with CF aged ≤5 years [156]. Even in this very young group, history of P. aeruginosa 
was predicted by mean glucose and percentage time at ≥7.8 mmol/L, and levels of 
inflammatory markers in bronchoalveolar lavage fluid were predicted by peak glu-
cose, mean glucose, percentage time at ≥7.8 mmol/L, and standard deviation [156].

3.5  Clinically significant pre-diabetic markers detectable using other glucose 
measurement techniques

3.5.1 HbA1c and alternative glycated proteins

Three studies report a weak inverse correlation between HbA1c and lung func-
tion in non-diabetic CF patients (r = −0.25–0.3) [72, 73, 88], and one of these also 
found a direct correlation with number of infective pulmonary exacerbations per 
year [73]. In two more studies, HbA1c ≥ 5.5–5.8% predicted poorer FVC% [74] or 
FEV1% [82]. Therefore HbA1c, despite its insensitivity to CF-related glucose abnor-
malities, may be a useful harbinger of clinical decline when elevated.

Several studies have also investigated fructosamine, glycated albumin, and 
1,5-anhydroglucitol as alternatives to HbA1c in CF. These biomarkers are not depen-
dent on the lifespan of erythrocytes, and have been shown to correlate with mean 
plasma glucose in CF as estimated using CGM [75]. However, evidence of their 
ability to predict glucose abnormalities and clinical decline in CF is currently mixed 
[11, 74, 157]. In one study, fractional serum fructosamine (FSF) ≥3.70 μmol/g 
predicted IGT and CFRD with 100% sensitivity and 67% specificity, and patients 
with elevated FSF also had significantly lower median FEV1% (47% vs. 90%) [157].

3.5.2 Fasting glucose

Early evidence suggests that fasting glucose, including IFG, does not correlate 
with clinical status in CF [53, 95]. In one case-control study, IFG actually predicted 
better lung function than normal fasting glucose in some patient subgroups, 
particularly children with simultaneous IGT [95]. It was hypothesized that IFG may 
represent a physiological adaptation to CF, with hepatic glucose production upregu-
lated to meet increased baseline metabolic requirements [95].

4.  Detection protocols for early glucose abnormalities and CFRD at the 
Sydney Children’s Hospital, Randwick

Our institute, the Sydney Children’s Hospital, provides one example of inte-
grating multiple glucose measurement methods into routine practice. Children 
with CF are screened annually for glucose abnormalities from age 10, using OGTT 
with 30-minutely sampling. CGM is used to follow up borderline OGTTs, or to 
investigate children with clinically-suspected glucose abnormalities who have 
normal OGTTs or are unable to undergo OGTT. CGM excursions ≥11.1 mmol/L 
over 72 h of monitoring are considered severe abnormalities that warrant further 
investigation for possible insulin therapy. Moreover, some pre-diabetic children 
on OGTT are randomized to insulin therapy via the CF-IDEA trial (ClinicalTrials.
gov Identifier NCT01100892, see Section 5).
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5. Management of early glucose abnormalities in CF

Ultimately, the most clinically relevant measures of CF-related early glucose 
abnormalities are those that alter patient management. Therefore the long-term 
effects of actively treating early abnormalities is an important research question. 
Most studies have focused on insulin therapy, as insulin is currently the only 
recommended pharmacotherapy for CFRD (in part because of its anabolic effects) 
[59]. Emerging research has also explored oral anti-hypoglycemics [158], incretin 
modifiers [159], and CFTR modulators [160, 161].

It is already known that earlier diagnosis and treatment of CFRD, via OGTT 
screening programs, improves life expectancy and resolves historical sex differ-
ences in clinical outcomes (females with CFRD previously did worse than males) 
[16, 24]. Seven studies were identified trialing insulin therapy for CF patients who 
were pre-diabetic on OGTT [92, 122, 143, 162–164]. Five report statistically-signif-
icant improvements in lung function [122, 163, 165], nutritional status [122, 143, 
164, 165], or rate of decline in either variable [163, 164], either intra-individually 
or relative to untreated controls. Moreover, five out of six studies assessing toler-
ability found no significantly-increased incidence of symptomatic hypoglycemia 
[92, 122, 143, 162, 164, 165]. Finally, one additional study has assessed the effi-
cacy of insulin therapy initiated based on CGM, via retrospective analysis of all 
non-diabetic adults at a British CF center who had a CGM ordered between 2013 
and 2016 [112]. Insulin was initiated if patients spent >4.5% time at >7.8 mmol/L 
on CGM, and if they recorded no clear triggers for these glucose excursions in a 
contemporary food diary. Patients treated with insulin demonstrated statistically-
significant improvements in FEV1% and weight within 3 months of treatment, and 
maintained an improvement in weight and annual rate of lung function decline at 
12 months [112].

All this suggests that treatment of CF-related AGT may be beneficial. 
However, results are difficult to generalize, due to heterogeneity in studies’ 
inclusions criteria, types of controls, and insulin regimens [166]. Studies are also 
limited by small sample sizes [92, 112, 122, 143, 162–165], short durations [92, 
112, 122, 143, 162, 165], and mixed analysis of pre-diabetic and diabetic patients 
[92, 122], highlighting the need for large long-term randomized control trials. 
One such trial, CF-IDEA (ClinicalTrials.gov Identifier NCT01100892), is near-
ing completion. To date, CF-IDEA has recruited 86 participants aged ≥5 years 
at 5 participating sites, all non-diabetic on OGTT with BGmax 8.2 mmol/L to 
<11.1 mmol/L (CFID1) or ≥ 11.1 mmol/L (CFID2). Participants are randomized 
to observation only or to a once-daily insulin detemir (Levemir) for 12 months, 
with starting dose 0.1 units/kg/day, blood glucose self-monitoring intensively 
for 10 days and twice daily thereafter, and a blood glucose target range of 
4–8 mmol/L. The main outcome factors are change in weight SDS, change in lung 
function, and frequency of hospitalization.

6. Conclusions

As patients with CF live longer, CFRD becomes an increasingly prevalent 
serious co-morbidity, associated with significant decline in lung function and 
nutritional status. Evidence suggests that this decline may begin years earlier, in 
the pre-diabetic phase. Currently, OGTT is the most sensitive licensed diagnostic 
tool for identifying pre-diabetic CF-related glucose abnormalities, but its utility 
is limited by inconvenience, high variability of results, and insensitivity of tradi-
tional diagnostic categories to CF-related glucose excursions and clinical decline. 



13

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

Author details

Katerina Theocharous1, Bernadette Prentice1,2, Charles F. Verge1,3, Adam Jaffé1,2  
and Shihab Hameed1,3,4*

1 School of Women’s and Children’s Health, Faculty of Medicine, The University of 
New South Wales, Sydney, NSW, Australia

2 Department of Respiratory Medicine, Sydney Children’s Hospital, 
Randwick, NSW, Australia

3 Department of Endocrinology, Sydney Children’s Hospital, Randwick, NSW, 
Australia

4 Faculty of Medicine, University of Sydney, Sydney, NSW, Australia

*Address all correspondence to: s.hameed@unsw.edu.au

Development of standardized interpretation systems for CGM may revolutionize 
detection of clinically relevant early glucose abnormalities. Results of randomized 
controlled trials of insulin treatment prior to onset of CFRD may alter the point at 
which insulin is offered.

