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Abstract

Superhydrophobic surfaces were first observed in nature like on a lotus leaf. The surfaces
need to have hierarchical micro- and nanoscale roughness and low surface energy to
achieve superhydrophobicity. Their unique behavior against water leads to various appli-
cations like corrosion resistance, oil-water separation, self-cleaning properties, anti-icing
properties, drag reduction, and antibacterial properties. To investigate the wetting behav-
ior of the coating, water contact angle, contact angle hysteresis and sliding angle must be
measured. If WCA is higher than 150� and sliding angle and contact angle hysteresis are
below 10�, then it can be concluded that the surface is superhydrophobic. Various fabrica-
tion methods including lithography, templating, chemical vapor deposition, layer-by-layer
deposition, colloidal aggregation, and electrospinning and electrospraying especially wet
chemical method are thoroughly studied. Among all fabrication methods, the wet chemi-
cal technique is one of the promising methods due to its low cost and capability of large-
scale production and also the substrate shape and dimensions having a minimal effect on
the process. Superhydrophobic coatings still lack sufficient mechanical endurance. Also, in
all traditional superhydrophobic coatings, it is necessary to lower the surface energy by a
low-energy polymeric material that does not have suitable bonding and stability in harsh
environments.

Keywords: superhydrophobic, coatings, chemical synthesis, surface engineering,
self-cleaning, antimicrobial
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1. Definition of superhydrophobicity

1.1. Concept

Superhydrophobic properties were first observed in nature and on the surface of Nelumbo

nucifera (lotus), butterfly wings, Brassica oleracea, Colocasia esculenta, etc. [1, 2]. The

superhydrophobic properties appeared due to unique surface structure and low surface

energy. A superhydrophobic surface repels water droplets and does not get wet in contact

with water. In other words, surface behavior against water is evaluated by the water contact

angle measurements which will be discussed later. On a superhydrophobic surface, WCA is

higher than 150�, while for hydrophobic and hydrophilic surfaces, this value is, respectively,

90�–150� and below 90�. In Figure 1, some natural superhydrophobic surfaces are introduced.

Higher WCA values mean that a water droplet tends to maintain a spherical shape on the

surface. On the other hand, lower WCA shows the tendency of a water droplet to spread on

Figure 1. Superhydrophobicity in nature [3].
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the surface. WCA is not the only parameter that is important to evaluate a superhydrophobic

surface; other parameters like sliding angle and contact angle hysteresis are also important,

which will show how slippery or sticky the surface is against a water droplet. These parame-

ters will be discussed in depth later.

First, it is important to specify an ideal superhydrophobic coating. An ideal superhydrophobic

coating has WCA higher than 150� (up to 180�, which is the theoretical limit), and also the

sliding angle and contact angle hysteresis must be lower than 10� to guarantee low stickiness

of the superhydrophobic surface against water.

This special wetting behavior will provide various special applications such as self-cleaning,

anti-icing, antibacterial, oil-water separation, corrosion resistance, etc. for superhydrophobic

surfaces and coatings.

1.2. Shortcoming and limitations

As mentioned before superhydrophobic surfaces and coatings have a special wetting behavior

against water droplets which leads to various industrial applications. But one might ask: what

hinders the application of these properties in industries?

Superhydrophobic coatings and surfaces are rather new due to their unique wetting behavior

against water in comparison to other traditional coatings currently used in industries like pow-

der and sol-gel coatings and other organic, inorganic, and metallic coatings. The traditional

coatings do not possess high water contact angle and are usually hydrophilic, and more time is

needed to improve quality and production costs of the superhydrophobic coatings.

The superhydrophobic coatings and surfaces must have two main features to achieve

superhydrophobicity:

a. Hierarchical micro- and nanoscale roughness on the surface

b. Low surface energy

These two must be considered to fabricate a superhydrophobic surface. Various fabrication

methods have been presented: These techniques are divided into two main categories includ-

ing top-down and bottom-up. The top-down approach includes template-based techniques,

lithography, and surface treatment by plasma. In the bottom to top approach, the structure is

self-assembled and includes layer-by-layer deposition, chemical deposition, and colloidal

assemblies. The methods to achieve superhydrophobicity are not limited to these methods,

and there are several others like electrospinning, templating, chemical etching method, chem-

ical vapor deposition, phase separation, electroless galvanic coating, sol-gel method, and

thermal spray methods.

The main shortcoming of superhydrophobic coatings and surfaces is the low stability of the

superhydrophobic properties or high cost of fabrication or lack of high-scale production

capabilities. This leads to the limited use of superhydrophobic coatings. Although several

promising approaches have been taken recently to increase mechanical stability, which will be

discussed further in this chapter.
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2. Surface wettability evaluation parameters

To investigate surface wettability, three main parameters are used. These three parameters are

the water contact angle, contact angle hysteresis, and sliding angle. WCA is not enough alone

to understand surface wetting behavior, and at least one (the CAH or SA) is needed to know

how much water droplets stick to the surface. The definition of each parameter is provided

below.

2.1. Water contact angle

Atoms and molecules of liquid and solid have higher energy on the surface because there are

fewer chemical bonds on the surface. This energy is known as the surface tension or the surface

free energy and shown by γ and is equal to energy per unit area needed to build surface in

constant temperature and pressure (J/m2 or N/m). In the case that solid and liquid are in direct

contact with each other, the surface energy will be lower than in the situation in which these

two are separated. The relation between surface energies and adhesion work is shown in the

Dupre equation [14].

WSL ¼ ɣSA þ ɣLA � ɣSL: (1)

In this equation, WSL is the adhesion work per unit area, ɣSA is the surface free energy between

air and solid, ɣLA is the surface energy between air and liquid, and ɣSL is the surface free

energy between liquid and solid.

When a water droplet is placed on the surface of the solid, these two will reach equilibrium,

and the water droplet makes a specific angle with the surface known as water contact angle

(θ0). The below equation can calculate the total energy:

Etotal ¼ ɣLA ALA þASLð Þ–WSLASL: (2)

In this equation, ALA and ASL are, respectively, liquid/air interface and liquid/solid interface. In

this situation regardless of gravitational potential energy and in constant volume and pressure

in the equilibrium, dEtotal is considered equal to zero.

ɣLA dALA þ d ASLð Þ–WSLd ASL ¼ 0: (3)

For a droplet with constant volume, θ0 can be calculated by the equation below:

dALA=dASL ¼ cos θ0ð Þ: (4)

Then according to these equations, Cos θ0 can be calculated by Young’s equation.
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cosθ0 ¼ γ
SA

� γ
SL

� �

=γ
LA

(5)

2.2. Contact angle hysteresis

To define contact angle hysteresis, first advancing (θa) and receding (θr) contact angles must be

introduced. Contact angle hysteresis is calculated by subtraction of advancing and receding

contact angles.

