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1. Introduction 

The operational management of complex systems is characterized, in general, by the 
existence of a huge number of solutions. Decision-making processes must be implemented 
in order to find the best results. These processes need suitable modeling tools offering true 
practical resolution perspectives. Among them, Petri nets (PNs) provide a simple graphical 
model taking into account, in the same formalism, concurrency, parallelism and 
synchronization. Their graphical and precise nature, their firm mathematical foundation 
and the aboundance of analysis methods have made them become a classical modeling tool 
for the study of discrete event systems, ranging from operating systems to logistic ones. 
However, their interest in the field of problem solving is still badly known. 
In this paper, we consider some PN reachability problems. Since PNs can model flows in a 
natural and efficient way, many operations research problems can be defined using 
reachability between states, e.g. scheduling (Lee and DiCesare, 1994; Van Der AAlst, 1995), 
planning (Silva et al., 2000), car-sequencing problems (Briand, 1999). Moreover, research on 
Petri nets addresses the issue of flexibility: many extensions have been proposed to facilitate 
the modeling of complex systems, by addition of ``color’’, ``time’’ and ``hierarchy’’ (Jensen, 
1992; Wang,1998). For example, it is relatively easy to map scheduling problems onto timed 
PNs. Their graphical nature reinforce obviously this strength, by allowing a kind of 
interactivity with the system. At last, a large number of difficult PN analysis problems are 
equivalent to the reachability problem, or to some of its variants or sub-problems (Keller, 
1976). Particularly, model-checking (Latvala, 2001) which represents a key point when dealing 
with systems analysis is directly linked to an exhaustive traversal of the corresponding PN 
reachability graph. 
Various methods have been suggested to handle the PNs reachability problem. In this 
paper, we propose to use the mathematical programming paradigm. Some PN analysis 
problems have already been handled using such techniques (Melzer and Esparza, 1996;Silva 
et al., 1998; Khomenko and Koutny, 2000), but none has considered the general PNs 
reachability problem. 
The proposed approach is based on an implicit traversal of the Petri net reachability graph, 
which does not need its construction. This is done by considering a unique sequence of steps 
growing incrementally to represent exactly the total behavior of the net. We follow here a 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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previous work from (Benasser and Yim, 1999) called logical abstraction technique. Their 
technique was validated on several examples using logical constraint programming 
techniques. It has shown more effective than other generic solvers and could even compete 
with heuristics dedicated to particular classes of problems. Our methodology allows to 
improve this original model using the wide range of tools and adjustments brought by 
Operational Research techniques. We model the problem as an integer linear program, then 
we solve it with a branch-and-bound technique (divide and conquer), using the Cplex 
optimization software. 
Moreover, we show how our incremental approach can be extended to Timed Petri nets in 
order to solve scheduling problems modelled as Timed Petri Nets reachability problems. 
The model built is as general as possible since we do not make assumptions about the firing 
policy, contrarywise to other classical approaches dealing with the same issue. 
This chapter is organized as follows. In section 2, we formally define the kind of PN 
considered, their respective reachabilty problems and the ways such problems are dealt 
with in the litterature. Then, in section 3, we give general considerations about step firings 
and describe the elements of our incremental approaches. In section 4, we apply our 
methodology to express reachability problems using a mathematical programming 
formulation. Finally, as a conclusion, we describe a few promising research directions. 

2. Petri Nets reachability problems 

In this section, we give the terminology of both kinds of the PN we are interested in using 
linear algebra -- in order to make our formulations more concise -- and define formally their 
respective reachability problems. 