Acknowledgements

SH, AJ and CFV have received funding from the National Health and Medical 
Research Council of Australia, Australasian Cystic Fibrosis Research Trust, 
Regional Diabetes Support Scheme, Sydney Children’s Hospital Foundation, and 
Australasian Pediatric Endocrine Care Grant from Pfizer, and industry support 
from Novo Nordisk, Medtronic, and Abbott Diagnostics. BP has been awarded a 
fellowship from the Thoracic Society of Australia and New Zealand and Vertex, and 
a postgraduate scholarship from the National Health and Medical Research Council 
of Australia.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



14

Cystic Fibrosis - Facts, Management and Advances

References

[1] Bridges N, Rowe R, Holt RIG. 
Unique challenges of cystic fibrosis-
related diabetes. Diabetic Medicine. 
2018;35(9):1181-1188

[2] Reid DW, Blizzard CL, Shugg DM, 
Flowers C, Cash C, Greville HM. 
Changes in cystic fibrosis mortality 
in Australia, 1979-2005. The 
Medical Journal of Australia. 
2011;195(7):392-395

[3] Keogh RH, Szczesniak R, Taylor-
Robinson D, Bilton D. Up-to-date and 
projected estimates of survival for 
people with cystic fibrosis using baseline 
characteristics: A longitudinal study 
using UK patient registry data. Journal 
of Cystic Fibrosis. 2018;17(2):218-227

[4] Moran A, Pillay K, Becker D, 
Granados A, Hameed S, Acerini CL. 
ISPAD clinical practice consensus 
guidelines 2018: Management of cystic 
fibrosis-related diabetes in children 
and adolescents. Pediatric Diabetes. 
2018;19:64-74

[5] Kayani K, Mohammed R, 
Mohiaddin H. Cystic fibrosis-related 
diabetes. Frontiers in Endocrinology. 
2018;9:20

[6] Kerem E, Viviani L, Zolin A, 
MacNeill S, Hatziagorou E, 
Ellemunter H, et al. Factors associated 
with FEV1 decline in cystic fibrosis: 
Analysis of the ECFS patient registry. 
The European Respiratory Journal. 
2014;43(1):125-133

[7] Brodsky J, Dougherty S, Makani R, 
Rubenstein RC, Kelly A. Elevation 
of 1-hour plasma glucose during oral 
glucose tolerance testing is associated 
with worse pulmonary function 
in cystic fibrosis. Diabetes Care. 
2011;34(2):292-295

[8] Bismuth E, Laborde K, Taupin P, 
Velho G, Ribault V, Jennane F, et al. 

Glucose tolerance and insulin secretion, 
morbidity, and death in patients with 
cystic fibrosis. The Journal of Pediatrics. 
2008;152(4):540-545

[9] Hameed S, Morton JR, Jaffé A, 
Field PI, Belessis Y, Yoong T, et al. Early 
glucose abnormalities in cystic fibrosis 
are preceded by poor weight gain. 
Diabetes Care. 2010;33(2):221-226

[10] Marshall BC, Butler SM, 
Stoddard M, Moran AM, Liou TG, 
Morgan WJ, et al. Epidemiology 
of cystic fibrosis-related diabetes. 
The Journal of Pediatrics. 
2005;146(5):681-687

[11] Elder DA, Wooldridge JL, 
Dolan LM, D’Alessio DA. Glucose 
tolerance, insulin secretion, and insulin 
sensitivity in children and adolescents 
with cystic fibrosis and no prior history 
of diabetes. The Journal of Pediatrics. 
2007;151(6):653-658

[12] Lanng S, Thorsteinsson B, 
Nerup J, Koch C. Influence of the 
development of diabetes mellitus on 
clinical status in patients with cystic 
fibrosis. European Journal of Pediatrics. 
1992;151(9):684-687

[13] Lanng S, Thorsteinsson B, Nerup J, 
Koch C. Diabetes mellitus in cystic 
fibrosis: Effect of insulin therapy on 
lung function and infections. Acta 
Paediatrica. 1994;83(8):849-853

[14] Moreau F, Weiller MA, Rosner V, 
Weiss L, Hasselmann M, Pinget M, et al. 
Continuous glucose monitoring in cystic 
fibrosis patients according to the glucose 
tolerance. Hormone and Metabolic 
Research. 2008;40(7):502-506

[15] Suratwala D, Chan JS, Kelly A, 
Meltzer LJ, Gallagher PR, Traylor J, 
et al. Nocturnal saturation and glucose 
tolerance in children with cystic fibrosis. 
Thorax. 2011;66(7):574-578



15

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

[16] Moran A, Dunitz J, Nathan B, 
Saeed A, Holme B, Thomas W. Cystic 
fibrosis-related diabetes: Current trends 
in prevalence, incidence, and mortality. 
Diabetes Care. 2009;32(9):1626-1631

[17] Rolon MA, Benali K, Munck A, 
Navarro J, Clement A, Tubiana-Rufi N, 
et al. Cystic fibrosis-related diabetes 
mellitus: Clinical impact of prediabetes 
and effects of insulin therapy. Acta 
Paediatrica. 2001;90(8):860-867

[18] Koch C, Rainisio M, Madessani U, 
Harms HK, Hodson ME, Mastella G, 
et al. Presence of cystic fibrosis-related 
diabetes mellitus is tightly linked 
to poor lung function in patients 
with cystic fibrosis: Data from the 
European epidemiologic registry of 
cystic fibrosis. Pediatric Pulmonology. 
2001;32(5):343-350

[19] Milla CE, Warwick WJ, Moran A. 
Trends in pulmonary function in 
patients with cystic fibrosis correlate 
with the degree of glucose intolerance 
at baseline. American Journal of 
Respiratory and Critical Care Medicine. 
2000;162(3 Pt 1):891-895

[20] Lombardo F, De Luca F, Rosano M, 
Sferlazzas C, Lucanto C, Arrigo T, et al. 
Natural history of glucose tolerance, 
beta-cell function and peripheral 
insulin sensitivity in cystic fibrosis 
patients with fasting euglycemia. 
European Journal of Endocrinology. 
2003;149(1):53-59

[21] Limoli DH, Yang J, Khansaheb MK, 
Helfman B, Peng L, Stecenko AA, 
et al. Staphylococcus aureus and 
Pseudomonas aeruginosa co-infection 
is associated with cystic fibrosis-
related diabetes and poor clinical 
outcomes. European Journal of Clinical 
Microbiology & Infectious Diseases. 
2016;35(6):947-953

