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Chapter

Resolution Enhancement of
Hyperspectral Data Exploiting
Real Multi-Platform Data
Rocco Restaino, Gemine Vivone, Paolo Addesso,

Daniele Picone and Jocelyn Chanussot

Abstract

Multi-platform data introduce new possibilities in the context of data fusion, as
they allow to exploit several remotely sensed images acquired by different combi-
nations of sensors. This scenario is particularly interesting for the sharpening of
hyperspectral (HS) images, due to the limited availability of high-resolution (HR)
sensors mounted onboard of the same platform as that of the HS device. However,
the differences in the acquisition geometry and the nonsimultaneity of this kind of
observations introduce further difficulties whose effects have to be taken into
account in the design of data fusion algorithms. In this study, we present the most
widespread HS image sharpening techniques and assess their performances by
testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the
WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the
use of multi-platform data and, at the same time, the benefits achievable through
this approach.

Keywords: hyperspectral image sharpening, Hyperion data, WorldView-3 images,
data fusion, remote sensing

1. Introduction

Hyperspectral (HS) data often provide great insights in the field of Earth
Observing (EO) for the analysis and monitoring of the planet surface [1, 2]. As they
embed a very detailed spectral information of the observed scene, their employ-
ment has become necessary in many applications, including natural vegetation
classification and monitoring, geological map construction, chemical properties
detection, land cover observation, and water resources management [1, 2]. The
widespread use of hyperspectral data pushed toward the development of acquisition
devices with increasing capabilities, the most recent of which are characterized by a
ground spatial interval (GSI) even below 10 m [2].

However, this spatial resolution is still insufficient in many fields, as, for
instance, geology [3], agriculture [4], and land cover classification [5]. Data fusion
techniques provide a possible solution to this issue that has been validated in several
studies performed on both on real and simulated datasets [6–8]. In principle, high
spatial resolution improvement factors can be attained for hyperspectral data, but
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the scarcity of exploitable companion high-resolution (HR) data represents a major
issue. In fact, it is just possible to find very few examples of hyperspectral sensors
co-located onboard of the same platform with high spatial resolution devices, such
as panchromatic (PAN) and/or multispectral (MS) sensors. Since the Earth
Observing-1, which mounted both a panchromatic and a multispectral camera
onboard, is currently dismissed, the only remaining satellites to assure the avail-
ability of companion panchromatic sensors are the new Prisma and HypXIM, which
are characterized by a six and four times higher spatial resolution with respect to the
HS instrument, respectively.

The presence of a high-resolution sensor mounted on the same platform repre-
sents the ideal setting for the data fusion problem since the two images to combine
are almost simultaneously acquired from the same point of view. However, in
addition to the cited difficulty in finding platforms with this feature, the resolution
ratio between the HS images and the companion high-resolution image is
constrained to be very small, ranging from a value of 3 (EO-1 case) to 6 (Prisma
case). Further resolution enhancement would require an additional upsampling
procedure at one point in the algorithmic stack, thus strongly compromising the
quality of the final fused product.

An alternative is constituted by the fusion of data acquired by multiple plat-
forms, which, on the other hand, implies further difficulties related to the different
observation geometry and the unavoidable lack of simultaneity between the acqui-
sitions. Although this approach has been deeply investigated in the literature, the
studies have almost always utilized simulated data [9, 10], thus ignoring the two
cited issues that affect real data. A previous study based on real acquisitions was
performed in [11] with temporally aligned images acquired by drones and aircrafts.

The current study focuses on multi-platform real data and aims at illustrating
the state of the art of the, both classical and recent, low-level data fusion algorithms
applicable to these data. Classical algorithms were adapted from the pansharpening
literature, namely, from studies concerning the fusion of a panchromatic and a
multispectral image [12]. They can be straightforwardly applied to the HS/PAN
fusion problem [9, 12, 13], but they require a preliminary assignation phase when
the high-resolution image is constituted by a multispectral image [14]. Indeed, a
specific channel of the MS image has to be assigned to each hyperspectral band to
complete the fusion process by means of classical techniques. The assignation algo-
rithm (AA) significantly impacts the final results, and, for this reason, several
algorithms have been proposed for completing this task [14, 15]. The latter fusion
algorithms have been properly developed for the fusion of the HS and MS data and
thus can be straightforwardly applied to the problem at hand. They include proper
modifications of classical algorithms (hypersharpening) [16, 17] and applications of
more general statistical approaches, as, for instance, the Bayesian framework [18],
which is employed with naive [18, 19] and sparse Gaussian priors [20] and with
alternative regularization terms [21, 22].

Three different datasets collected form the Earth Observing-1 and the World-
View-3 (WV3) satellites were employed in this study to evaluate the performance
of the fusion algorithms. The tests were conducted according to the reduced reso-
lution (RR) assessment procedure, based on Wald’s protocol [23]. Specifically, the
available HS image is employed as reference (or ground truth (GT)), and the
images to fuse are constituted by properly degraded versions of the available data.
This facilitates the use of accurate indexes for evaluating the quality of the final
products thanks to the presence of a reference image. The availability of real data
allowed to draw conclusions about the behavior of the different types of fusion
algorithms and, in the case of classical pansharpening, about the assignation
approaches.
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The work is organized as follows. Section 2 describes the problem under consid-
eration, including some details on the main fusion techniques employed in
hyperspectral image sharpening. The conducted experimental analysis is detailed in
Section 3, whereas the outcomes are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. The hyperspectral sharpening framework

The data fusion procedure to sharp hyperspectral images consists in augmenting
the spatial information contained in a low-resolution (LR) hyperspectral image, by
injecting information from high-resolution data.