CAH ¼ θjja� θrð Þj j (6)

Consider a water droplet on the surface; if water droplets withdrawn or somehow evaporated

from the surface, at first the surface area between the water droplet and surface does not

change, but after a while, it starts to recede from the surface with a constant water contact

angle equal to θr.

If at a controlled condition, the volume of water droplet increases by a syringe or is cooled

down on the surface, at first, the volume increases without change in surface area in contact

with the solid until it begins to advance on the surface with a constant water contact angle

equal to θa.

Both advancing and receding contact angles on a surface depend on surface chemistry and

topography, and a metastable droplet can have a contact angle between these two values

which indicates the importance of measuring both of these values to evaluate surface wetting

behavior [4].

Figure 2. Schematics indicating the θa and θr (a and b, respectively) and a droplet on a tilted surface with θa in front and

θr in the back [4].
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Now consider a droplet on a tilted surface. While the droplet is moving downwards on a tilted

surface, in the front, it expands, which will occur with a constant contact angle of θa, and on

the back, it shrinks with a constant contact angle of θr which is shown in Figure 2c [4].

2.3. Sliding angle

The sliding angle is another parameter to evaluate the wetting behavior of the surface in which

a droplet with a certain weight is dropped onto the surface and the sliding angle is the critical

angle that a droplet starts to move and slide downwards. Sliding angle and contact angle

hysteresis are both used to evaluate adhesion of droplet to surface. Contact angle hysteresis is

more detailed and difficult to measure than the sliding angle [5].

3. Wetting models

3.1. Young’s model

Several wetting models have been defined to calculate contact angle on the surface. The first

wetting model is Young’s equation that was just mentioned. This model does not consider

surface roughness of the solid surface. Below Young’s equation is shown.

cosθ ¼

γ
SG

� γ
SL

γ
LG

(7)

In this equation θ is the contact angle, and γ
SG
, γ

SL
, and γ

LG
are, respectively, the surface free

energy of solid/gas, solid/liquid, and liquid/gas interface.

3.2. Wenzel model

It is obvious that in most cases the surface is not smooth, so Young’s equation is not able to

calculate the contact angle properly, so the Wenzel equation was introduced. In this equation, it

is considered that the surface wetting occurs uniformly:

cosθw ¼ rcosθ (8)

In this equation θw is the Wenzel contact angle, θ is Young’s contact angle, and r represents the

surface roughness factor that is equal to ratio of real surface to apparent surface.

3.3. Cassie-Baxter model

As mentioned before wetting is considered to be uniform in Wenzel’s equation, or in other

words, it is considered that water went through all surface cavities and there is no dry part. On

the other hand, there is another wetting model which considers that the wetting is not uniform

and air packets do not let water get into the surface cavities. In this case, water is in contact

with solid and air packets, and water contact angle with air is equal to 180�. The model is

called Cassie-Baxter and the equation is shown below:
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cosθCB ¼ f 1∗ cosθ1 þ f 2∗ cosθ2 (9)

cosθCB ¼ f 1∗ cosθ0 þ f 2∗ cos πð Þ (10)

cosθCB ¼ f 1∗cosθ� f 2 (11)

cosθCB ¼ f 1∗ cosθþ 1ð Þ � 1 (12)

In the above equations, θCB is the Cassie-Baxter contact angle, f1 is the ratio of the area that

liquid is in contact with solid, and f2 is the ratio of the area that liquid is in contact with air

packets made or trapped inside the surface cavities. In Figure 3 the difference between the

three aforementioned wetting models is shown.

3.4. Transition between wetting models

In case of a hydrophobic surface or coating surface wettability respects to one of Wenzel or

Cassie-Baxter models. In an ideal condition, a superhydrophobic coating should be seen in the

Cassie-Baxter model. In the Cassie-Baxter model as mentioned before the topography and

surface energy is in a way that droplet cannot penetrate through the empty space between

micro- and nanoscale pillars on the surface while in Wenzel model the surface structure is large

enough for water droplets to penetrate. Droplet adhesion to surface is more considerable in the

Wenzel model than in the Cassie-Baxter model due to penetration of droplet into the micro-

and nanoscale grooves on the surface.

Change in surface roughness and energy will lead to a transition from the Wenzel to the Cassie-

Baxter model, which depends on the hierarchical micro- and nanoscale roughness on the surface.

An easy way to evaluate whether the transition between Wenzel and Cassie-Baxter model has

occurred or not is to measure the sliding angle. A noticeable decrease in sliding angle will be

observed after the transition from the Wenzel to the Cassie-Baxter model due to increase in

surface roughness and fabrication of hierarchical micro- and nanoscale roughness.

4. Applications of superhydrophobicity

Superhydrophobic surfaces and coatings as mentioned have a unique behavior against water

droplets. This unique behavior results in a new set of applications including self-cleaning, anti-

icing, antibacterial, oil-water separation, corrosion resistance, etc.

Figure 3. Schematics showing the difference between (a) young, (b) Wenzel, and (c) Cassie-Baxter wetting models.
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4.1. Oil-water separation

There have been many reports of oil contaminations in sea waters and rivers due to leak of

factory waste into nature and accidents like Deep Water Horizon and Sanchi oil tanker colli-

sion. Removing oil contaminations from the water was always challenging and expensive, so

different methods have been introduced by scientists to remove the oil contaminations. These

methods are categorized into three main groups including water removal, oil removal, and

smart controllable separators [6]. The water removing filters are superhydrophilic and

superoleophobic; this kind of filter works underwater, and when they get wet by water, the

presence of the water on the surface of the filter prevents oil to pass from the filter pores. The

category in the oil removing method is a more efficient way because the amount of oil is

always less than the amount of water, so it is logical that we try to remove the oil from water

and not water from oil. To remove oil from water, the material should be superhydrophobic

and superoleophilic; this mostly depends on the surface energy. The surface energy should be

lower than the water surface tension (72.8 mN m�1) and higher than the oil surface tension

Figure 4. (A) Oil-water separation with the use of TiO2-coated superhydrophobic and superoleophilic mesh, (B) opposite

behavior of silicone elastomer-coated mesh against water and toluene droplets [7].
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(30 mN m�1). The oil removing method has two subcategories including oil removing filters

and oil absorbents (like oil absorbent sponges, etc.)

Superhydrophobic oil removing filters are the main part of the oil removing category. Feng

et al. [7] used a TiO2-coated mesh to separate oil from water (see Figure 4a). Parkin et al. [8]

used a silicone elastomer coating on a mesh to efficiently separate organic solvents like hexane,

petroleum ether, and toluene from water. As shown in Figure 4b, the water droplet cannot

pass through the filter, but toluene can easily pass through.