[22] Abbott J, Morton AM, Hurley MA, 
Conway SP. Longitudinal impact of 
demographic and clinical variables on 

health-related quality of life in cystic 
fibrosis. BMJ Open. 2015;5(5):e007418

[23] Kwong E, Desai S, Chong L, Lee K, 
Zheng J, Wilcox PG, et al. The impact 
of cystic fibrosis-related diabetes on 
health-related quality of life. Journal of 
Cystic Fibrosis. 2019;18(5):734-736

[24] Lewis C, Blackman SM, Nelson A, 
Oberdorfer E, Wells D, Dunitz J, 
et al. Diabetes-related mortality in 
adults with cystic fibrosis: Role of 
genotype and sex. American Journal of 
Respiratory and Critical Care Medicine. 
2015;191(2):194-200

[25] Chamnan P, Shine BS, Haworth CS, 
Bilton D, Adler AI. Diabetes as 
a determinant of mortality in 
cystic fibrosis. Diabetes Care. 
2010;33(2):311-316

[26] Bogdani M, Blackman SM, 
Ridaura C, Bellocq JP, Powers AC, 
Aguilar-Bryan L. Structural 
abnormalities in islets from very 
young children with cystic fibrosis 
may contribute to cystic fibrosis-
related diabetes. Scientific Reports. 
2017;7(1):17231

[27] Hart NJ, Aramandla R, 
Poffenberger G, Fayolle C, Thames AH, 
Bautista A, et al. Cystic fibrosis-
related diabetes is caused by islet 
loss and inflammation. JCI Insight. 
2018;3(8):e98240

[28] Iannucci A, Mukai K, Johnson D, 
Burke B. Endocrine pancreas in cystic 
fibrosis: An immunohistochemical study. 
Human Pathology. 1984;15(3):278-284

[29] Couce M, O'Brien TD, Moran A, 
Roche PC, Butler PC. Diabetes mellitus 
in cystic fibrosis is characterized by islet 
amyloidosis. The Journal of Clinical 
Endocrinology and Metabolism. 
1996;81(3):1267-1272

[30] Löhr M, Goertchen P, Nizze H, 
Gould NS, Gould VE, Oberholzer M, 



Cystic Fibrosis - Facts, Management and Advances

16

et al. Cystic fibrosis associated islet 
changes may provide a basis for 
diabetes: An immunocytochemical 
and morphometrical study. Virchows 
Archiv. A, Pathological Anatomy and 
Histopathology. 1989;414(2):179-185

[31] Mainguy C, Bellon G, Delaup V, 
Ginoux T, Kassai-Koupai B, Mazur S, 
et al. Sensitivity and specificity of 
different methods for cystic fibrosis-
related diabetes screening: Is the oral 
glucose tolerance test still the standard? 
Journal of Pediatric Endocrinology & 
Metabolism. 2017;30(1):27-35

[32] Yung B, Noormohamed FH, 
Kemp M, Hooper J, Lant AF, 
Hodson ME. Cystic fibrosis-related 
diabetes: The role of peripheral 
insulin resistance and beta-cell 
dysfunction. Diabetic Medicine. 
2002;19(3):221-226

[33] Anzeneder L, Kircher F, Feghelm N, 
Fischer R, Seissler J. Kinetics of insulin 
secretion and glucose intolerance in 
adult patients with cystic fibrosis. 
Hormone and Metabolic Research. 
2011;43(5):355-360

[34] Costa M, Potvin S, Hammana I, 
Malet A, Berthiaume Y, Jeanneret A, 
et al. Increased glucose excursion in 
cystic fibrosis and its association with a 
worse clinical status. Journal of Cystic 
Fibrosis. 2007;6(6):376-383

[35] Street ME, Spaggiari C, Ziveri MA, 
Rossi M, Volta C, Viani I, et al. 
Insulin production and resistance in 
cystic fibrosis: Effect of age, disease 
activity, and genotype. Journal of 
Endocrinological Investigation. 
2012;35(3):246-253

[36] Cano Megías M, González 
Albarrán O, Guisado Vasco P, Lamas 
Ferreiro A, Máiz CL. Insulin resistance, 
β-cell dysfunction and differences in 
curves of plasma glucose and insulin 
in the intermediate points of the 
standard glucose tolerance test in adults 

with cystic fibrosis. Endocrinología y 
Nutrición. 2015;62(2):91-99

[37] Tofé S, Moreno JC, Máiz L, 
Alonso M, Escobar H, Barrio R. Insulin-
secretion abnormalities and clinical 
deterioration related to impaired 
glucose tolerance in cystic fibrosis. 
European Journal of Endocrinology. 
2005;152(2):241-247

[38] Martin-Frías M, Lamas Ferreiro A, 
Enes Romero P, Cano Gutiérrez B, 
Barrio CR. Abnormal glucose tolerance 
in prepubertal patients with cystic 
fibrosis. Anales de Pediatría (Barcelona, 
Spain). 2012;77(5):339-343

[39] Mohan K, Miller H, Dyce P, 
Grainger R, Hughes R, Vora J, et al. 
Mechanisms of glucose intolerance 
in cystic fibrosis. Diabetic Medicine. 
2009;26(6):582-588

[40] De Schepper J, Dab I, Derde MP, 
Loeb H. Oral glucose tolerance testing 
in cystic fibrosis: Correlations with 
clinical parameters and glycosylated 
haemoglobin determinations. 
European Journal of Pediatrics. 
1991;150(6):403-406

[41] Boudreau V, Coriati A, Hammana I, 
Ziai S, Desjardins K, Berthiaume Y, 
et al. Variation of glucose tolerance in 
adult patients with cystic fibrosis: What 
is the potential contribution of insulin 
sensitivity? Journal of Cystic Fibrosis. 
2016;15(6):839-845

[42] Klip A, Tsakiridis T, Marette A, 
Ortiz PA. Regulation of expression 
of glucose transporters by glucose: 
A review of studies in vivo and in 
cell cultures. The FASEB Journal. 
1994;8(1):43-53

[43] Vuorinen-Markkola H, Koivisto VA, 
Yki-Jarvinen H. Mechanisms of 
hyperglycemia-induced insulin 
resistance in whole body and skeletal 
muscle of type I diabetic patients. 
Diabetes. 1992;41(5):571-580



17

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

[44] Hardin DS, Leblanc A, Marshall G, 
Seilheimer DK. Mechanisms of insulin 
resistance in cystic fibrosis. American 
Journal of Physiology. Endocrinology and 
Metabolism. 2001;281(5):E1022-E10E8

[45] Rotter V, Nagaev I, Smith U. 
Interleukin-6 (IL-6) induces insulin 
resistance in 3T3-L1 adipocytes 
and is, like IL-8 and tumor necrosis 
factor-α, overexpressed in human fat 
cells from insulin-resistant subjects. 
The Journal of Biological Chemistry. 
2003;278(46):45777-45784