In the following, wewill denote a generic acquisition composed byNA channels as a
set of bidimensional matrices, as follows:A ¼ Akf gk¼1,… ,NA

. More in detail, the HS
datacube will be denoted byH ¼ Hkf gk¼1,… ,NH

, anMS acquisition byM ¼

Mkf gk¼1,… ,NM
, and a PAN image by P ¼ Pkf gk¼1. The enhancement ratio, namely, the

ratio between the spatial resolution of the original HS image and the desired spatial
resolution, is indicated by R.We restrict the analysis of the fusion problem to the
combination of two images, i.e., the details to be injected are extracted by a single image.

2.1 Classical pansharpening approaches

Classical pansharpening algorithms are designed to operate with a monochro-
matic image, which acts as source to extract details to be injected into the LR image.
Consequently, as long as the HR image is still monochromatic, the framework of
classical pansharpening can be directly applied to this scenario, with the straight-
forward adjustment of using the HS image as the LR source image to fuse. Con-
versely, when the details are extracted from a multichannel image, the application
of pansharpening approaches requires an assignment procedure between each HS
band and a specific channel of the high-resolution MS image.

Data fusion through classical pansharpening approaches can be formalized by
the following equation [24]:

bHk ¼ eHk þGk∘ Yk � YLP
k

� �
, (1)

which represents the sharpening procedure of a generic k-th channel of the HS
image. In Eq. 1, the estimated HR hyperspectral image is indicated by Ĥ, while ~H
denotes an upsampled (interpolated) version of the original imageH tomatch the scale
of Ĥ. The details, represented by the difference between the HR imageY and its low
pass versionYLP, are additively injected in the latter image by properly weighting them
through an element-by-element matrix product (indicated by the ∘ operator) by the
injection coefficient matrixG. It is worth to remind that both the details and thematrix
G in (1) are band-dependent, since somemethods require a preliminary equalization of
the HR image andG is often optimized for each channel.

2.1.1 Component substitution and multi-resolution analysis algorithms

It is possible to specify different techniques of classical pansharpening methods
according to the particular definition of the injection gain matrix G and the method
used for calculating the low-resolution image YLP. In the literature, the key taxon-
omy for the macro-categorization is related to the techniques to YLP, as two

3

Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data
DOI: http://dx.doi.org/10.5772/intechopen.92795



separate classes of methods arise with very distinguished properties. In particular,
YLP can be obtained either by properly combining the channels of ~H or by spatially
degrading the HR image Y. The first approach defines the so-called component
substitution (CS), or spectral, methods, whose name is to underline that the fusion
is obtained by substituting the HS intensity component with the HR image [25].
This class includes both archetypical methods, such as the Brovey transform (BT)
[26], the intensity-hue-saturation [27, 28], the principal component decomposition
[29–31], or the Gram-Schmidt (GS) expansion [32], and more recent approaches,
such as the Gram-Schmidt adaptive (GSA) method [33], which is able to achieve
state-of-the-art performance [24].

The second class of approaches is known in the literature as multi-resolution
analysis (MRA), or spatial, methods, since they operate directly in the spatial
domain to obtain YLP through a multi-scale decomposition. The MRA class includes
a wide plethora of methods, which exploit a variety linear filters (box filters
[34, 35], Gaussian filters [36], and à trous wavelet filters [37]) or nonlinear decom-
positions (morphological filters) [38].

The two classes have different characteristics, both in terms of visual aspect of
sharpened images and in terms of robustness against nonideal working conditions.
Specifically, methods belonging to the CS class usually yield final products featuring
an accurate reproduction of the spatial details with an intrinsic robustness to limited
spatial misalignments between the two images to fuse [39]. Images produced by
MRA approaches are instead characterized by a higher spectral coherence with the
original LR image, possibly even reducing temporal misalignments among data to
be combined [40].

2.1.2 Assignation algorithms

As seen in the previous section, in the case of HS/PAN fusion, the only possible
choice forHRdataY in (1) is represented by the PAN image. Conversely, for theHS/MS
fusion, any of theMS channels can act as HR data, demanding an assignation algorithm
to couple a specific MS band with a given HS channel. This problemwas addressed in
previous papers by defining a series of criteria for selecting themost suitableMS
channel [15, 41]. The possible approaches can be either data-independent, exclusively
utilizing the characteristics of the sensors, or data-dependent, forwhich the assignment
depends on the particular datasets. The analysis reported in [14] highlights the superior
performances of the second approach but at the cost of requiring an additional compu-
tational effort to evaluate the new assignation for each new dataset.