2.1 Place/transition Petri nets 
2.1.1 Petri net terminology 
Definition 1 (Place/Transition Petri Net). A Place/Transition Petri net (Murata, 1989) 

= ( , , , )R C C− +P T  with its initial marking m  is a bipartite weighted directed graph where:   

• 1= { , , }mp pKP  is a finite set of places, with =| |M P . Places are represented as circles 

and indexed by letter i ; 

• 1= { , , }nt tKT  is a finite set of transitions, with =| |N T . Transitions are represented as 

rectangles and indexed by letter j ; 

• Incidence matrices ,C C− +
 and C ×∈ P TN  (with =C C C+ −− ) define the weighted flow 

function which associates to each arc ( , )i jp t  (from place ip  to transition jt ) or ( , )j it p  

(from transition jt  to place ip ) its weight ijC−
 or ijC+

. When there is no arc between place 

ip  and transition jt , then we have: = = 0ij ijC C− +
. The 

thi  row vector and 
thj  column 

vector taken from incidence matrices C−
, C+

 and C  are denoted respectively iC−
, jC−

, 

iC+
, jC+

 and iC , jC . We denote respectively by p•
 and p•

 the set of predecessors and 
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successors of place p , and conversely t•  and t•  are the set of predecessors and successors of 

transition t  (also known as input and output nodes); 

• :m →P N  associates to each place p∈P  an integer ( )m p  called the marking of the 

place p . Markings are represented as full dots called tokens inside places.  

Definition 2 (Characteristic Vectors). Let ( , )R m  be a Petri net with 1 2= { , , , }mp p pKP  

and 1 2= { , , , }nt t tKT :   

• The canonical vector p
i

e
uur

 associated to place ip  (resp. t
j

e
uur

 associated to transition jt ) is the 

vector in {0,1}N
 (resp. in {0,1}M

) which takes the value ``1’’ in its 
thi  (resp. 

thj ) 

component and ``0’’ elsewhere. 

• The marking vector m
uur

 associated to marking m  is the column vector 1( ( )m p , 2( )m p , 

, ( )) M

mm p ∈K ú N .  

p
1

p
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p
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p
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t
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t
3

t
4

2p
1

p
2

p
4

p
3

t
1

t
2

t
3

t
4

2

 

1 1 0 0 0 0 0 1 1 1 0 1

0 0 1 0 1 1 0 0 1 1 1 0

0 0 1 0 0 2 0 0 0 2 1 0

0 0 0 1 0 0 1 0 0 0 1 1

C C C

− −
−
−

−
− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Fig. 1. A Petri Net and its Incidence Matrices   

Example 1 (PN). An example of a PN and its incidence matrices is presented in Fig.1. Its initial 

marking is 0 = (1,0,0,0)m ú
. We have 

2
= (0,1,0,0,0)pe

uuur
ú

 and 
3

= (0,0,1,0,0)te
uur

ú
.   

In a PN, the markings of the places represent the state of the corresponding system at a 
given moment. This state can be modified by the firing of transitions. This behaviour is 
called the ``token game’’. 

Definition 3 (Transition Firings). Let ( , )R m  be a Petri net. A transition 
jt  is fireable from 

marking m  iff: 

 

, ( )

 

i i ij

t
j

p m p C

m C e

−

−

∀ ∈ ≥

⇔ ≥ ⋅
uur uur

P
 (1) 

The fireability condition is denoted by [m t〉 . If this condition is satisfied, a new marking m′  is 

produced from the marking m , such that: 
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, ( ) = ( )

 =  

i i i ij ij

t
j

p m p m p C C

m m C e

− +′∀ ∈ − +

′⇔ + ⋅
uuur uur uur

P
 (2) 

The firing of a transition t  from the marking m  to the marking m′  is denoted by [m t m′〉 .   

Transition firings modify the marking of the net. It is thus interesting to know if one 
particular marking can be reached. This problem is known as the ``reachability problem’’ for 
Petri nets. 

2.1.2 Reachability problem 

 Definition 4 (Reachable Marking).  A marking m′  is reachable from a marking m  iff there 

exists a sequence of transitions 
1 2

=
k

t t tσ σ σσ K  such that: 1 2
1 2

[ [ [
K

m t m t m t mσ σ σ ′〉 〉 〉K    

We denote by [m mσ ′〉  that the marking m′  is reachable from the marking m , where 

1 2
=

K
t t tσ σ σσ K  is called a firing sequence. The Parikh vector 

=1
=

K

tk
k

e
σ

σ ∑
ur uuur

 associated to 

the firing sequence σ  is the vector whose 
thj  component is equal to the number of times 

the transition j  is fired in σ . It is used to formulate a well known property of Petri Nets. 