[46] Nieto-Vazquez I, Fernández-
Veledo S, De Alvaro C, Lorenzo M. 
Dual role of interleukin-6 in regulating 
insulin sensitivity in murine skeletal 
muscle. Diabetes. 2008;57(12):3211-3221

[47] Hotamisligil GS, Peraldi P, 
Budavari A, Ellis R, White MF, 
Spiegelman BM. IRS-1–mediated 
inhibition of insulin receptor tyrosine 
kinase activity in TNF-α– And obesity-
induced insulin resistance. Science. 
1996;271(5249):665-668

[48] Ofei F, Hurel S, Newkirk J, 
Sopwith M, Taylor R. Effects of an 
engineered human anti–TNF-α antibody 
(CDP571) on insulin sensitivity and 
glycemic control in patients with 
NIDDM. Diabetes. 1996;45(7):881-885

[49] Amiel SA, Sherwin RS, 
Simonson DC, Lauritano AA, 
Tamborlane WV. Impaired insulin 
action in puberty: A contributing factor 
to poor glycaemic control in adolescents 
with diabetes. The New England Journal 
of Medicine. 1986;315(4):215-219

[50] Nezer N, Shoseyov D, Kerem E, 
Zangen DH. Patients with cystic fibrosis 
and normoglycemia exhibit diabetic 
glucose tolerance during pulmonary 
exacerbation. Journal of Cystic Fibrosis. 
2010;9(3):199-204

[51] Iwanicki C, Logomarsino JV. 
Impaired glucose tolerance, body 

mass index and respiratory function 
in patients with cystic fibrosis: A 
systematic review. The Clinical 
Respiratory Journal. 2019;13(6):341-354

[52] Yi Y, Norris AW, Wang K, Sun X, 
Uc A, Moran A, et al. Abnormal glucose 
tolerance in infants and young children 
with cystic fibrosis. American Journal of 
Respiratory and Critical Care Medicine. 
2016;194(8):974-980

[53] Sterescu AE, Rhodes B, Jackson R, 
Dupuis A, Hanna A, Wilson DC, et al. 
Natural history of glucose intolerance 
in patients with cystic fibrosis: Ten-year 
prospective observation program. The 
Journal of Pediatrics. 2010;156(4):613-617

[54] Lanng S, Hansen A, 
Thorsteinsson B, Nerup J, Koch C. 
Glucose tolerance in patients with cystic 
fibrosis: Five year prospective study. 
BMJ. 1995;311(7006):655-659

[55] Scheuing N, Holl RW, Dockter G, 
Hermann JM, Junge S, Koerner-
Rettberg C, et al. High variability 
in oral glucose tolerance among 
1,128 patients with cystic fibrosis: A 
multicenter screening study. PLoS One. 
2014;9(11):e112578

[56] Milla CE, Billings J, Moran A. 
Diabetes is associated with dramatically 
decreased survival in female but not 
male subjects with cystic fibrosis. 
Diabetes Care. 2005;28(9):2141-2144

[57] Schwarzenberg SJ, Thomas W, 
Olsen TW, Grover T, Walk D, Milla C, 
et al. Microvascular complications in 
cystic fibrosis-related diabetes. Diabetes 
Care. 2007;30(5):1056-1061

[58] Scheuing N, Holl RW, Dockter G, 
Fink K, Junge S, Naehrlich L, et al. 
Diabetes in cystic fibrosis: Mulitcenter 
screening results based on current 
guidelines. PLoS One. 2013;8(12):e81545

[59] Moran A, Brunzell C, Cohen RC, 
Katz M, Marshall BC, Onady G, et al. 



Cystic Fibrosis - Facts, Management and Advances

18

Clinical care guidelines for cystic 
fibrosis-related diabetes: A position 
statement of the American Diabetes 
Association and a clinical practice 
guideline of the Cystic Fibrosis 
Foundation, endorsed by the pediatric 
Endocrine Society. Diabetes Care. 
2010;33(12):2697-2708

[60] Waugh N, Royle P, Craigie I, Ho V, 
Pandit L, Ewings P, et al. Screening 
for cystic fibrosis-related diabetes: A 
systematic review. Health Technology 
Assessment. 2012;16(24):24

[61] Hameed S, Jaffé A, Verge CF. 
Advances in the detection and 
management of cystic fibrosis related 
diabetes. Current Opinion in Pediatrics. 
2015;27(4):525-533

[62] Juvenile Diabetes Research 
Foundation Continuous Glucose 
Monitoring Study Group. Continuous 
glucose monitoring and intensive 
treatment of type 1 diabetes. The 
New England Journal of Medicine. 
2008;359(14):1464-1476

[63] Moran A, Becker D, Casella SJ, 
Gottlieb PA, Kirkman MS, Marshall BC, 
et al. Epidemiology, pathophysiology, 
and prognostic implications of 
cystic fibrosis-related diabetes: A 
technical review. Diabetes Care. 
2010;33(12):2677-2683

[64] American Diabetes Association. 
Classification and diagnosis of diabetes: 
Standards of medical care in diabetes. 
Diabetes Care. 2020;43:S14-S31

[65] Juvenile Diabetes Research 
Foundation Continuous Glucose 
Monitoring Study Group. Variation 
of interstitial glucose measurements 
assessed by continuous glucose monitors 
in healthy, nondiabetic individuals. 
Diabetes Care. 2010;33(6):1297-1299

[66] Noronha RM, Damaceno N, 
Muramatu LH, Monte O, Calliari LEP. 
Importance of screening with oral 

glucose tolerance test for early 
diagnosis of cystic fibrosis-related 
diabetes mellitus. Pediatric Diabetes. 
2014;15(4):309-312

[67] Middleton PG, Wagenaar M, 
Matson AG, Craig ME, Holmes-
Walker DJ, Katz T, et al. Australian 
standards of care for cystic fibrosis-
related diabetes. Respirology. 
2014;19(2):185-192

[68] Yung B, Kemp M, Hooper J, 
Hodson ME. Diagnosis of cystic fibrosis 
related diabetes: A selective approach 
in performing the oral glucose tolerance 
test based on a combination of clinical 
and biochemical criteria. Thorax. 
1999;54(1):40-43

[69] Widger J, Hameed S, Ooi CY, 
Verge C. Using HbA1c as a screening 
tool for cystic fibrosis related 
diabetes. Journal of Cystic Fibrosis. 
2016;15(2):263-264

[70] Garagorri JM, Rodriguez G, Ros L, 
Sanchez A. Early detection of impaired 
glucose tolerance in patients with cystic 
fibrosis and predisposition factors. 
Journal of Pediatric Endocrinology & 
Metabolism. 2001;14(1):53-60

[71] Coriati A, Ziai S, Azar M, 
Berthiaume Y, Rabasa-Lhoret R. 
Characterization of patients with cystic 
fibrosis presenting an indeterminate 
glucose tolerance (INDET). Journal of 
Cystic Fibrosis. 2016;15(1):127-132

[72] Lavie M, Fisher D, Vilozni D, 
Forschmidt R, Sarouk I, Kanety H, et al. 
Glucose intolerance in cystic fibrosis as a 
determinant of pulmonary function and 
clinical status. Diabetes Research and 
Clinical Practice. 2015;110(3):276-284

[73] Franzese A, Valerio G, Buono P, 
Spagnuolo MI, Sepe A, Mozzillo E, 
et al. Continuous glucose monitoring 
system in the screening of early 
glucose derangements in children 
and adolescents with cystic fibrosis. 