Among the data-independent approaches, acceptable performance can be
obtained by minimizing the distance between the centroid of the relative spectral
response (RSR) of the sensor acquiring the Hk channel and the centroids of the
RSRs of the HR sensor. This method, nicknamed CEN-AA, assigns toHk the channel
Mn that verifies the condition:

n ¼ argmin
j

∣μHk
� μM j

∣, (2)

wherein

μAi
¼

ð
f

RAi fð ÞÐ
RAi

fð Þdf
df (3)

defines the centroid of the generic relative spectral response (RSR) RAi
fð Þ of a

given channel Ai.
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For the AA step, the overall best results in terms of data fidelity of the
reconstructed fused image are obtained by employing the algorithms proposed in
[15, 41]. The first consists in maximizing the cross correlation (CC) betweenHk and
the MS channels and is thus denoted in the following as CC-AA. Formally, it
consists in coupling Hk with the HR image Y ¼ Mn such that:

n ¼ argmax
j

CC Hk,M↓R
j

� �
¼ argmax

j

Hk,M↓R
j

D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hk,Hkh i M↓R

j ,M↓R
j

D Er (4)

where M↓R
j indicates the image obtained by degrading the resolution of M j by

means of a filter matched to the modulation transfer function (MTF) of the j-th MS
channel and a downsampling by a factor R; A j,Ak

� �
represents the scalar product

among the vectorized version of two generic channels A j and Ak.
The alternative approach, defined in [41] and assessed in [14], aims at evaluat-

ing the spectral coherence of each available HR channel if it acts as a substitute of
Hk. In order to quantify this criterion, let us build the supporting images R j,k by
substituting the M j bands at the place of Hk, which are compared to the original
image H. Formally, R j,k is defined as:

R
j,k
i ¼

M kð Þ
j , i ¼ k,

Hi, i �¼ k,

(
(5)

where M kð Þ
j is obtained by equalizing the first two statistical moments of M↓r

j

w.r.t. Hk. The AA rule is defined by setting Y equal to the channel Mn that satisfies
the equation:

n ¼ argmin
j

SAM H,R j,k	 

, (6)

in which SAM A,B½ � denotes the spectral angle mapper (SAM) between A and B
[42]. Accordingly, this approach is named SAM-AA by the authors.

2.2 Methods designed for hyperspectral image sharpening

Several different option have been recently developed ad hoc for the sharpening
of HS data by using complementary images of different nature. A first option is to
modify the existing pansharpening algorithms to account for the specific character-
istics of the HS data. A different approach consists in developing a completely novel
method by resorting to a suitable mathematical framework, as the widely exploited
statistical Bayesian formalization.

2.2.1 Hypersharpening

A very effective method for sharpening HS images relies upon the construction
of a simulated HR image assigned for each channel and obtained as a certain
combination the available HR channels.

This approach proposed in [16] under the name of hypersharpening consists in
defining the synthetic HR image Yk to use in (1) for a given Hk through the
expression:
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Yk ¼
XNM

m¼1

wk,mMm, (7)

in which the weights wk,m are optimized through linear regression as described
in [16]. Equalizing the mean and variance of Yk with respect to Hk yields an
improved version of hypersharpening, as proposed in [17].

The term YLP
k in (1) is suggested to be obtained with the same strategies pro-

posed by MRA methods, by degrading Yk via an appropriate filter such as the MTF-
matched generalized Laplacian pyramid. The fusion formula (1) is completed by
defining the injection gain matrix that is derived through the regression-based
model. Namely, Gk is a constant matrix with entries:

gk ¼
cov ~Hk,YLP

k

� �

cov YLP
k ,YLP

k

� � , (8)

where cov �, �ð Þ denotes the covariance operator.

2.2.2 Bayesian approaches

Most novel methods for sharpening HS images exploit the Bayesian statistical
formalization of the fusion problem. In this approach, both the LR and HR available
data are modeled as transformations, operating, respectively, in the spatial and in
the spectral domains of an unknown ideal HR hyperspectral image denoted as Z [9].

Accordingly, the equation relating the target HR and the available LR image is
written as:

h ¼ zBSþ nH, (9)

where the lowercase letters denote the version of the matrices in lexicographic
order (obtained by concatenating the columns of each channel), B is the blurring
matrix, S is the downsampling matrix, and nH is the noise accounting for the
unmodeled effects corrupting the relationship. (9) is coupled either to:

p ¼ RPzþ nP, (10)

or to

m ¼ RMzþ nM, (11)

in the HS/PAN and HS/MS cases, respectively. They express the functional
models relating z to p or m and include the factors RP and RM that model the RSRs
of the HR sensors and the noise addends nP and nM, accounting for the inaccuracy
of the first terms.

The Bayesian approach based on the maximum a posteriori probability (MAP)
consists in estimating the target vector z through the formula:

ẑ ¼ argmaxzp zjh,vð Þ: (12)

in which we denote by v the available HR image (m or p). A reliable solution of
(12) can be found by regularizing the problem by adding a penalization term to the
quantity p zjh,vð Þ. Examples of widely employed regularization terms include
Gaussian priors [43, 44] or vector total variation (VTV) [22].
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3. Quality assessment of fusion products

In this section, we present the performance assessment setup procedure for
sharpening the HS data. The objective is to test the viability of fusion algorithms to
reach a resolution enhancement factor R that goes beyond the limitations of
single-platform setups. In the specific testbed, the HS data are constituted by
acquisitions taken by the Hyperion sensor, which is characterized by a GSI of
30 m. The satellite platform also features the a PAN sensor, called ALI, whose GSI
is 10 m, which corresponds to a nominal enhancement factor R ¼ 3. For more
ambitious factors, two extra scenarios are considered; in particular a very inter-
esting comparison can be taken at R ¼ 6 and R ¼ 12 by analyzing different behav-
iors for single- and multi-platform with a selection of 12 state-of-the-art fusion
algorithms. Specifically the single-platform case requires a preliminary interpola-
tion of the ALI images, here performed via a convolution with a 45-tap interpola-
tion kernel. The multi-platform case will employ, as companion source image, the
MS imagery acquired by the WorldView-3, which instead have to be downsized to
the target resolution, as it is characterized by a smaller GSI than the target one
reached by all the considered R. The decimation procedure is performed by
employing a filter, mimicking the modulation transfer function of the MS sensor
and a downsampling.