Also, absorbent materials are considered as a part of this group that can collect oil and changes

it from liquid to a semi-solid phase. Tai et al. [9] built a graphene base sponge with high

sensitivity and suitable recyclability (Figure 5a). The sponge was able to absorb oil up to 165

times of its weight. Pan et al. [10] built a three-dimensional superhydrophobic material

through a one-step immersion process. This material had a high oil absorption capacity and

was able to separate oil from water efficiently (Figure 5b). Superhydrophobic sponges could

be used up to 300 times without losing their properties in an ideal situation. Currently, there

are several serious challenges in this field. One of the main problems is the instability of the

hierarchical structure of the coating on sponges that could easily get damaged by mechanical

stresses or by exposure to chemical pollutions (acids, etc.). Also, most of the studies in this field

worked on separation of oils with low density, and very few studies have been done on high-

density oils [6].

4.2. Corrosion resistance

There are several ways to protect a surface from corrosion. One of the ways is to use different

coatings or to use some processes to add heavy materials like chrome onto the surface which is

harmful to the environment [11]. During the past two decades, scientists have been using

superhydrophobic nanocomposite coatings without any toxic materials to protect various

surfaces from corrosion [12–14]. The corrosion protection capability of the superhydrophobic

coatings mainly is because of the presence of air pockets between surface and corrosive

Figure 5. (a) Engine oil removing process using a superhydrophobic sponge [9], (b) the absorption capacity of super-

hydrophobic sponges for different nonpolar oil and solvents [10].
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solution, and these packets act like a barrier and prevent corrosive ion diffusion and protect

the substrate [15].

Advincula et al. [16] built a superhydrophobic corrosion-resistant nanostructure coating by

using a conductive polymer in a two-step process. This coating could be deposited on any

metal surface. They studied the corrosion resistance of the nanocomposite coating by the use of

polarization test in NaCl solution in different pH and temperatures for 7 days, and the

corrosion protection efficiency was reported to be higher than 95%.

Zhang et al. [17] worked on superhydrophobic membranes with different morphologies and

chemical compositions through the sol-gel method. Humid air test and polarization tests

showed insufficient corrosion protection. They realized that surface morphology is more

important than the chemical composition of the sol-gel coating. In another study on the

corrosion resistance of coatings on the Mg-Mn-Se alloy, three types of coatings with different

wettabilities from hydrophilic to superhydrophobic were deposited on substrates, and corro-

sion resistance of the coatings in 3% NaCl solutions was studied [18]. Corrosion potential is

known to be a criterion for corrosion resistance; the higher potential shows higher corrosion

Figure 6. (a) Coating with different wettability after humid air test [17]; (b) polarization curve of the samples in 3.5%wt

NaCl solution: (1) alloy without coating, (2) coated sample with PEO method, (3) hydrophobic coating, and (4)

superhydrophobic nanocomposite coating [18]; and (c) polarization curve of the superhydrophilic Al (black line) and

superhydrophobic PU/Al/Al2O3 in NaCl solution [20].
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resistance in general [19]. Superhydrophobic nanocomposite coating deposited with plasma

electrolytic oxidation1 on Mg alloy showed the best results in polarization tests (Figure 6b). Li

et al. [20] managed to build a superhydrophobic corrosion-resistant polyurethane coating

containing Al2O3 nanoparticles. The water contact angle of the coating with 2 wt% PU was

151�, and the sliding angle was 6.5�. An increase in corrosion potential showed the positive

effect of superhydrophobic coating in corrosion protection (Figure 6c).

4.3. Self-cleaning properties

The lotus leaf’s surface is always clean regardless of any contamination that may be present in

its surrounding environment [21]. This leaf has a unique surface structure and is coated with

wax and shows superhydrophobic properties, and the sliding angle is very low so water can

easily slide on the surface of the leaf and remove any contamination. The aforementioned

properties of superhydrophobic surfaces and coatings are called self-cleaning properties.

Many superhydrophobic coatings were synthesized with different methods and used in indus-

tries, daily, or in military use [22, 23].

Lions et al. [24] produced a nanocomposite self-cleaning superhydrophobic high-density PE

coating containing TiO2 nanoparticles. Results showed that water droplets could remove big

alumina particles or small graphite particles from the surface of the coating (Figure 7a-c). On

the other hand, high-density PE by itself had a smooth surface which resulted in water

Figure 7. (a, b, c) Showing self-cleaning properties of the superhydrophobic high-density PE with TiO2 nanoparticles; (d)

adhesion of water droplet to high-density PE coating while the sample is held vertically [24].

1

REO.
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droplets sticking on the surface of the coating, and the coating could not have self-cleaning

properties (Figure 7d). Rodriguez et al. [24] also managed to build a coating based on lotus leaf

surface morphology. This coating was made by nanostructure template assembly, and the

sliding angle was between 4� and 7�. The self-cleaning properties of this coating were very

close to that of a lotus leaf.

But the question is how a superhydrophobic surface has self-cleaning properties. The first

reason is due to surface energy calculations. To explain how even hydrophobic particles can

be collected by rolling drop will be further discussed.

When a spherical particle (pollution) is in contact with water on the sample surface (Figure 8),

the area of the wetted surface can be calculated by the equation below in which 2Rs is the

sphere diameter:

Area of the wetted part of the particle on the surface (pollution) = 2πR2
s
1þ cosθe:ð Þ

Also, the liquid will lose some of the area of itself that can be calculated through the below

equation:

Lost area of the liquid = πR2
s
∗ sinθe

The change in surface energy can be calculated by the below equation:

∆F ¼ 2∗π∗Rs2∗ 1þ cosθeð Þ γsl� γsvð Þ � πRs2 � sinθe∗γLV (13)

∆F ¼ γLV∗2∗π∗Rs2∗ 1þ cosθeð Þ2 (14)

When the equivalent water contact angle is not 0� and 180�, the particle always tends to attach

to a spherical-shaped water droplet. The second reason for self-cleaning of these rough sur-

faces is that the contact area between the pollution particle and solid surface is very limited

due to the unique surface roughness so the pollution particle has a very lower adhesion to the

surface in comparison with smooth surface also water can diffuse into larger porosities as a

result of impacting to the surface. The diffused water will absorb particles and get back to the

top of the surface due to superhydrophobic properties and lead to self-cleaning properties [25].

Chen et al. [26] introduced a unique mechanism for self-cleaning surfaces by inspiration from

Cicada wings (Figure 9). On this surface, pollutions are automatically removed due to the

bouncing movement of water droplets on the surface. The ability of the pollutant particle to

Figure 8. Schematic of the spherical particle that has moved from air into the water; the contact angle between the particle

and water is shown [25].
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bounce on the surface of the superhydrophobic coating mostly depends on the stability of the

particle into the liquid phase. This unique coating shows there is a chance to produce and

develop new self-cleaning coatings.