 Proposition 1 (State equation).  Let 0( , )R m  be a Petri net, 
fm  a marking and 

1 2
=

K
t t tσ σ σσ K  a firing sequence. Then we have:  

 0 0[ =f fm m m m Cσ σ〉 ⇒ + ⋅
uuur uur ur

 (3) 

Proof. It is obtained using a simple induction over the number of transitions fired in the 

sequence. W 
The equation Error! Reference source not found. is called the fundamental (or state) equation 
of Petri nets. This equation has been widely studied in PN reachability analysis, but it only 
leads to semi-decision algorithms due to the existence of spurious solutions (Silva et al., 1992). 
Indeed, in that case, the reverse implication does not hold: the Parikh vector of a firing 
sequence is always solution to the state equation, but the reverse is not true. Some 
techniques (Colom and Silva, 1989b) have been proposed to improve the strength of this 
characterization, but they are still insufficient. 

 Definition 5 (Reachability Problem).  Let 0( , )R m  be a Petri net and fm  a marking. The set 

of all markings reachable from 0m  is denoted by 0( , )R mR ; the set of all possible firing sequences 

(within which each transition is fireable from the corresponding marking) is denoted by 0( , )R mF . 

The problem of finding whether 
0( , )fm R m∈R  or not is known as the reachability problem for 

Petri nets.   
It has been shown that the reachability problem is decidable (Kosaraju, 1982). However it is 
EXP-TIME and EXP-SPACE hard in the general case (Lipton, 1976). Of course, practical 
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applications need not only to know if a marking is reachable, but also what are the 
corresponding firing sequences leading to this marking. To solve this problem, one needs to 

find a firing sequence 0( , )R mσ ∈F  such that 0[ fm mσ 〉 . A ``naive’’ approach consists 

in exploring the reachability graph exhaustively. This graph corresponds to the usual formal 
representation of the behavior of the net. 

 Definition 6 (Reachability Graph).  The reachability graph of a Petri net 0( , )R m , denoted by 

0( , )R mG , is defined by: 

A set of nodes 0( , )R mR  which represents the reachable markings; 

A set of arcs, where an arc ( , )m m′  labelled t  connects nodes m  and m′  iff [m t m′〉 .  

Example 2 (Reachability Graph). Fig.2. presents a part of the reachability graph for the Petri net 
of Fig.1.   

(0,1,2,0)T

(1,0,0,0)T

(0,0,1,1)T (0,1,3,0)T
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Fig. 2. Reachability graph for the PN of Fig. 1 

For a given initial marking 0m , the reachability graph 0( , )R mG  and the corresponding 

reachability set 0( , )R mR  may be of infinite size. For instance, the set of markings 

reachable from 0m  for the net of Fig. 1 is infinite. 

Practically, it is not possible to explore the reachability graph exhaustively due to the well 
known problem of combinatorial explosion: the size of the state-space (i.e. the size of the 
reachability set) may grow exponentially with the size of a system configuration (i.e. the 
number of nodes of the Petri net). Many methods have been studied to limit this explosion. 
Let us mention the three main families. 
 First ones aims at managing the combinatorial explosion without modifying the studied 
reachability graph. Classical approaches are graph compressions, particularly bdd encoding 
(Gunnarsson, 1998) and forward checking (Fernandez et al., 1992). Both uses depth first 
traversal of the reachability graph. 

• Other techniques construct a reduced reachability graph associated to the original, based 
on some properties to preserve: symmetries (Huber et al., 1985), reductions (Berthelot, 
1986) and partial order (covering step graphs (Vernadat et al., 1996), stubborn sets 
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(Valmari, 1991)) are the main approaches. The logical abstraction technique (Benasser and 
Yim, 1999) belongs also to this category. 

• Last ones are based on the PN state equation (cf. Proposition 1): we can distinguish 
parametrized analysis (Lindqvist, 1993) and algebraic methods (Lautenbach, 1987).  