19

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

Journal of Pediatric Endocrinology & 
Metabolism. 2008;21(2):109-116

[74] Tommerdahl KL, Brinton JT, 
Vigers T, Nadeau KJ, Zeitler PS, 
Chan CL. Screening for cystic fibrosis-
related diabetes and prediabetes: 
Evaluating 1,5-anhydroglucitol, 
fructosamine, glycated albumin, and 
hemoglobin A1c. Pediatric Diabetes. 
2019;20(8):1080-1086

[75] Chan CL, Hope E, Thurston J, 
Vigers T, Pyle L, Zeitler PS, et al. 
Hemoglobin A1c accurately predicts 
continuous glucose monitoring–derived 
average glucose in youth and young 
adults with cystic fibrosis. Diabetes 
Care. 2018;41(7):1406-1413

[76] Godbout A, Hammana I, Potvin S, 
Mainville D, Rakel A, Berthiaume Y, 
et al. No relationship between 
mean plasma glucose and glycated 
haemoglobin in patients with cystic 
fibrosis-related diabetes. Diabetes & 
Metabolism. 2008;34(6):568-573

[77] Rana M, Munns CF, Selvadurai H, 
Donaghue KC, Craig ME. Cystic 
fibrosis-related diabetes in children—
Gaps in the evidence? Nature Reviews. 
Endocrinology. 2010;6(7):371-378

[78] Prentice B, Hameed S, Verge CF, 
Ooi CY, Jaffe A, Widger J. Diagnosing 
cystic fibrosis-related diabetes: Current 
methods and challenges. Expert 
Review of Respiratory Medicine. 
2016;10(7):799-811

[79] Brennan AL, Gyi KM, Wood DM, 
Hodson ME, Geddes DM, Baker EH. 
Relationship between glycosylated 
haemoglobin and mean plasma glucose 
concentration in cystic fibrosis. Journal 
of Cystic Fibrosis. 2006;5(1):27-31

[80] De Luca F, Arrigo T, Nibali SC, 
Sferlazzas C, Gigante A, Di Cesare E, 
et al. Insulin secretion, glycosylated 
haemoglobin and islet cell antibodies in 
cystic fibrosis children and adolescents 

with different degrees of glucose 
tolerance. Hormone and Metabolic 
Research. 1991;23(10):495-498

[81] Rana M, Munns CF, Selvadurai HC, 
Simonds S, Cooper PJ, Woodhead HJ, 
et al. Increased detection of cystic-
fibrosis-related diabetes in Australia. 
Archives of Disease in Childhood. 
2011;96(9):823-826

[82] Burgess JC, Bridges N, Banya W, 
Gyi KM, Hodson ME, Bilton D, et al. 
HbA1c as a screening tool for cystic 
fibrosis related diabetes. Journal of 
Cystic Fibrosis. 2016;15(2):251-257

[83] Coriati A, Elisha B, 
Virassamynaik S, Phaneuf M, Ziai S, 
Gauthier M-S, et al. Diagnosis of cystic 
fibrosis-related glucose abnormalities: 
Can we shorten the standard oral 
glucose tolerance test? Applied 
Physiology, Nutrition, and Metabolism. 
2013;38(12):1254-1259

[84] Boudreau V, Lehoux Dubois C, 
Desjardins K, Mailhot M, Tremblay F, 
Rabasa-Lhoret R. Sensitivity and 
specificity of cystic fibrosis-related 
diabetes screening methods: Which 
test should be the reference method? 
Journal of Pediatric Endocrinology & 
Metabolism. 2017;30(8):885-887

[85] Clemente León M, Bilbao Gassó L, 
Moreno-Galdó A, Campos Martorrell A, 
Gartner Tizzano S, Yeste Fernández D, 
et al. Oral glucose tolerance test and 
continuous glucose monitoring to assess 
diabetes development in cystic fibrosis 
patients. Endocrinología, Diabetes y 
Nutrición. 2018;65(1):45-51

[86] Lam GY, Sissons S, Smith MP, 
Brown NE, Leung WM, Estey MP. 
How reliable is your HbA1c test? 
Revisiting the use of HbA1c in cystic 
fibrosis-related diabetes (CFRD) 
screening. Journal of Cystic Fibrosis. 
2019;18(2):e14-e15

[87] Peckham D. Routine screening for 
cystic fibrosis-related diabetes. Journal 



Cystic Fibrosis - Facts, Management and Advances

20

of the Royal Society of Medicine. 
2009;102:36-39

[88] Solomon MP, Wilson DC, Corey M, 
Kalnins D, Zielenski J, Tsui LC, et al. 
Glucose intolerance in children with 
cystic fibrosis. The Journal of Pediatrics. 
2003;142(2):128-132

[89] Lee KMN, Miller RJH, 
Rosenberg FM, Kreisman SH. 
Evaluation of glucose tolerance in 
cystic fibrosis: Comparison of 50-g and 
75-g tests. Journal of Cystic Fibrosis. 
2007;6(4):274-276

[90] Choudhury M, Taylor P, 
Morgan PH, Duckers J, Lau D, George L, 
et al. Association between HbA 1c and 
the development of cystic fibrosis-
related diabetes. Diabetic Medicine. 
2019;36(10):1251-1255

[91] Moran A, Hardin D, Rodman D, 
Allen HF, Beall RJ, Borowitz D, et al. 
Diagnosis, screening and management 
of cystic fibrosis related diabetes 
mellitus. Diabetes Research and Clinical 
Practice. 1999;45(1):61-73

[92] Moran A, Pekow P, Grover P, 
Zorn M, Slovis B, Pilewski J, et al. 
Insulin therapy to improve BMI in cystic 
fibrosis-related diabetes without fasting 
hyperglycemia: Results of the cystic 
fibrosis related diabetes therapy trial. 
Diabetes Care. 2009;32(10):1783-1788

[93] Ode KL, Frohnert B, Laguna T, 
Phillips J, Holme B, Regelmann W, 
et al. Oral glucose tolerance testing in 
children with cystic fibrosis. Pediatric 
Diabetes. 2010;11(7):487-492

[94] Mueller-Brandes C. New criteria 
for impaired fasting glucose and 
screening for diabetes in cystic fibrosis. 
The European Respiratory Journal. 
2005;25(4):715-717