4.4. Anti-icing properties

Every year ice storms harm the electrical transmission equipment, communication systems,

highways, etc. [27]. To reduce these kinds of damages, different methods of producing an anti-

icing surface have been introduced [28]. Although there are other conventional methods like

reducing icing temperature point and thermos electrical and mechanical methods, these

methods use a lot of energy and are not economical.

In recent years superhydrophobic coatings have been suggested as an anti-icing coating. As

mentioned before, the presence of air pockets on the superhydrophobic nanocomposite coat-

ing structure causes the water droplets to slide easily on the surface; therefore there will not be

enough time for the droplet to frost on the surface [29–31]. In situations that the temperature is

very low, superhydrophobic nanocomposite coatings can be used to prevent water from

wetting the surface and cause frost and finally damage to the surface or equipment [32].

Chen et al. [33] deposited four types of coatings with different wettabilities from

superhydrophilic to superhydrophobic on Al substrate. Dynamic studies of droplet impact to

the superhydrophobic surface at low temperature showed that if the angle between the direc-

tion of droplet and surface of the coating is higher than 30�, then water droplet can easily slide

and be removed from the surface. Hen et al. [34] produced a superhydrophobic

nanocomposite film containing multi-walled silicon nanotubes. Results showed that the grow-

ing rate of ice on the non-coated Al surface is twice the surface with superhydrophobic

nanocomposite coating (Figure 10).

Figure 9. Self-cleaning properties of coating inspired from Cicada wing through bouncing movement of the pollutant

particle on the surface [26].
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In another study, an easy and low-cost nanocomposite coating containing polydimethyl-

siloxane with different coupling agents was investigated [35]. As shown in Figure 11, the

superhydrophobic coating is completely effective in reducing ice adhesion to the surface up

to 97%.

Scientists have some disagreements about the relations between superhydrophobicity and

anti-icing properties. Some believe that these two are not related to each other; on the other

hand, some insist that superhydrophobicity will result in anti-icing properties [36]. These

disagreements are because there is no specific standard that can be used to evaluate ice

adhesion to surfaces; also the method of preparing ice for each study is different from the

Figure 10. Comparison of ice growing rate on bare Al and Al with superhydrophobic nanocomposite coating containing

multi-walled silicon nanotubes [34].

Figure 11. Comparison of the uncoated and superhydrophobic coated sample at �5�C and high humidity [35].
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other, so by now it is not possible to have a definite answer to this matter [28]. The recent

studies have helped to get a better understanding of the ice formation process on the

superhydrophobic surface, but there is still much left unknown about the nucleation, growth,

and adhesion to the surface which need more studies and information on this subject.

4.5. Drag reduction

One of the main problems that a solid moving in water like a submarine is facing is the drag

force; this force has resulted from the friction force between water and solid surface which is

moving through water. There are several examples in nature which show antidrag properties

[37]. By inspiration from shark skin and lotus leaf, several superhydrophobic coatings were

fabricated [38]. Here, the positive effect of superhydrophobicity on drag reduction will be

discussed. As mentioned before superhydrophobic coatings have some air pockets inside their

hierarchical micro- and nanoscale surface structure which will reduce the contact between

solid and liquid so the drag force will dramatically reduce [39]. Drag reduction phenomenon

by superhydrophobic surfaces was first reported in 1991 [40]. Muan et al. [41] studied the effect

of superhydrophobic nanocomposite coating on drag reduction in linear and turbulent

streams. This superhydrophobic coating contained TiO2 nanoparticles and was deposited on

Figure 12. (a) Schematic of set up to throw balls into the water in the same condition, (b) balls’ location-time diagram,

(c, d, e) balls’ picture at t1 = 0 s, t2 = 0.61 s, and t3 = 1.11 s [42].
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the Al substrate, and the drag force on this sample was compared with non-coated sample.

Results showed that superhydrophobic coating will reduce drag force up to 30% for linear and

15% for a turbulent stream. Chen et al. [42] coated a ball with superhydrophobic coating; then

they used a stage as shown in Figure 12 to throw a ball with superhydrophobic coating and

one without any coating; the ball with superhydrophobic coating had an average speed of

27.0 cm min�1, but the average speed of ball without coating on water was 12.5 cm min�1. This

indicates that the superhydrophobicity is completely effective in the reduction of drag force

and facilitates moving through water. On the other hand, Wei et al. [43] had a different opinion

about this phenomenon. They believed that drag reduction is not because of the lower solid

and liquid contact and the plastron effect is the main reason of this phenomenon. They

fabricated a superhydrophobic coating by electrodeposition of gold on substrate. This

superhydrophobic coating reduced the drag force up to 38.5% in speed of 0.46 m s�1 which is

amazing. They said that reduction in water contact angle of the superhydrophobic coating will

have a very small effect on drag reduction and will change it into 32.7%. They concluded that

the main reason for drag reduction is not the high water contact angle but it is because of the

plastron effect [44]. On a non-coated sample, the friction is just between solid and water, but on

a superhydrophobic surface, there are three phases, water, solid, and trapped air between

these two, so the friction will be drastically reduced in this situation that is known as the

plastron effect.

4.6. Antibacterial properties

Antibacterial properties are essential in biosensors, implants, food packaging, and industrial

and marine equipment [45, 46]. For example, one of the main reasons that cause infection in

patients after surgery is bacteria that grow on implants [46]. To solve this problem,

antibacterial coatings that reduce the bacterial adhesion to the surface or coatings containing

antibacterial additives are suitable [47]. Schoenfisch et al. [47] produced a zero gel with the

ability of nitrogen oxide release by spray method. In this case a combination of superhydro-

phobicity and nitrogen oxide release will result in a very strong antibacterial property. Nitro-

gen oxide showed a positive effect after some time and reduced the number of alive bacteria

that had attached to the superhydrophobic surface. Ivanova and Philipchenko introduced an

easy method to produce superhydrophobic coating by using chitosan nanoparticles.

Antibacterial property is enhanced because of chitosan nanoparticles. Usage of nanosilver

particles in superhydrophobic coatings also enhances the antibacterial properties; this

enhancement is due to diffusion into the bacterial cell and damages the DNA structure from

the inside [48]. There are still some doubts and questions about the mechanism of silver

antibacterial properties. Heinonen et al. [49] fabricated a superhydrophobic coating containing

silver nanoparticles through the sol–gel method. First silver nanoparticles were attached to ɣ-

alumina by the Tollens process, and then the composite coating was functionalized with

flouroalkyl silane2 to reduce the surface energy. The diagram in Figure 13 shows the number

of bacteria on non-coated steel, superhydrophobic coated steel, and superhydrophobic coating

2

FAS.
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with nanosilver particle steel after 1-day exposure to bacteria at 25�C; the superhydrophobic

coating with silver nanoparticles reduced the alive bacteria on the surface up to 88%.