Many extensions have been proposed to improve the modelling power of Petri nets. Among 
them, several extended Petri nets with ``time’’ have been proposed by assigning punctual 
firing times (leading to ``Timed PN’’) or time intervals (``Time PN’’) to the components of 
Petri nets (transitions, places, arcs or even tokens). To deal with firing times, two main 
methods for modeling timing are used: either the timings are associated with the places (the 
PN is said to be P-timed) (Sifakis, 1975), or the timings are associated with the transitions 
(the PN is said to be T-timed) (Ramchandani, 1974). Depending on the system to be 
modeled, one of the models (P-timed or T-timed) may be easier to use than the other one. 
However, Sifakis has shown that the two models are equivalent. In the context of scheduling 
problems, (Hillion and Proth, 1989) and (Van Der Aalst, 1995) propose to use T-timed Petri 
nets, hereafter called simply Timed PN. We describe this model in the following section. 

2.2 Timed Petri nets 

Timed Petri nets have been introduced by (Ramchandani, 1974). The following presentation 
has been adapted from (Chrétienne, 1984). We start by giving an informal introduction on 
Timed Petri nets. 

2.2.1 Informal presentation 

Timed Petri nets correspond to Places/Transitions Petri nets where a duration 
*( )d t ∈N  is 

associated to each transition t . A Timed Petri net has the same representation as PN, to 

which is added a labelling on transitions. An example of Timed Petri net is given in Fig. 3. 

We have: 1( ) = 3d t , 2( ) = 4d t , 3( ) = 5d t , 4( ) = 2d t . 

The firing durations associated to transitions modify the marking validity conditions. As soon 
as durations are associated to transitions, the Petri net acts as if tokens ``disappeared’’ at the 
time the transition is fired, and then ``reappeared’’ after a delay corresponding to the 
duration of the fired transition. Thus, the marking of a Timed Petri net evolves with the 
occurences of an external timer. For instance, let's consider the Timed Petri net of Fig. 3. At 

date 1, the transition 1t  (duration: 3 t.u.) is fired. Then the transition 4t  (duration: 2 t.u.) is 

fired at date 5. The evolution of marking with time is given in Fig. 3. Note that one could 

have fired transition 4t  at date 4, since the resource 1r  had been released at the end of the 

firing of transition 1t . However, the same transition was not fireable at date 3, since the 

firing of 1t  was not finished. 

The firing and ending dates of transitions play a fundamental role in the behaviour of the 
Timed Petri net. It is thus necessary to adapt the firing equations according to these firing 
dates. In order to respect the underlying semantic of PN, a timed firing sequence is said to be 
feasible if and only if, at any time, the transient marking reached is made of non negative 
components. 
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 Date
Marking 

( , , , , , , , )
1 2 3 4 5 6 1 2

p p p p p p r r
ú  

Initial date 0 (1,0,0,0,1,0,1,1)
ú

 

Firing of 

1t →  
1 (0,0,0,0,1,0,0,1)

ú
 

 2 (0,0,0,0,1,0,0,1)
ú

 

 3 (0,0,0,0,1,0,0,1)
ú

 

End of 1t →  4 (0,1,0,0,1,0,1,1)
ú

 

Firing of 

4t →  
5 (0,1,0,0,0,0,0,1)

ú
 

 6 (0,1,0,0,0,0,0,1)
ú

 

End of 4t →  7 (0,1,0,0,0,1,1,1)
ú
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 8 (0,1,0,0,0,1,1,1)
ú

 

Fig. 3. Example of a Timed Petri Net and a Timed Firing Sequence   

2.2.2 Timed Petri nets terminology 
Definition 7 (TPN -- Timed Petri Net). A Timed Petri net (Ramchandani, 1974) is defined by a 

pair ( , )R d  where R  is a Place/Transition Petri Net and 
*:d →T N  is a mapping associating 

a duration to each transition of the net. The vector = ( ) t

t

d d t e
∈

⋅∑
uur ur

T

 is called the duration vector of 

the Timed Petri net.   
Note that one could more generally consider rational valued durations. Nevertheless, after 
having them reduced to the same denominator, and by reasoning over numerators, it is the 
same as if durations were integer valued. In addition, to simplify the study, we restrict 

ourselves to Timed Petri nets without immediate transitions (i.e. , ( ) > 0t d t∀ ∈T ), which is 

not so restrictive in real world practice and corresponds well to scheduling problems we are 
concerned with. 
The transition firing semantics in TPN forbids reentrance. In other words, it is not possible to 
fire again a transition that has not yet finished to be fired. Again, this semantics is well fitted 
to scheduling problems, where transitions are associated to operations on machines. Thus, 
one can associate a unique residual duration to each transition without any possible confusion 
between several concurrent transitions activations. The residual duration vector is 
associated to the marking of a TPN to define its full state. 