We want to remark here that this study will ignore the contribution of the ALI
MS and WV3 PAN sensors. The former has the same GSI of the Hyperion sensor,
making its information mostly redundant. Regarding the latter, we want to remark
that the native GSI of the MS WV3 sensors already exceeds that of the target
resolution characterized, for all R under examination. Consequently, it is preferable
to employ the MS sensor, as it is already characterized by a better spectral resolu-
tion, as shown in previous studies [14, 41].

3.1 Assessment procedure

The assessment procedure has been carried out at reduced resolution, namely, the
original HS image is used as reference, and the images to fuse are obtained by
degrading the available images by a factor equal to the resolution enhancement
factor R. The adopted Wald’s protocol [23] requires the reproduction of the charac-
teristics of the fusion problem at a lower resolution. Accordingly, all the available
images are degraded by using an MTF-shaped filter matched to the specific sensor
and a downsampling system with factor R.

The reduced resolution assessment protocol allows the use of many accurate
quality indexes, since the ground truth image is available. In this work we consider
the spectral angle mapper [42] for evaluating the spectral distortion and the erreur
relative globale adimensionnelle de synthèse (ERGAS) [45] for assessing the radiomet-
ric distortion. The vectorial Q2n-index [46] index is used for obtaining a compre-
hensive measure of the overall image quality. Finally, we employed the universal
image quality index (UIQI) or Q-index, proposed by Wang and Bovik [47], for
performing a band-by-band comparison of the final product with the reference
image.

3.2 Datasets

Three datasets are used for illustrating the capabilities of data fusion algorithms
in producing very high-resolution hyperspectral images. The images have been
acquired by the Earth Observing-1 and WorldView-3 sensors. The different settings
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allow to examine the features of the sharpening algorithms in the presence of the
most common issues implied by multi-platform data fusion, namely, the different
points of view and the temporal changes in the illuminated scenes between the two
acquisitions. In this study we employ the visible near-infrared (VNIR) bands B09-
B57, acquired by the sensor Hyperion, as HS data. The single-platform companion
data are constituted by the PAN images collected by the ALI sensor, having a 10 m
spatial resolution. All EO-1 data share a radiometric resolution of 15 bits. The multi-
platform data have been acquired by the WV3 satellite. They are represented by an
MS image composed of eight channels (coastal, blue, green, yellow, red, red edge,
NIR1, and NIR2) with a radiometric resolution of 11 bits and an original spatial
resolution of 1.2 m.

The employed datasets are briefly described below:

• Harlem dataset: the images have been collected in New York, USA, in the
neighborhoods of the Harlem River. The size of the Hyperion and PAN ALI
data, acquired on July 21, 2016, is 144 � 144 pixels and 432 � 432 pixels,
respectively, while the native dimension of the WV3 MS image, acquired on
June 9, 2016, is 4320 � 4320 pixels.

• Agnano dataset: the images refer to the area of the Agnano Racecourse, next to
the city of Naples, Italy. The size of the Hyperion data is 144 � 72 pixels, and
thus the corresponding ALI andWV3 images are composed by 432� 216 pixels
and 4320 � 1660 pixels, respectively. The acquisition dates of the EO-1 and
WV3 sensors are May 20, 2015, and June 8, 2015, respectively.

• Capodichino dataset: the images refer to the east surrounding Naples, Italy,
around Capodichino Airport. The images are composed of the same number of
pixels of the Agnano dataset and were acquired on May 20, 2015, and on
February 4, 2002, by the EO-1 and WV3 satellites, respectively.

3.3 Fusion algorithms

We compare several fusion algorithms to fully assess the quality of HS products
achievable through data acquired by a single or multiple platforms. We firstly focus
on the use of classical pansharpening approaches, which constitute an almost ready-
to-use solution and then present the purposely designed methods. Among the wide
plethora of available pansharpening methods [24], we employed the following CS
and MRA methods: Brovey transform [26], Gram-Schmidt spectral sharpening [32],
and the Gram-Schmidt adaptive [33] belonging to the CS class, the additive wavelet
luminance proportional (AWLP) [37], the generalized Laplacian pyramid [48] with
MTF-matched filter [49] using both the high-pass modulation scheme [50] (GLP-
HPM), and the regression-based injection model (GLP-CBD) [51] belonging to the
MRA class.

Among the second group of approaches, we consider the hypersharpening
(Hyper) method, developed in [16, 17], and four Bayesian techniques, namely, the
coupled nonnegative matrix factorization (CNMF) [21], the naive Gaussian prior
(Bay-N) [43], the sparsity promoted Gaussian prior (Bay-S) [44], and the
hyperspectral superresolution (HySure) [22].

Finally, we report the results related to a method for upscaling the original
image at the target scale by a simple interpolation of the original HS image. We
denote as EXP this method that is carried out through a 45-tap interpolation filter
and that constitutes also the baseline for more complex sharpening methods
presented here.
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4. Experimental results

The performance of the fusion algorithms are evaluated both by calculating the
numerical values of the chosen quality indexes and by assessing the final products
by visual inspection.