Xue et al. [50] used the same method to fabricate silver nanoparticles on cotton fibers. After

that hexadecyltrimethoxysilane was used to modify these fibers, and superhydrophobicity

was achieved. As shown in Figure 14, non-coated cotton fiber does not have any resistance

Figure 13. It shows the number of bacteria on non-coated steel (AISI304), superhydrophobic coated steel (SHP), and

superhydrophobic coating with nanosilver particles steel (SHP + Ag) after 1-day exposure to bacteria at 25�C [49].

Figure 14. Comparison of antibacterial properties on non-coated cotton fiber (the white ones) and superhydrophobic

coated fiber cottons (the gray ones) [50].
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against bacteria, but on the other hand, the superhydrophobic coated sample with nanosilver

additives destroys almost all of the bacteria from its surface.

In general, superhydrophobic coatings are not an ideal antibacterial coating, and in some cases,

instability, toxicity and low durability of these coatings make them a problematic method for

antibacterial purposes. So, further studies in this field areneeded toovercome the current problems.

5. Fabrication methods

Several techniques have been introduced to fabricate superhydrophobic surfaces. These tech-

niques are divided into two main categories including top-down and bottom-up. The top-

down approach includes template-based techniques, lithography, and surface treatment by

plasma. In the bottom to top approach, the structure is self-assembled and includes layer-by-

layer deposition, chemical deposition, and colloidal assemblies. The methods to achieve

superhydrophobicity are not limited to these methods, and there are several others like

electrospinning, templating, chemical etching method, chemical vapor deposition, phase sep-

aration, electroless galvanic coating, sol-gel method, and thermal spray methods.

5.1. Wet chemical

5.1.1. Chemical etching method

Chemical etching and other methods like plasma etching can be used to introduce micro- and

nanoscale roughness to the substrate. Also, this process can be combined with other methods

of fabrication superhydrophobic coatings to improve special surface roughness that is needed.

Almost in all studies, chemical etching and similar methods like that are followed by surface

modification with low surface energy materials like fatty acids, fluoroalkyl silanes, etc. This

kind of superhydrophobic surfaces only has laboratory usage. Because of their low stability,

they are mainly used to study the behavior of superhydrophobic surfaces against water in

different situations, but the combination of this method with others seems promising.

Song et al. [51] used CuCl2 solution to do chemical substitution reaction on Al substrate to

make hierarchical micro- and nanoscale roughness on the Al substrate which is necessary to

achieve superhydrophobicity. After the chemical etching, the surface was modified with a

fluoroalkyl silane solution to increase the WCA to higher than 150�. In this study, 1 molar

CuCl2 solution was used and different etching times were tried. Also, the effect of removing

the deposited Cu on substrate was investigated. As mentioned before this method is a chem-

ical substitution reaction and a Cu element deposit on the Al surface while Al3+ gets into

solution; the deposited Cu on the surface does not have a chemical bond with the surface and

can be removed by an ultrasonic bath in water. So, to study the effect of Cu removal from the

substrate, samples were washed in an ultrasonic bath. After the chemical etching, all samples

were put into a fluoroalkyl silane solution.

When the aluminum plate is immersed into the CuCl2 solution, the chemical substitution

starts, and copper ions react with the aluminum element on the surface, and aluminum

chloride will be made by this reaction. As a result, the copper element will deposit on the
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surface. The aluminum corrosion potential is lower than copper, so when copper deposits on

the surface of the aluminum, a galvanic reaction will occur, and reaction speed will be

increased. This reaction is exothermic and produces a lot of heat. In addition to this, the copper

on the surface reacts with solution water, and hydrogen ions will be produced which will

make the solution acidic and be able to remove aluminum from the substrate. When the

Figure 15. SEM image of etched aluminum surface in CuCl2 solution in different periods of time: (a, b) 1 s, (c, d) 3 s, (e, f,

g) 10 s, (h, i, j) 70 s [51].
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hydrogen ions react with the aluminum on the surface of the sample, then a small hydrogen

bubble will be made on the surface so during that time the copper ions cannot affect that part

of the sample. As a result, the corrosion will not be uniform. This will be beneficial to achieve

hierarchical micro- and nanoscale roughness. Below the reactions are mentioned.

2Alþ 3Cu2þ ! 2Al3þ þ 3Cu (15)

Cu2þ þ 2H2O $ Cu OHð Þ2 þ 2Hþ (16)

2Alþ 6Hþ ! 2Al3þ þ 3H2↑ (17)

The aluminum plate is a polycrystalline metal that has grain boundaries and dislocations;

these places are ideal for corrosion and chemical substitution, so immediately after immersion

of Al plate into the CuCl2 solution, the reaction will take place in these places. As a result,

rectangular planes and nanoscale steps will be formed on the surface. In Figure 15, SEM image

of the surface after chemical etching for different periods is shown. It is worth mentioning that

the samples were washed in water by ultrasonic bath [51].

• Efficient conditions to make a hierarchical structure on the Al substrate through chemical

etching

In the aforementioned study, the effect of removal of deposited copper on the substrate was

studied. In the results as can be seen in Figure 16 in which the copper had been removed from

the surface through ultrasonic bath, the stability of the superhydrophobicity is higher [51].

• Crucial role of surface modification after the chemical etching process

Chemical modification and reducing surface energy are necessary to achieve superhydro-

phobicity. Surface modification of the smooth surface with fluoroalkyl silane will increase the

Figure 16. WCAmeasurement of the superhydrophobic samples during time (black line (with deposited copper), red line

(without the deposited copper)) [51].
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WCA up to 117 which indicates the effect of surface energy. Figure 17 shows WCA measure-

ment results for samples with a different etching time which were chemically modified with

fluoroalkyl silane solution before WCA measurements. As can be seen for etching time higher

than 10 seconds, an enormous improvement in hydrophobicity is shown, and the superhydro-

phobicity was achieved. The reason for this improvement is the combination of hierarchical

micro- and nanoscale roughness caused by chemical etching followed by low surface energy

due to chemical modification with fluoroalkyl silane solution [51].

5.1.2. Sol-gel method

This method has been used in various studies to fabricate superhydrophobic coatings on

different substrates. The sol-gel coating can be applied on the surface by various methods like

dip coating, spin coating, spraying, etc. To achieve superhydrophobicity, the sol-gel coating is

modified with a low surface energy material. Different approaches were taken to build a

superhydrophobic coating, and some of them are mentioned here. After that, a more detail

study about the sol-gel process will be provided.

One of the sol-gel coatings is alumina sol in which the aluminum tri-sec-butoxide was used as a

precursor, and the particle size in sol was about 80 nm. The sol was deposited on the glass

substrate by spin coating and cured at 400�C. The presence of nanoalumina particles in coating

makes peaks on the surface of the coating with a height of 1μm; and to achieve nano roughness,

samples were put into boiling water for 5 minutes. As a result, a flower-like morphology was

made on the coating, and after surface modification with low energy material, superhydro-

phobicity was achieved (look at Figure 18a) [52].