 Definition 8 (TPN State). Let ( , )R d  be a TPN. Its state = ( , )m re E E
uur uur

 is given by:   
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• Its classical marking vector 
M

mE ∈
uur

N , associating to each place its number of tokens;  

• A residual durations vector 
N

rE ∈
uur

N , associating to each active transition its 

remaining duration, and zero if the transition is not active.  

The set of all states of a TPN is denoted by ( , )R dS . The fundamental concept that 

governs Timed Petri net behavior is the controlled execution, which associates to each 
transition the sequence of its successive firing dates. 

Definition 9 (CE – Controlled Execution)  Let ( , )R d  be a TPN and t∈T  a transition. A 

firing sequence for the timed transition t : 1( ) = , ,t t

k K
t

tu u u ∈K N  is an increasing sequence of 

firing dates, such that:  

 1[[1, 1]], ( )t t

t k kk K u d t u +∀ ∈ − + ≤  (4) 

A controlled execution is a family , [[1, ]]( )t

k t k K
t

u ∈ ∈T  of firing sequences for all transitions of the TPN.   

Note that in the previous definition, equation (4) is used to forbid reentrance. For any 

transition t , tk  and K
t

tu  may be infinite. Hereafter, we only consider finite CEs. We denote 

by maxv  the ending date of the last firing in the CE: ( )max = ( )max K
tt

tv u d t
∈

+
T

. After 

maxv , the state of the TPN under the considered CE will never change and we 

have: max( ) = 0r NE v
uuuuuuuuur uur

. 

The formal expression of a CE is used to define several characteristic vectors allowing to 
verify the feasability of a CE. We assume that no transition is active at the initial state to 
simplify the formulation. 
 Definition 10 (Characteristic Vectors of Controlled Executions)  Let (R, d) be a TPN with its 

initial state ( )0
0

=  ,0m Ne E
uuuur uur

 given at initial date 0  and 
, [[1,

( )
]]

t

k t k K
t

u
∈ ∈T

 a controlled 

execution. Let max[[0, ]]v v∈ . We define three characteristic vectors associated to ( )t

ku  in the 

following way: 

 ( ) NN v ∈
uuuuur

N  is the vector corresponding to the number of firings that started within the 

interval [0, ]v , defined by { }, [[1, ]]( ) = | t

k k K k
tt

tN v card u u v∈
⎛ ⎞≤⎜ ⎟
⎝ ⎠

uuuuur
; 

• ( ) ND v ∈
uuuuur

N  is the vector corresponding to the number of firings that started within 

the interval [0, [v , defined by { }, [[1, ]]( ) = | <t

k k K k
tt

tD v card u u v∈
⎛ ⎞⎜ ⎟
⎝ ⎠

uuuuur
; 
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• ( ) NF v ∈
uuuuur

N  is the vector corresponding to the number of firings that ended within 

the interval [0, ]v , defined by { }, [[1, ]]( ) = | ( )t

k k K k
tt

tF v card u u d t v∈
⎛ ⎞+ ≤⎜ ⎟
⎝ ⎠

uuuuur
.  

We have introduced above the definitions of state and controlled execution of a TPN. We 
define below how the state of a TPN is modified under a CE. 