The first proposed dataset is about Harlem that has the purpose of illustrating
the capabilities of producing a significant improvement of the spatial quality of the
original HS images through the compared algorithms. To this aim, we report in
Figure 1 the results related to all the tested enhancement factors (R = 3,6,12), using
one exemplary algorithm of each class. The RGB images are built by averaging a
group of channels in the red, green, and blue frequency ranges (B29–B33, B17–B22,
and B11–B15, respectively) to construct the required channels. Naturally, all the
reference images (or ground truth) coincide, since they are represented by the
original HS image; see Figure 1(a), (m), and (y). On the contrary, the simulated LR
HS images, whose upsampled versions (EXP) are reported in Figure 1(g), (s), and
(ae), get more and more degraded as the enhancement factor increases.

Some introductory considerations can be drawn from the images in Figure 1
obtained by using the SAM-AA for coupling the MS bands to the HS channels. In fact,
the first remarkable result is the high quality of the final products achievable also at
very high enhancement factors. More in detail, the images obtained by using classical
GLP-CBD and the Hyper approach (which constitutes a generalization of the former
approach, since both employ a regression-based injection scheme) produce the most
appealing sharpened image. They are able to greatly enhance the spatial content of the
original HS image, preserving an appreciable coherence of the colors.

On the other hand, the images achievable by using the ALI PAN have a satisfac-
tory aspect only for R=3, as it was arguable by the 10 m resolution of the employed
HR sensor. The effect of the interpolation is clearly visible in Figure 1(n) and (z),
and, thus, this approach could be preferable only when spatial or temporal mis-
alignments among the multi-platform data cannot be avoided.

Those results are perfectly matched to the index values contained in Table 1.
Actually, the numerical values point out that in most cases, the use of perfectly
aligned images coming from a different satellite can produce images with superior
quality also in the case of R=3. In this case, the closer correspondence between the
details extracted in the MS channel and the missing spatial information of the HS
image can justify the outcome.

Finally, we note that the comparison among the assignation algorithms mainly
underlines that the two methods optimizing the assignation according to the
specific dataset get almost the same results.

The other two scenes allow to gain more insight about the comparison of the
sharpening algorithms and of the assignation algorithms. The EO-1 data have been
extracted by the same images, while the multi-platform data have very different
characteristics. In fact, while the WV3 image of the Agnano dataset has been
acquired within a few days from the EO-1 data, the WV3 image of the Capodichino
was collected more than 10 years earlier. Accordingly, the layout of the object
present in the Capodichino scene is very different among the two passages, also
because the area contains rapidly changing objects. A comparison of the two images
can be achieved by having a look at Figure 2(a) and (b). The latter scene refers to
Naples Airport and contains a plane on the runway that is not detectable in the
corresponding WV3 MS image shown in Figure 3(d). Furthermore, different man-
made objects are present in the illuminated area at the two acquisition times.

The results related to the Agnano dataset (see Table 2) confirm the conclusions
drawn from the analysis of the Harlem dataset. They correspond to the most typical
situation in which the images to fuse are ordered to a data provider, minimizing as
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much as possible the difference between the passage times of the two satellites.
Accordingly, in both cases, the illuminated areas contain very similar features that
make the multi-temporal data particularly valuable. However, both also represent

Figure 1.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Harlem dataset (red,
green, and blue bands). The resolution enhancement factor is R = 3 (first two rows), 6 (3rd and 4th rows), 12
(5th and 6th rows). (WorldView-3 satellite images courtesy of the DigitalGlobe Foundation). The figure labels
indicate the fusion algorithm (see Section 3.3) and the high resolution data utilized.
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 3.5265 5.8326 0.7130 5.1319 3.8836 0.4504 6.5924 2.3097 0.1948