Mahadik et al. [53] used methyltrimethoxysilane as a precursor and fabricated a coating by the

sol–gel method. The coating was deposited on the glass slides by dip coating and then cured at

150�C. After surface modification with trimethylchlorosilane, superhydrophobic properties were

achieved. Coating WCA was 170 and it was stable up to 550�C but at temperatures higher than

600�C and after 2 h of exposure in this condition, the sample showed superhydrophilic proper-

ties which indicates that the surface chemical modification was destroyed. The superhydro-

phobicity was restored after doing the surface chemical modification with trimethylchlorosilane.

Figure 17. Change in WCA for different times of etching process (all samples were chemically modified with fluoroalkyl

silane solution) [51].
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Kim et al. [54] fabricated a superhydrophobic silica coating by electrospraying of sol–gel

solution on the substrate. Tetraethoxysilane and methyltriacetoxysilane were used as sol–gel

precursors. To achieve superhydrophobicity and self-cleaning properties, the coating was

modified by perfluoro-octyl silane (Figure 18b).

Various studies have been reported in which sol-gel method was used to fabricate a rough surface

and the low surface energy materials were used to reduce the surface energy and reach

superhydrophobic properties, but almost all of the coatings suffered from lack of superhydrophobic

property stability [55].

Superhydrophobic properties have been achieved on aluminum and silicon substrates by first

fabrication of a rough surface on the substrate by either chemical bath deposition or electro-

chemical deposition or chemical etching, and then low surface energy treatments were done by

FAS-17, stearic acid, or rf-sputtering of PTFE films [56–61].

Brassard et al. fabricated a superhydrophobic coating using the sol–gel method. They used the

Stober process to fabricate SiO2 nanoparticles from TEOS precursor, and then the synthesized

nanoparticles were functionalized by fluoroalkyl silane. The functionalized SiO2 nanoparticles

were spin-coated in Al6061 substrate and dried at 70�C. The FTIR spectra results related to the

functionalized SiO2 nanoparticles are shown in Figure 19. The peaks 610 cm�1, 730 cm�1,

960 cm�1, 1000 cm�1, and 1250 cm�1 are related to C▬F bonds in CF, CF2, or CF3 [62–65]. Also,

the peaks at 1145 cm�1 approve chemical bonding between SiO2 particles and fluoroalkyl

silane. The peaks at 430 cm�1, 800 cm�1, and 1100 cm�1 are related to Si▬O▬Si bond.

The main problem with almost all the aforementioned superhydrophobic coatings is their lack

of mechanical properties due to low adhesion and cohesion of the coatings. The articles about

these kinds of superhydrophobic coatings do not consider the mechanical properties and

stability, and they just focus on the effect of other coating parameters on the WCA of the

coating. Khodaei and Shadmani [66] fabricated a superhydrophobic nanocomposite coating

using the sol-gel method. The substrate was commercially available AA1050. The substrate

Figure 18. (a) SEM image of nanoalumina coating surface after 5-minute immersion into boiling water, (b) FESEM image

of modified SiO2 coating, which was deposited by electrospray method [53, 54].

Superhydrophobic Surfaces - Fabrications to Practical Applications100



was first sanded and washed by acetone and then chemically etched to achieve micro rough-

ness on the surface. Several approaches were compared to observe the effect of TEOS and

GPTMS hybrid sol-gel coating containing functionalized Al2O3 nanoparticles. They used

functionalized nano-Al2O3 particles to improve surface micro- and nanoscale roughness and

also improve mechanical properties of the superhydrophobic coating. In Figure 20 the

manufacturing process and WCA measurements are reported. In total four samples were

compared to each other: (a) chemically etched and then functionalized in FAS solution without

sol-gel coating, (b) chemically etched substrate dip coated by sol-gel hybrid coating and then

functionalized by FAS solution, (c) addition of Al2O3 to the hybrid sol-gel coating, and (d)

addition of functionalized Al2O3 to the sol-gel coating. Results showed that functionalized

nanoparticles had a uniform dispersion in coating and fabricated a uniform hierarchical micro-

and nanoscale roughness which is ideal for superhydrophobicity and also acted as a shield

during abrasion cycles and protected from the surface and superhydrophobic properties after

200 abrasion cycles with a total length of 300 cm.

5.1.3. Electroless galvanic deposition

In this method, galvanic reactions are used to fabricate superhydrophobic coatings. The reac-

tion starts with contact of metal ion with the surface of a metal with lower corrosion potential.

The reaction would be spontaneous, so it is a low-cost and efficient method to make roughness

on the surface of the metal. After this process, a low energy material is used to decrease the

surface energy and achieve superhydrophobicity [67].

Xu et al. [68] fabricated a superhydrophobic feather-like silver coating on a copper substrate

using electroless galvanic deposition method. The WCA was 169 and the sliding angle was 2.

In Figure 21, the feather-like morphology of the silver coating is shown.

Figure 19. FTIR spectra of fluorinated silica nanoparticles coated on Al substrate as (A) a function of the number of layers

and (B) schematic of the functionalized silica nanoparticle [55].
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5.1.4. Electrodeposition

The electrodeposition method is one of the chemical-based methods used to achieve

superhydrophobicity. The main advantages of this method are its low cost of production,

Figure 20. Schematics of superhydrophobic coating fabrication and investigation of functionalized and non-

functionalized nanoparticles addition to sol-gel coating. Four samples are (a) aluminum substrate, which was chemically

etched and then functionalized by FAS solution without any sol-gel coating, (b) the aluminum substrate after chemical

etching was dip coated in TEOS-GPTMS hybrid sol-gel coating and the functionalized by FAS solution, (c) the same

process was done by a hybrid TEOS-GPTMS coating containing Al2O3 nanoparticles and (d) functionalized Al2O3 was

added to the coating and water contact measurements are reported [66].
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capability of large-scale production, being independent from the shape and size of the sample,

and great uniformity. Although it is worth mentioning that the electrodeposition technique

fabricates a hierarchical micro- and nanoscale roughness on the surface of metal and a low

energy material is needed to be coated on the surface after electrodeposition to reduce surface

energy. A combination of the hierarchical structure on the surface and lowered surface energy

by low energy material coatings like lauric acid, stearic acid, fluoropolymers, etc. will lead to

superhydrophobicity. Also, several studies have been reported that used a two-step electrode-

position technique to fabricate ideal hierarchical micro- and nanoscale roughness on the

surface [69, 70].

Jain et al. [71] fabricated a superhydrophobic copper substrate by electrodeposition technique

followed by low surface energy modifications in stearic acid. The WCA was 162� � 3� and the

sliding angle was about 3�. The copper substrate was chosen due to its wide application in

industries. In Figure 22, SEM images of surface morphology and WCA are shown at different

values of voltages including 0.5 V, 0.7 V, 0.9 V, and 1.1 V, showing the formation of globular

asperities on the surface at potentials over 0.7 V.