[95] Frohnert BI, Ode KL, Moran A, 
Nathan BM, Laguna T, Holme B, 
et al. Impaired fasting glucose 

in cystic fibrosis. Diabetes Care. 
2010;33(12):2660-2664

[96] Schmid K, Fink K, Holl RW, 
Hebestreit H, Ballmann M. Predictors 
for future cystic fibrosis-related diabetes 
by oral glucose tolerance test. Journal of 
Cystic Fibrosis. 2014;13(1):80-85

[97] Boudreau V, Reynaud Q , 
Dubois CL, Coriati A, Desjardins K, 
Durieu I, et al. Screening for cystic 
fibrosis-related diabetes: Matching 
pathophysiology and addressing 
current challenges. Canadian Journal of 
Diabetes. 2016;40(5):466-470

[98] Taylor-Cousar JL, Janssen JS, 
Wilson A, Clair CG, Pickard KM, 
Jones MC, et al. Glucose >200 mg/dL 
during continuous glucose monitoring 
identifies adult patients at risk for 
development of cystic fibrosis related 
diabetes. Journal Diabetes Research. 
2016;2016:1527932

[99] Gilmour JA, Sykes J, Etchells E, 
Tullis E. Cystic fibrosis-related diabetes 
screening in adults: A gap analysis and 
evaluation of accuracy of glycated 
hemoglobin levels. Canadian Journal of 
Diabetes. 2019;43(1):13-18

[100] Cystic Fibrosis Foundation Patient 
Registry. Annual data report. Bethesda 
MD: Cystic Fibrosis Foundation; 2018

[101] Sheikh S, Localio AR, Kelly A, 
Rubenstein RC. Abnormal glucose 
tolerance and the 50-gram glucose 
challenge test in cystic fibrosis. Journal 
of Cystic Fibrosis. 2020. (Forthcoming). 
DOI: 10.1016/j.jcf.2020.01.003

[102] Chase HP, Beck R, Tamborlane W, 
Buckingham B, Mauras N, Tsalikian E, 
et al. A randomized multicenter trial 
comparing the GlucoWatch biographer 
with standard glucose monitoring in 
children with type 1 diabetes. Diabetes 
Care. 2005;28(5):1101-1106

[103] Chan CL, Ode KL, Granados A, 
Moheet A, Moran A, Hameed S. 



21

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

Continuous glucose monitoring in cystic 
fibrosis – A practical guide. Journal of 
Cystic Fibrosis. 2019;18:S25-S31

[104] O’Riordan SM, Hindmarsh P, 
Hill NR, Matthews DR, George S, 
Greally P, et al. Validation of continuous 
glucose monitoring in children and 
adolescents with cystic fibrosis: A 
prospective cohort study. Diabetes Care. 
2009;32(6):1020-1022

[105] Dobson L, Sheldon CD, 
Hattersley AT. Validation of interstitial 
fluid continuous glucose monitoring 
in cystic fibrosis. Diabetes Care. 
2003;26(6):1940-1941

[106] Dobson L, Sheldon CD, 
Hattersley AT. Conventional measures 
underestimate glycaemia in cystic 
fibrosis patients. Diabetic Medicine. 
2004;21(7):691-696

[107] Schiaffini R, Brufani C, Russo B, 
Fintini D, Migliaccio A, Pecorelli L, 
et al. Abnormal glucose tolerance 
in children with cystic fibrosis: The 
predictive role of continuous glucose 
monitoring system. European Journal of 
Endocrinology. 2010;162(4):705-710

[108] Pu MZMH, Gonçalves AC, 
Minnicucci WJ, Morcillo AM, 
Ribeiro JD, Ribeiro AF. Continuous 
glucose monitoring to evaluate 
glycaemic abnormalities in cystic 
fibrosis. Archives of Disease in 
Childhood. 2018;103(6):592-596

[109] Soliman A, DeSanctis V, Yassin M, 
Elalaily R, Eldarsy N. Continuous 
glucose monitoring system and new 
era of early diagnosis of diabetes 
in high risk groups. Indian Journal 
of Endocrinology and Metabolism. 
2014;18(3):274-282

[110] Ahmed MI, Fox R, Shinkins B, 
Sutton S, Tziaferi V, Gaillard EA. 
Continuous glucose monitoring systems 
for the diagnosis of cystic fibrosis-
related diabetes (protocol). Cochrane 

Database of Systematic Reviews. 
2018;2018(2):CD012953

[111] Brugha R, Wright M, Nolan S, 
Bridges N, Carr SB. Quantifying 
fluctuation in glucose levels to identify 
early changes in glucose homeostasis 
in cystic fibrosis. Journal of Cystic 
Fibrosis. 2018;17(6):791-797

[112] Frost F, Dyce P, Nazareth D, 
Malone V, Walshaw MJ. Continuous 
glucose monitoring guided insulin 
therapy is associated with improved 
clinical outcomes in cystic fibrosis-
related diabetes. Journal of Cystic 
Fibrosis. 2018;17(6):798-803

[113] Granados A, Chan CL, Ode KL, 
Moheet A, Moran A, Holl R. 
Cystic fibrosis related diabetes: 
Pathophysiology, screening and 
diagnosis. Journal of Cystic Fibrosis. 
2019;18:S3-S9

[114] Andersen HU, Lanng S, Pressler T, 
Laugesen CS, Mathiesen ER. Cystic 
fibrosis-related diabetes: The 
presence of microvascular diabetes 
complications. Diabetes Care. 
2006;29(12):2660-2663

[115] Van Den Berg JMW, Morton AM, 
Kok SW, Pijl H, Conway SP, 
Heijerman HGM. Microvascular 
complications in patients with 
cystic fibrosis-related diabetes 
(CFRD). Journal of Cystic Fibrosis. 
2008;7(6):515-519

[116] Okoniewski W, Hughan KS,  
Weiner GA, Weiner DJ, Forno E. 
Glycemic control and FEV1 recovery 
during pulmonary exacerbations 
in pediatric cystic fibrosis-related 
diabetes. Journal of Cystic Fibrosis. 
2020. (Forthcoming). DOI: 10.1016/j.
jcf.2019.12.016 

[117] Olesen HV, Drevinek P, 
Gulmans VA, Hatziagorou E, Jung A, 
Mei-Zahav M, et al. Cystic fibrosis 
related diabetes in Europe: Prevalence, 



Cystic Fibrosis - Facts, Management and Advances

22

risk factors and outcome. Journal of 
Cystic Fibrosis. 2020;19(2):321-327

[118] Miller RJ, Tildesley HD, Wilcox PG, 
Zhang H, Kreisman SH. Sex disparities 
in effects of cystic fibrosis-related 
diabetes on clinical outcomes: A 
matched study. Canadian Respiratory 
Journal. 2008;15(6):291-294

[119] Sharma R, Florea VG, Bolger AP, 
Doehner W, Florea ND, Coats AJ, et al. 
Wasting as an independent predictor of 
mortality in patients with cystic fibrosis. 
Thorax. 2001;56(10):746-750