BT PAN 3.5265 6.5102 0.7966 5.1319 3.9027 0.6722 6.5924 2.2775 0.4588

MS-CEN 3.5803 5.2828 0.8226 4.2943 2.8664 0.7881 4.9775 1.6175 0.7234

MS-CC 3.3063 5.1159 0.8228 3.9316 2.7988 0.7893 4.6801 1.6036 0.7325

MS-SAM 3.2360 5.1028 0.8210 3.9316 2.7988 0.7893 4.6801 1.6036 0.7325

GS PAN 5.3862 7.0484 0.8087 6.6416 4.1369 0.6680 7.7176 2.3742 0.4410

MS-CEN 3.6328 5.2939 0.8230 4.3261 2.8723 0.7886 4.9842 1.6189 0.7235

MS-CC 3.2752 5.1224 0.8265 3.8607 2.7679 0.7929 4.5271 1.5734 0.7273

MS-SAM 3.2524 5.1175 0.8264 3.8607 2.7679 0.7929 4.5271 1.5734 0.7273

GSA PAN 3.2214 4.7124 0.8738 4.8934 3.3652 0.6894 6.6072 2.2022 0.4087

MS-CEN 3.5223 5.3652 0.8409 3.4018 2.5822 0.8428 3.8959 1.3216 0.8294

MS-CC 3.1317 4.9960 0.8560 2.9116 2.3978 0.8584 3.4708 1.2932 0.8209

MS-SAM 3.1743 4.9975 0.8561 2.9116 2.3978 0.8584 3.4708 1.2932 0.8209

AWLP PAN 3.7616 5.4225 0.8676 5.2760 3.4602 0.6878 6.6735 2.2121 0.3316

MS-CEN 2.8262 4.3152 0.8917 3.4476 2.5087 0.8453 4.6396 1.5423 0.7435

MS-CC 2.5918 4.0802 0.8964 3.1629 2.4025 0.8500 4.4146 1.5199 0.7475

MS-SAM 2.5858 4.0637 0.8957 3.1629 2.4025 0.8500 4.4146 1.5199 0.7475

GLP-
HPM

PAN 3.8136 5.4635 0.8586 5.4884 3.7330 0.6855 6.9504 2.2929 0.4577

MS-CEN 2.3843 3.8074 0.9040 3.1578 2.3075 0.8535 3.9734 1.3581 0.7813

MS-CC 2.1285 3.6578 0.9083 2.7886 2.2014 0.8592 3.5383 1.3000 0.7867

MS-SAM 2.1307 3.6586 0.9082 2.7886 2.2014 0.8592 3.5383 1.3000 0.7867

GLP-
CBD

PAN 3.1941 4.5103 0.8809 4.9075 3.3653 0.7091 6.7263 2.2100 0.4833

MS-CEN 2.4442 4.0778 0.8955 3.0302 2.3854 0.8653 3.3037 1.2603 0.8559

MS-CC 2.1961 3.9109 0.9007 2.6360 2.2524 0.8728 2.7772 1.1730 0.8643

MS-SAM 2.1949 3.9103 0.9007 2.6360 2.2524 0.8728 2.7772 1.1730 0.8643

Hyper PAN 3.1925 4.5103 0.8809 4.8948 3.3646 0.7091 6.5771 2.2062 0.4840

MS 2.1810 4.1296 0.8901 2.5145 2.3331 0.8631 2.4683 1.1685 0.8584

CNMF PAN 3.6166 4.9517 0.8486 5.1629 3.4878 0.6767 6.5140 2.1778 0.4502

MS 2.7434 5.0313 0.8244 3.0144 2.5666 0.8161 3.1548 1.2958 0.8152

Bay-N PAN 3.0726 4.1725 0.8832 5.5648 3.6632 0.6391 7.3189 2.2828 0.4263

MS 2.4412 4.2739 0.8741 3.7782 2.8095 0.8122 4.1716 1.4252 0.8083

Bay-S PAN 2.9726 4.1264 0.8857 5.4515 3.6479 0.6328 7.3540 2.2766 0.4241

MS 2.4381 4.2740 0.8741 3.7800 2.8104 0.8122 4.1295 1.4233 0.8085

HySure PAN 2.9758 4.2484 0.8864 6.6141 4.3498 0.6034 7.7052 2.3314 0.4497

MS 2.3304 4.5347 0.8634 3.7736 2.8694 0.8068 3.4966 1.3647 0.8187

For each algorithm, the best result among the HR options is in boldface.

Table 1.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Harlem dataset,
for resolution enhancement ratio R ¼ 3, 6, 12 .
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almost ideal cases, since the presence of rapidly changing objects, for example, the
aircrafts present in the Capodichino dataset, can vary also within very close pas-
sages. Accordingly, particularly interesting is the case of the Capodichino dataset,
which gives rise to somewhat unalike results, which are reported in Table 3. In fact,
in most cases, the single-platform setting almost always yields better results, even if
the visual appearance of the images related to the multi-platform approach is often
preferable in terms of quantity of injected details (see Figure 3). Actually, a more
accurate analysis evidences that multi-platform products yield a sharpened image in

Figure 2.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Agnano dataset (red,
green, and blue bands). The resolution enhancement factor is R ¼ 6 (WorldView-3 satellite images courtesy of
the DigitalGlobe Foundation). The figure labels indicate the fusion method (see Section 3.3), the high resolution
data and the assignation algorithm (see Section 2.1.2), utilized.
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which the plane is absent (especially in CS methods). Moreover, the spectral quality
of the final products is significantly compromised if the WV3 MS images are used.

The spatial quality differences among the various algorithms can be further
investigated by resorting to a quality index that allows a band-by-band analysis of
the quality of the algorithms output. To this aim, we report in Figures 4 and 5 the
behavior of the Q-index as a function of the HS band. The two images reveal both
similarities and discrepancies in the algorithms’ performance. In particular, we can
note that for the HS channels with support contained in the frequency range

Figure 3.
Close-ups of the products achieved by applying the pansharpening algorithms to the RR Capodichino dataset
(red, green, and blue bands). The resolution enhancement factor is R ¼ 6 (WorldView-3 satellite images
courtesy of the DigitalGlobe Foundation). The figure labels indicate the fusion method (see Section 3.3), the high
resolution data and the assignation algorithm (see Section 2.1.2), utilized.
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.6173 2.5563 0.8068 3.7601 1.7890 0.5523 4.6496 1.0807 0.2831