The superhydrophobic surface fabricated by electrodeposition followed by stearic acid coating

also showed self-cleaning properties. In Figure 23, superhydrophobic and ordinary surface are

compared against an SiC particle dirt. As seen in the figure, the superhydrophobic sample

cleaned completely by 55 drops of water.

In another study Xiang et al. [72] fabricated a superhydrophobic and superoleophilic mesh for

oil-water separation using electrodeposition technique. The stainless-steel mesh was fist

washed and degreased by ethanol and then etched by 8 M HCl to remove the oxidation layer

from the surface. The prepared mesh then put into solution consists of ethanol, CuSO4,

Na2SO4, NiSO4, NDM, and dopamine hydrochloride, and the electrodeposition was done at

Figure 21. SEM image showing the feather-like morphology of superhydrophobic silver coating on copper substrate [68].
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0.6 A cm�2 for 20 min. The result was a stainless-steel mesh with hierarchical micro- and

nanoscale roughness as shown in Figure 24. The WCA was 162� and OCA3 was 0�.

In Figure 25, a schematic of the final substrate after electrodeposition is shown. The Cu and Ni

molecules are co-deposited by the conjugated pDOp-NDM. As mentioned before to achieve

superhydrophobicity, hierarchical surface structure and low surface energy are needed at the

same time. In this case, the pDOp-NDMmolecules drastically reduced surface energy. Besides,

the pDOp acts as a bonding agent which increases the bonding of Cu and Ni to the surface and

also attaches them to the NDM. At last, the superhydrophobic and superoleophilic mesh had a

high separation efficiency, good recyclability, and strong durability [72].

Su et al. [73] fabricated a robust abrasion and corrosion-resistant superhydrophobic coating on

copper substrate by electrodeposition method. The nickel electrodeposition in this study was

obtained through Watts bath consisting of NiSO4, NiCl2.6H2O, and H3BO3. The electrodeposi-

tion current density was 0.75 A cm�2 and the duration time was 1 h. After that, the sample was

Figure 22. SEM images of surface morphology and WCA are shown at different values of voltages including 0.5 V, 0.7 V,

0.9 V, and 1.1 V [71].

3

Oil contact angle.
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Figure 23. Self-cleaning properties of superhydrophobic copper substrate fabricated by electrodeposition method and

compared to the ordinary substrate (a) dirty samples by SiC particles, (b) 2, (c) 5, (d) 10, (e) 30, and (f) 55 drops of water.

Figure 24. WCA and OCA on stainless steel substrate before (a) and after (b and c) electrodeposition process [72].

Figure 25. The conjugated pDOp-NDM anchored on Cu and nucleus [72].
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put into a sealed reactor containing AC-FAS ethanol solution for 1 h at 110�C. In Figure 26, the

schematic of the coating process is shown.

The nickel coating on top provided a hierarchical structure on surface, and AC-FAS lowered

the surface energy resulted in superhydrophobic properties with good mechanical properties

and high corrosion resistance. In Figure 27, Nyquist and bode plots of pure copper substrate,

electrodeposited Ni, and superhydrophobic surface are shown in which the superhydrophobic

surface has much higher corrosion resistance [73].

5.1.5. Chemical functionalization

Wu et al. [74] fabricated a ZnO-based surface on a glass slide in which a layer of ZnO was first

deposited on the substrate, and then self-assembled monolayers4 were used to lower surface

energy and achieve superhydrophobic properties. In Figure 28, the microstructure of the ZnO

coating on the substrate is shown. The hierarchical micro- and nanoroughness of the ZnO

coating followed by low surface energy treatment will lead to superhydrophobic properties.

Xu et al. [74] fabricated a superhydrophobic nanocomposite TiO2/polystyrene coating which

can be deposited through simple spray coating. TiO2 nanoparticles were first functionalized by

PFOA and then added to the polystyrene matrix and deposited on the substrate by spraying. It

was found that usage of equal amounts of functionalized TiO2 and polystyrene led into

optimum superhydrophobic properties with WCA of 166�.

Wang et al. [74] fabricated a superhydrophobic surface on PDMS using modified ZnO parti-

cles. The ZnO particles were fabricated through a CVD process, and then they were

functionalized to reduce the chance of agglomeration. In Figure 29, as-prepared ZnO rods are

shown which are greatly suitable to form hierarchical micro- and nanoscale roughness. Also,

coating WCA and microstructure are shown.

Wu et al. [75] fabricated a superhydrophobic coating by simply adding functionalized silica

nanoparticles. The silica nanoparticles are fist added to an ethanol solution containing PTES to

Figure 26. Schematics of Cu substrate electrodeposited by Ni followed by AC-FAS treatment [73].

4

SAMs.
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form hydrophobic silica particles, and then they were added to the epoxy to form the

nanocomposite coating. As shown in Figure 30, the coating deposition of the substrate is not

limited to only one method, and it can be brushed, dipped, and sprayed to the substrate.

Figure 28. FESEM image of the surface at (a) low magnification, (b) high magnification, (c) hexagonal nanorod, and

(d) cross-sectional view [74].

Figure 27. Nyquist and bode plots of pure Cu substrate, electrodeposited Ni, and superhydrophobic surface [73].
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5.2. Lithography

The lithography method is one of the well-known processes used to fabricate superhydro-

phobic coatings. This method includes light-assisted, soft, nano-, electron beam-assisted, X-ray,

and colloidal lithography. In this method, superhydrophobic surface is generally made using a

soft or hard surface as a reference and makes a new surface by copying the reference surface

[76]. Different methods of lithography are not independent of each other, and it is possible two

use two methods of lithography during the fabrication process. For example, light-assisted

lithography is used during nanolithography [77].

Before in traditional lithography, a smooth surface was used as a reference, but now in the

photolithography process, all the details of surface roughness can be identified by the use of X-

ray and a photosensitive thin film. In soft lithography also an elastomer material is used for

molding the surface, and then that is used for templating from the surface [78].

5.3. Templating

Templating method is one of the methods to fabricate superhydrophobic surfaces in which

usually lithography method is used to build a template from the reference surface, and then

that template will be used for templating procedure. The template surface can be a paper filter,

insect wing, some animal’s skin, and plant leaf. From the chemical and morphological aspect,

the template can even be a molecule or polymer [79, 80].

In general, this method includes making a template and molding from that and then building a

surface by using that mold (see Figure 31). One of the ways to build a superhydrophobic

Figure 29. (a, b, c) WCA, advancing and receding angles, (d, e) coating microstructure, (f and g) as-prepared ZnO

rods [74].
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surface is to use gecko’s feet as a template [81]. In Figure 31, the templating procedure from the

lotus leaf is shown; in this procedure, first the lotus leaf is fixed on a prepared holder, and this

leaf is coated with gold, and a nickel mold is used to build a mold from the lotus leaf.