[120] Belle-van Meerkerk G, de Valk HW, 
Stam-Slob MC, Teding van Berkhout F, 
Zanen P, van de Graaf EA. Cystic 
fibrosis-related diabetes with strict 
glycaemic control is not associated with 
frequent intravenous antibiotics use for 
pulmonary infections. Diabetes Research 
and Clinical Practice. 2016;116:230-236

[121] Van Sambeek L, Cowley ES, 
Newman DK, Kato R. Sputum glucose 
and glycemic control in cystic fibrosis-
related diabetes: A cross-sectional study. 
PLoS One. 2015;10(3):e0119938

[122] Mozzillo E, Franzese A, Valerio G, 
Sepe A, De Simone I, Mazzarella G, 
et al. One-year glargine treatment can 
improve the course of lung disease in 
children and adolescents with cystic 
fibrosis and early glucose derangements. 
Pediatric Diabetes. 2009;10(3):162-167

[123] Wooldridge JL, Szczesniak RD, 
Fenchel MC, Elder DA. Insulin 
secretion abnormalities in exocrine 
pancreatic sufficient cystic fibrosis 
patients. Journal of Cystic Fibrosis. 
2015;14(6):792-797

[124] Alicandro G, Battezzati PM, 
Battezzati A, Speziali C, Claut L, 
Motta V, et al. Insulin secretion, 
nutritional status and respiratory 
function in cystic fibrosis patients 
with normal glucose tolerance. Clinical 
Nutrition. 2012;31(1):118-123

[125] Brennan AL, Gyi KM, Wood DM, 
Johnson J, Holliman R, Baines DL, 
et al. Airway glucose concentrations 
and effect on growth of respiratory 
pathogens in cystic fibrosis. Journal of 
Cystic Fibrosis. 2007;6(2):101-109

[126] Gill SK, Hui K, Farne H, 
Garnett JP, Baines DL, Moore LSP, et al. 
Increased airway glucose increases 
airway bacterial load in hyperglycaemia. 
Scientific Reports. 2016;6(1):27636

[127] Garnett JP, Kalsi KK, Sobotta M, 
Bearham J, Carr G, Powell J, et al. 
Hyperglycaemia and Pseudomonas 
aeruginosa acidify cystic fibrosis 
airway surface liquid by elevating 
epithelial monocarboxylate transporter 
2 dependent lactate-H+ secretion. 
Scientific Reports. 2016;6:37955

[128] Baker EH, Clark N, Brennan AL, 
Fisher DA, Gyi KM, Hodson ME, et al. 
Hyperglycemia and cystic fibrosis alter 
respiratory fluid glucose concentrations 
estimated by breath condensate 
analysis. Journal of Applied Physiology. 
2007;102(5):1969-1975

[129] Garnett JP, Gray MA, Tarran R, 
Brodlie M, Ward C, Baker EH, et al. 
Elevated paracellular glucose flux 
across cystic fibrosis airway epithelial 
monolayers is an important factor for 
Pseudomonas aeruginosa growth. PLoS 
One. 2013;8(10):e76283

[130] Philips BJ, Redman J, Brennan A, 
Wood D, Holliman R, Baines D, 
et al. Glucose in bronchial aspirates 
increases the risk of respiratory 
MRSA in intubated patients. Thorax. 
2005;60(9):761-764

[131] Merlo CA, Boyle MP, Diener-
West M, Marshall BC, Goss CH, 
Lechtzin N. Incidence and risk factors 
for multiple antibiotic-resistant 
Pseudomonas aeruginosa in cystic 
fibrosis. Chest. 2007;132(2):562-568

[132] Frost F, Nazareth D, Shaw M, 
Walshaw MJ. Cystic fibrosis related 



23

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

diabetes is not independently associated 
with increased Stenotrophomonas 
maltophilia infection: Longitudinal data 
from the UK CF registry. Journal of 
Cystic Fibrosis. 2019;18(2):294-298

[133] Ziegler B, Oliveira CL, 
Rovedder PM, Schuh SJ. Abreu e 
Silva FA, de Tarso Roth Dalcin P. glucose 
intolerance in patients with cystic 
fibrosis: Sex-based differences in clinical 
score, pulmonary function, radiograph 
score, and 6-minute walk test. 
Respiratory Care. 2011;56(3):290-297

[134] van den Borst B, Gosker HR, 
Zeegers MP, Schols AM. Pulmonary 
function in diabetes: A metaanalysis. 
Chest. 2010;138(2):393-406

[135] Konstan MW, Hilliard KA, 
Norvell TM, Berger M. Bronchoalveolar 
lavage findings in cystic fibrosis 
patients with stable, clinically mild lung 
disease suggest ongoing infection and 
inflammation. American Journal of 
Respiratory and Critical Care Medicine. 
1994;150(2):448-454

[136] Bruce MC, Poncz L, Klinger JD, 
Stern RC, Tomashefski JF Jr, 
Dearborn DG. Biochemical and 
pathologic evidence for proteolytic 
destruction of lung connective tissue 
in cystic fibrosis. The American 
Review of Respiratory Disease. 
1985;132(3):529-535

[137] Ntimbane T, Krishnamoorthy P, 
Huot C, Legault L, Jacob SV, Brunet S, 
et al. Oxidative stress and cystic 
fibrosis-related diabetes: A pilot study 
in children. Journal of Cystic Fibrosis. 
2008;7(5):373-384

[138] Arora NS, Rochester DF. 
Respiratory muscle strength and 
maximal voluntary ventilation in 
undernourished patients. The American 
Review of Respiratory Disease. 
1982;126(1):5-8

[139] Arora NS, Rochester DF. Effect of 
body weight and muscularity on human 

diaphragm muscle mass, thickness, and 
area. Journal of Applied Physiology. 
1982;52(1):64-70

[140] Konstan MW, Morgan WJ, 
Butler SM, Pasta DJ, Craib ML, Silva SJ, 
et al. Risk factors for rate of decline in 
forced expiratory volume in one second 
in children and adolescents with cystic 
fibrosis. The Journal of Pediatrics. 
2007;151(2):134-139

[141] Sanders DB, Emerson J, Ren CL, 
Schechter MS, Gibson RL, Morgan W, 
et al. Early childhood risk factors for 
decreased FEV1 at age six to seven years 
in young children with cystic fibrosis. 
Annals of the American Thoracic 
Society. 2015;12(8):1170-1176

[142] Coderre L, Fadainia C, Belson L, 
Belisle V, Ziai S, Maillhot G, et al. 
LDL-cholesterol and insulin are 
independently associated with body 
mass index in adult cystic fibrosis 
patients. Journal of Cystic Fibrosis. 
2012;11(5):393-397

[143] Bizzarri C, Lucidi V, Ciampalini P, 
Bella S, Russo B, Cappa M. Clinical 
effects of early treatment with insulin 
glargine in patients with cystic fibrosis 
and impaired glucose tolerance. Journal 
of Endocrinological Investigation. 
2006;29(3):RC1-RC4