BT PAN 2.6173 3.0548 0.8058 3.7601 1.8723 0.6009 4.6496 1.0984 0.3604

MS-CEN 3.2295 2.8406 0.8228 3.6738 1.5425 0.7624 4.2802 0.9126 0.6314

MS-CC 2.8772 2.7482 0.8259 3.3037 1.4760 0.7778 3.9821 0.8829 0.6574

MS-SAM 2.8785 2.7545 0.8246 3.3167 1.4778 0.7771 3.9799 0.8831 0.6573

GS PAN 2.5586 2.9906 0.8245 3.5826 1.8154 0.6350 4.4993 1.0752 0.3833

MS-CEN 3.3566 2.9027 0.8164 3.7937 1.5864 0.7551 4.3747 0.9302 0.6257

MS-CC 2.8725 2.7552 0.8289 3.2766 1.4747 0.7795 3.9470 0.8804 0.6553

MS-SAM 2.8751 2.7627 0.8279 3.2827 1.4756 0.7792 3.9423 0.8803 0.6554

GSA PAN 2.0386 1.9146 0.9131 2.9847 1.4490 0.7389 4.0761 0.9754 0.4544

MS-CEN 3.5162 3.3626 0.8386 3.4506 1.5113 0.8447 3.5818 0.7576 0.8114

MS-CC 3.1628 3.2125 0.8467 2.6754 1.3571 0.8631 2.7824 0.6787 0.8335

MS-SAM 3.1205 3.2341 0.8434 2.6582 1.3579 0.8625 2.7882 0.6801 0.8343

AWLP PAN 2.8338 2.5814 0.8813 3.8646 1.6842 0.6804 4.7083 1.0524 0.3699

MS-CEN 2.7408 2.3775 0.9046 3.3902 1.3975 0.8461 4.2634 0.8638 0.7295

MS-CC 2.0621 1.9661 0.9277 2.4336 1.1492 0.8788 3.1755 0.7410 0.7617

MS-SAM 2.0383 1.9784 0.9257 2.4348 1.1512 0.8779 3.1781 0.7414 0.7613

HPM PAN 2.6258 2.3637 0.8801 3.7500 1.6695 0.6946 4.6745 1.0314 0.4644

MS-CEN 2.0732 1.8683 0.9279 2.7382 1.1754 0.8645 3.4479 0.7399 0.7318

MS-CC 1.6181 1.6259 0.9404 2.2147 1.0522 0.8808 3.0151 0.6926 0.7478

MS-SAM 1.6025 1.6284 0.9401 2.2211 1.0528 0.8806 3.0126 0.6927 0.7478

GLP-
CBD

PAN 1.9534 1.8586 0.9140 2.9661 1.4434 0.7528 3.7656 0.9312 0.5485

MS-CEN 2.1162 1.9590 0.9251 2.8919 1.2444 0.8807 3.5286 0.7418 0.8378

MS-CC 1.7546 1.8129 0.9340 2.1960 1.1043 0.9003 2.4993 0.6279 0.8699

MS-SAM 1.7344 1.8256 0.9323 2.1917 1.1067 0.8994 2.5042 0.6276 0.8699

Hyper PAN 1.9543 1.8586 0.9140 2.9688 1.4419 0.7530 3.7703 0.9171 0.5490

MS 1.5897 1.7214 0.9382 2.0229 1.0444 0.9080 2.6430 0.6815 0.8437

CNMF PAN 2.7720 2.6075 0.8584 3.8859 1.7337 0.7138 4.6329 1.0405 0.5231

MS 2.5088 2.7525 0.8413 2.6865 1.3843 0.8302 3.0105 0.7685 0.7988

Bay-N PAN 2.2560 2.1131 0.9017 3.8832 1.7313 0.6794 5.0346 1.1319 0.5224

MS 2.2126 2.3448 0.8934 3.4757 1.6422 0.8013 3.9694 0.9266 0.7793

Bay-S PAN 1.9858 1.8416 0.9190 3.7604 1.6862 0.6807 4.9424 1.1049 0.5233

MS 2.2130 2.3451 0.8934 3.4818 1.6433 0.8010 4.1745 0.9468 0.7705

HySure PAN 2.3509 2.2174 0.8922 4.5235 2.0695 0.6128 5.3742 1.2250 0.5362

MS 2.5649 2.7776 0.8513 3.1989 1.5863 0.7770 3.2956 0.8437 0.7707

For each algorithm, the best result among the HR options is in boldface.

Table 2.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Agnano dataset,
for resolution enhancement ratio R ¼ 3, 6, 12 .
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R = 3 R = 6 R = 12