5.4. Chemical vapor deposition

This method includes deposition of gas on substrate by chemical reactions. To evaporate the

material in the CVD process, plasma, laser, catalysts, etc. can be used to ease the process. Some

works that have used this method to achieve superhydrophobic properties will be mentioned

here. Borras et al. [83] used plasma-assisted CVD to achieve superhydrophobicity by Ag-TiO2

nanofibers on the surface of the substrate. The fibers included an Ag core wrapped with a TiO2

shell. The water contact angle of the surface depended on the shape of the fibers and space

between them. In the best situation, WCA was reached to near 180�. In superhydrophobic

coatings with TiO2 and ZnO, a change in wetting properties from superhydrophobic to

superhydrophilic through UV irradiation can be observed. The reason for this unexpected

change in wetting behavior is that UV irradiation will cause electron-hole pairs on the surface

which will react with the lattice oxygen, and this will cause oxygen vacancy on the surface.

These oxygen vacancies cause the water molecules to easily bond with the surface, and as a

result, WCA will be drastically reduced to near zero.

In another study, Jung and Bhushan [84] fabricated multi-walled CNT by catalyst-assisted

CVD and then combined that with resin and sprayed it on the Si substrate with microstruc-

tural roughness. The WCA of the surface was 170� and the CAH was about 2�. The

superhydrophobic properties were stable in this sample and showed good results after long

exposure to water.

Figure 30. Superhydrophobic nanocomposite coating deposited on substrate through different methods and their

microstructure and WCA measurements [75].
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Many other studies have used CVD to fabricate superhydrophobic coating, but the process is

very complicated, and it is not possible to control the resulting surface morphology completely.

5.5. Layer-by-layer deposition

This method is an easier method than CVD and plasma which does not need very special

equipment. In this method, several layers of thin coating will be applied on the substrate by

changing the electrical charge, and there is less limitation in the size of the sample than CVD.

Layer-by-layer deposition is a relatively easy method to fabricate a hierarchical structure on

the substrate. Usually, some nanoparticle additives are used to improve the surface roughness.

Cohen and Rubner’s group [85, 86] used this method to fabricate superhydrophobic coatings.

They used different kinds of solutions to fabricate three layers of the coating including adhe-

sion, body, and top layer. In Figure 32, the schematic of the LBL process shows three solutions,

consisting of polyallylamine hydrochloride5, sodium 4-styrenesulfonate6, and silica particles.

5.6. Colloidal aggregation and assembling

This method is usually used to ease sol-gel, chemical deposition, and lithography processes to

fabricate hierarchical micro- and nanoscale roughness. In this method, chemical and van der

Waals bond between the dispersed particles and deposition of these particles on the surface

will make a multilayer rough surface [87]. To fabricate these kinds of multilayer rough surface,

immersion or spin coating is used. For example, Min et al. [88] fabricated colloidal particles

with a controlled size of 70 nm which were possible to deposit on large surfaces using a spin

coating method. In Figure 33a, the TEM image of synthesized silica nanoparticles is shown. In

Figure 33b, the SEM image of coating surface structure after deposition on the substrate by

spin coating with 10,000 rpm and for 10 minutes is shown. The thickness of the crystalline

colloidal layer can be controlled by the speed and time of the spin coating process.

5.7. Electrospinning and electrospraying

These two methods are similar to each other and are used to fabricate micro- or nano-

structures. The electrospinning method is an easy way to fabricate continuous polymer fibers

in micro- and nanoscale [89]. This method is suitable to make a roughened surface needed to

achieve superhydrophobicity on the surface [90]. To produce uniform fibers, polymer molecu-

lar weight and solution concentration should be controlled [91].

On the other hand, the electrospraying method is not just limited to fibers, and the deposited

polymer film can have different shapes from spheres to fibers [92]. Generally, polymeric fibers

are produced through electrospinning, and films consist of spherical seeds, which are fabri-

cated by electrospraying method [93].

5

PAH.
6

SPS.
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Ding et al. [94] fabricated superhydrophobic nanostructured ZnO coating by the

electrospinning method. The composite coating consisted of polyvinyl alcohol7 and ZnO

nanofibers. After that to reduce surface energy, fluoroalkyl silane was used to modify the

surface and lower the energy on the surface, and superhydrophobicity was achieved. The

FESEM image of inorganic ZnO fibers is shown in Figure 34. Before surface modification with

Figure 32. Schematic of the LBL method used to fabricate superhydrophobic coating [85].

Figure 31. Schematics of the templating procedure from lotus leaf [82].

7

PVA.
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fluoroalkyl silane, WCA was 0�, and the surface was superhydrophilic, but after surface

modification, the WCA was 165�, and the sliding angle was 5�.

Burkarter et al. [95] fabricated a PTFE film by electrospray method on a glass substrate which

had a fluorine-doped tin oxide coating. The result was a superhydrophobic coating with WCA

equal to 160� and a sliding angle less than 2�. Actually, the electrospray method used in this

study was very similar to the electrospinning, but because there was no need for PTFE fiber,

then the electrospray method was used. The SEM image of hierarchical micro- and nanoscale

roughness of the coating is shown in Figure 35.

Figure 33. (a) TEM image of synthesized silica nanoparticles, (b, c) SEM image of the coating surface structure on

substrate [88].

Figure 34. FESEM image of ZnO fibers film (a, a’) before modification and (b, b’) after modification [94].
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5.8. Phase separation

In this method, a surface pattern is made by separation solid phase from a semi-stable

mixture by changing the temperature, pressure, or other environmental conditions. Phase

separation method can also be involved in colloidal assembling. The surface structure in this

method can be in macro-, micro-, or nanoscale [96]. This method is usually followed by sol-gel

method to control resulted surface pattern [97]. Phase separation method can also be followed

by other methods like plasma treatment, electrospinning, and self-aggregation to achieve

superhydrophobicity. The phase separation method is partially related to colloidal polymer-

ization [98].

6. Drawbacks of superhydrophobic coatings

There have been many improvements in the case of superhydrophobic coating fabrication

and their stability, but there is still room to grow. Many studies on the superhydrophobic

coatings do not consider mechanical properties as their focus or at least part of the study.

Many of superhydrophobic coatings have poor bonding either to the substrate or to itself.

Also, many other superhydrophobic coatings will lose their special wetting behavior during

long-term use or in harsh environments. Also, almost in most superhydrophobic coatings, a

low surface energy treatment is done, which does not have suitable bonding and stability on

coating substrate and, in the case of fluorine-based materials, is toxic and harmful for envi-

ronments. These weak points have hindered industrial application of superhydrophobic

coatings.

Figure 35. SEM image of hierarchical micro- and nanoscale roughness of PTFE film deposited by electrospray method on

a glass substrate which had a fluorine-doped tin oxide coating [95].
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