[144] Bizzarri C, Montemitro E, 
Pedicelli S, Ciccone S, Majo F, Cappa M, 
et al. Glucose tolerance affects pubertal 
growth and final height of children with 
cystic fibrosis. Pediatric Pulmonology. 
2015;50(2):144-149

[145] Cheung MS, Bridges NA, 
Prasad SA, Francis J, Carr SB, Suri R, 
et al. Growth in children with cystic 
fibrosis-related diabetes. Pediatric 
Pulmonology. 2009;44(12):1223-1225

[146] Terliesner N, Vogel M, 
Steighardt A, Gausche R, Henn C, 
Hentschel J, et al. Cystic-fibrosis 
related-diabetes (CFRD) is preceded by 



Cystic Fibrosis - Facts, Management and Advances

24

and associated with growth failure and 
deteriorating lung function. Journal of 
Pediatric Endocrinology & Metabolism. 
2017;30(8):815-821

[147] White H, Pollard K, Etherington C, 
Clifton I, Morton AM, Owen D, et al. 
Nutritional decline in cystic fibrosis 
related diabetes: The effect of intensive 
nutritional intervention. Journal of 
Cystic Fibrosis. 2009;8(3):179-185

[148] Bennett P, Burch T, Miller M. 
Diabetes mellitus in American 
(Pima) Indians. The Lancet. 
1971;298(7716):125-128

[149] Olszowiec-Chlebna M, Koniarek-
Maniecka A, Stelmach W, Smejda K, 
Jerzyńska J, Majak P, et al. Predictors of 
deterioration of lung function in polish 
children with cystic fibrosis. Archives of 
Medical Science. 2016;2:402-407

[150] Coriati A, Ziai S, Lavoie A, 
Berthiaume Y, Rabasa-Lhoret R. The 
1-h oral glucose tolerance test glucose 
and insulin values are associated with 
markers of clinical deterioration in 
cystic fibrosis. Acta Diabetologica. 
2016;53(3):359-366

[151] Bourdy S, Rabilloud M, 
Touzet S, Roche S, Drai J, Martin C, 
et al. 178 glucose tolerance in cystic 
fibrosis patients over a 3-year period 
(DIAMUCO study). Journal of Cystic 
Fibrosis. 2015;14:S103

[152] Chan CL, Vigers T, Pyle L, 
Zeitler PS, Sagel SD, Nadeau KJ. 
Continuous glucose monitoring 
abnormalities in cystic fibrosis youth 
correlate with pulmonary function 
decline. Journal of Cystic Fibrosis. 
2018;17(6):783-790

[153] Prentice BJ, Chelliah A, Ooi CY, 
Hameed S, Verge CF, Plush L, et al. 
Peak OGTT glucose is associated with 
lower lung function in young children 
with cystic fibrosis. Journal of Cystic 
Fibrosis. 2020;19(2):305-309

[154] Reynaud Q , Rabilloud M, Roche S, 
Poupon-Bourdy S, Iwaz J, Nove-
Josserand R, et al. Glucose trajectories in 
cystic fibrosis and their association with 
pulmonary function. Journal of Cystic 
Fibrosis. 2018;17(3):400-406

[155] Leclercq A, Gauthier B, Rosner V, 
Weiss L, Moreau F, Constantinescu AA, 
et al. Early assessment of glucose 
abnormalities during continuous 
glucose monitoring associated with lung 
function impairment in cystic fibrosis 
patients. Journal of Cystic Fibrosis. 
2014;13(4):478-484

[156] Prentice BJ, Ooi CY, Strachan RE, 
Hameed S, Ebrahimkhani S, Waters SA, 
et al. Early glucose abnormalities 
are associated with pulmonary 
inflammation in young children 
with cystic fibrosis. Journal of Cystic 
Fibrosis. 2019;18(6):869-873

[157] Lam GY, Doll-Shankaruk M, 
Dayton J, Rodriguez-Capote K, 
Higgins TN, Thomas D, et al. The use of 
fructosamine in cystic fibrosis-related 
diabetes (CFRD) screening. Journal of 
Cystic Fibrosis. 2018;17(1):121-124

[158] Onady GM, Stolfi A. Insulin and 
oral agents for managing cystic fibrosis-
related diabetes. Cochrane Database of 
Systematic Reviews. 2016;4:CD004730

[159] Barrio R. Cystic fibrosis-related 
diabetes: Novel pathogenic insights 
opening new therapeutic avenues. 
European Journal of Endocrinology. 
2015;172(4):R131-RR41

[160] Bellin MD, Laguna T, Leschyshyn J, 
Regelmann W, Dunitz J, Billings J, et al. 
Insulin secretion improves in cystic 
fibrosis following ivacaftor correction 
of CFTR: A small pilot study. Pediatric 
Diabetes. 2013;14(6):417-421

[161] Kelly A, De Leon DD, Sheikh S, 
Camburn D, Kubrak C, Peleckis AJ, 
et al. Islet hormone and incretin 
secretion in cystic fibrosis after four 



25

Detection and Management of Early Glucose Abnormalities in Cystic Fibrosis
DOI: http://dx.doi.org/10.5772/intechopen.92847

months of ivacaftor therapy. American 
Journal of Respiratory and Critical Care 
Medicine. 2019;199(3):342-351

[162] Minicucci L, Haupt M, Casciaro R, 
De Alessandri A, Bagnasco F, 
Lucidi V, et al. Slow-release insulin in 
cystic fibrosis patients with glucose 
intolerance: A randomized clinical trial. 
Pediatric Diabetes. 2012;13(2):197-202

[163] Kolouskova S, Zemkova D, 
Bartosova J, Skalicka V, Sumnik Z, 
Vavrova V, et al. Low-dose insulin 
therapy in patients with cystic fibrosis 
and early-stage insulinopenia prevents 
deterioration of lung function: A 
3-year prospective study. Journal of 
Pediatric Endocrinology & Metabolism. 
2011;24(7-8):449-454

[164] Drummond RS, Ross E, Bicknell S, 
Small M, Jones GC. Insulin therapy 
in patients with cystic fibrosis related 
diabetes mellitus: Benefit, timing 
of initiation and hypoglycaemia. 
Practical Diabetes International. 
2011;28(4):177-182

[165] Hameed S, Morton JR, Field PI, 
Belessis Y, Yoong T, Katz T, et al. 
Once daily insulin detemir in cystic 
fibrosis with insulin deficiency. 
Archives of Disease in Childhood. 
2012;97(5):464-467

[166] Pu MZMH, Christensen-Adad FC, 
Gonçalves AC, Minicucci WJ, 
Ribeiro JD, Ribeiro AF. Insulin therapy 
in patients with cystic fibrosis in 
the pre-diabetes stage: A systematic 
review. Revista Paulista de Pediatria. 
2016;34(3):367-373