SAM ERGAS Q2n SAM ERGAS Q2n SAM ERGAS Q2n

Optimum 0 0 1 0 0 1 0 0 1

EXP 2.9041 3.4640 0.7607 4.0809 2.3556 0.4930 5.1271 1.4488 0.2097

BT PAN 2.9041 4.1628 0.7804 4.0809 2.4750 0.6310 5.1271 1.4643 0.3702

MS-CEN 4.6792 5.7317 0.5938 4.9025 2.8810 0.5576 5.2432 1.5154 0.4746

MS-CC 4.4343 5.5489 0.5875 4.6256 2.8173 0.5608 4.8858 1.4960 0.4877

MS-SAM 4.4509 5.6304 0.5926 4.5951 2.8322 0.5656 4.8969 1.4970 0.4884

GS PAN 3.2286 4.2133 0.7758 4.6558 2.5912 0.5960 6.0683 1.5821 0.3326

MS-CEN 4.7700 5.7476 0.5942 5.0022 2.8997 0.5559 5.3204 1.5280 0.4738

MS-CC 4.4891 5.6363 0.6008 4.5862 2.8320 0.5674 4.8663 1.4973 0.4873

MS-SAM 4.4772 5.6713 0.6002 4.5710 2.8401 0.5688 4.8625 1.4977 0.4875

GSA PAN 2.4807 2.5976 0.8833 3.4450 1.8687 0.6998 4.7540 1.2970 0.3636

MS-CEN 7.0619 8.2274 0.5357 6.4658 3.6062 0.5650 6.2811 1.6761 0.5705

MS-CC 6.0976 6.8763 0.6001 5.1292 2.9285 0.6236 4.5374 1.3304 0.6124

MS-SAM 6.3286 7.3363 0.5718 5.1970 3.0603 0.6081 4.5366 1.3311 0.6116

AWLP PAN 3.1491 3.3732 0.8598 4.3651 2.1254 0.6899 5.3684 1.3789 0.3466

MS-CEN 3.5341 3.9606 0.7920 4.4168 2.4048 0.6799 5.3696 1.4223 0.5509

MS-CC 3.2680 3.6163 0.8090 3.9660 2.2291 0.7016 4.6378 1.3293 0.5765

MS-SAM 3.2595 3.6703 0.8095 3.9215 2.2381 0.7044 4.6313 1.3300 0.5770

HPM PAN 3.0965 3.1605 0.8526 4.4371 2.2155 0.6823 5.6302 1.4059 0.4234

MS-CEN 2.7198 3.1964 0.8373 3.5213 2.0407 0.7212 4.2637 1.2216 0.5688

MS-CC 2.5362 3.0548 0.8462 3.2128 1.9735 0.7323 3.8668 1.1926 0.5824

MS-SAM 2.5133 3.0672 0.8469 3.1841 1.9742 0.7343 3.8640 1.1927 0.5827

CBD PAN 2.4126 2.5037 0.8832 3.3688 1.8193 0.7261 4.5275 1.2246 0.4657

MS-CEN 2.6355 3.1271 0.8385 3.6260 2.1248 0.7234 4.7470 1.3681 0.6321

MS-CC 2.5513 3.0624 0.8432 3.4488 2.0790 0.7322 4.2992 1.3201 0.6488

MS-SAM 2.5421 3.0807 0.8436 3.4306 2.0895 0.7336 4.2828 1.3220 0.6487

Hyper PAN 2.4126 2.5037 0.8832 3.3684 1.8199 0.7259 4.5152 1.2254 0.4652

MS 2.7138 3.2570 0.8224 3.8293 2.2194 0.6966 4.6147 1.3181 0.6051

CNMF PAN 3.0309 3.2174 0.8361 4.1597 2.1199 0.7035 5.0892 1.3082 0.4882

MS 4.2695 5.4648 0.5984 3.7804 2.6307 0.6027 4.3318 1.4644 0.5163

Bay-N PAN 2.4809 2.5412 0.8897 4.2876 2.1478 0.6600 5.7306 1.4619 0.4276

MS 2.8266 3.3996 0.8173 4.3109 2.5638 0.6354 4.9158 1.5127 0.5777

Bay-S PAN 2.3080 2.3705 0.8981 4.1732 2.1120 0.6596 5.7597 1.4522 0.4304

MS 2.8267 3.3989 0.8173 4.3114 2.5637 0.6354 4.9126 1.5115 0.5780

HySure PAN 2.4928 2.7947 0.8754 5.3229 2.7732 0.6101 5.7868 1.4747 0.4592

MS 3.2759 4.3963 0.7367 4.1931 2.8471 0.5906 4.5497 1.5079 0.5723

For each algorithm, the best result among the HR options is in boldface.

Table 3.
Values of the quality indexes, related to the reduced resolution assessment procedure, using the Capodichino
dataset, for resolution enhancement ratio R ¼ 3, 6, 12 .
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covered by the ALI PAN, the use of single-platform data is always preferable,
except for the case of the Hyper algorithm applied to the Agnano dataset with R = 6.
Clearly, this consideration is all the more true in the experiment related to the
Capodichino dataset. Instead, different trends are experienced for the near-infrared
(NIR) bands. All the algorithms (except the GSA algorithm with R = 3) obtain better

Figure 4.
Q-index as a function of the HS band for the Agnano dataset. The curves refer to the data fusion of the
Hyperion images with the ALI PAN (black continuous), the MS-CEN (red dashed curve), MS-CC (green
dotted curve), and MS-SAM (blue continuous curve with circle marks).
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performance by using multi-platform data working on the Agnano dataset. On the
contrary, using the Capodichino dataset, the GSA algorithms always obtain superior
results by using the ALI PAN image, while the other two methods obtain a slightly
better performance in the NIR region that is not able to balance the scarce quality in
the visible range, thus resulting in an inferior overall performance of the multi-
platform approach. Finally, it is very clear from both Figures 4 and 5 that the

Figure 5.
Q-index as a function of the HS band for the Capodichino dataset. The curves refer to the data fusion of the
Hyperion images with the ALI PAN (black continuous), the MS-CEN (red dashed curve), MS-CC (green
dotted curve), and MS-SAM (blue continuous curve with circle marks).
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CC-AA and the SAM-AA algorithms are able to obtain significant improvements
with respect to CEN-CC, especially in the NIR frequencies.

5. Conclusions

The aim of this work was to illustrate the recent advances in the field of
hyperspectral image sharpening through single-platform and multi-platform data.
The study was conducted on real data acquired by the Earth Observing-1 and the
WorldView-3 satellites in order to highlight the practical issues to be addressed
when fusing images acquired by different platforms. We focused on well-known
algorithms based on classical approaches borrowed from the pansharpening litera-
ture and on techniques developed on purpose. We evaluated the possibility of
completing the fusion process, both in the absence and presence of temporal mis-
alignments between the scenes illuminated by the sensors mounted on the two
satellites. The study highlighted the suitability of the employment of multi-platform
data especially in the presence of high-resolution enhancement factors. Actually, in
some cases, the use of multispectral images was also proven to be useful at low-
resolution enhancement factors, and this result can be easily justified by taking into
consideration that the details contained in the MS channels are able to provide more
specific spatial information for a given HS channel.
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