Definition 11 (Instantaneous State of a TPN under a Controlled Execution)  Let ( , )R d  be 

a TPN with its initial state ( )0
0

=  ,0m Ne E
uuuur uur

 given at date 0  and 
, [[1,

( )
]]

t

k t k K
t

u
∈ ∈T

 a controlled 

execution. Let max[[0, ]]v v∈ . The instantaneous state ( )= ( ) , ( ) v m re E v E v
uuuuuur uuuuuur

 at date v  is 

given by:  

 
0

( ) =  ( ) ( ) m mE v E C F v C N v+ −+ ⋅ − ⋅
uuuuuur uuuur uuuuur uuuuur

 (5) 

 
( ) if [[1, ]] . . [[ , ( )[[

, ( ) =
0 otherwise

t t t

k t k k

r
t

u d t v k K s t v u u d t
t E v

⎧ + − ∃ ∈ ∈ +
∀ ∈ ⎨

⎩

uuuuuur
T  (6) 

Informally, in the previous definition, the quantity ( ) C F v+ ⋅
uuuuur

 corresponds to the tokens 

produced by the firings of transitions that ended strictly before the date v . Those tokens can 

be used to fire transitions at date v . The quantity ( ) C N v− ⋅
uuuuur

 corresponds to the tokens 

used by the firings of transitions that started until the date v . Thus, the quantity ( ) mE v
uuuuuur

 

corresponds exactly to the tokens remaining in the TPN at date v . The residual durations 

vector ( ) rE v
uuuuuur

 denotes the exact remaining time of transitions that are active at date v . 

Obviously, there can only be one [[1, ]] . . [[ , ( )[[t t

t k kk K s t v u u d t∈ ∈ +  from equation (4). 

Note that (Chretienne, 1984) defines also the quantity 

( ) = (0) ( ) ( ) mm v E C F v C D v− + −+ ⋅ − ⋅
uuuuuur uuuuuur uuuuur uuuuur

. This quantity does not consider the tokens 

used by the firings of transitions that occur exactly at date v . Thus, it can be used to 

formulate the fireability condition for a transition in a TPN, independently from possible 
concurrent activations: under a controlled execution, a transition is fireable at date v  

iff ( ) tm v C e− −≥ ⋅
uuuuuur ur

. 

Obviously, like for Place/Transitions PNs, even if each transition is independently fireable 
at every date, the full CE is not necessarily valid as a whole since token may be used by 
several transitions at the same time. Thus, an improved condition for a CE to be feasible is 
given below. 
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Definition 12 (Feasible Controlled Execution). Let ( , )R d  be a TPN with its initial state 

( )0
0

=  ,0m Ne E
uuuur uur

 given at date 0  and , [[1, ]]( )t

k t k K
t

u ∈ ∈T  a controlled execution. This controlled 

execution is said to be feasible iff: 

 max[[0, ]], ( ) 0m Mv v E v∀ ∈ ≥
uuuuuur uuur

 (7) 

The previous condition means that there must be enough tokens so that transitions may fire 
simultaneously. 

2.2.3 Timed Petri Net Reachability Problem 

Using the previous notations, the Timed Petri nets reachability problem consists in 
searching for a feasible CE allowing to reach a given final state from the initial state. 

Definition 13 (Timed PN Reachability Problem). Let ( , )R d  be a TPN with its initial state 

( )0
0

=  ,0m Ne E
uuuur uur

 given at date 0 . Let ( )=  ,0f m N
f

e E
uuuur uur

 be a target state. The reachability 

problem for Timed Petri nets consists in finding a CE , [[1, ]]( )t

k t k K
t

u ∈ ∈T  such that 

( )max max
max

= ( ) , ( ) =v m r fe E v E v e
uuuuuuuuur uuuuuuuuur

.   

As said before, it is quite simple to see a parallelism between a scheduling problem and a 
Timed Petri net reachability problem. Indeed, let's consider for instance the Timed Petri net 
of Fig. 4. One remarks obviously that solving a reachability problem between markings 

0 1 2 3 1 2 3= { , , , , , }m p p p m m m  and 
4 5 6 1 2 3= { , , , , , }fm p p p m m m  means exactly 

finding a schedule of the production presented in the table on the left side. 
 

 

Production To 
Schedule: 

 

job 1: 
 ( ,2)( ,3)( ,4)

1 2 3
m m m  

job 2: 
 ( ,3)( ,2)( ,3)( ,3)

2 3 1 3
m m m m  

job 3: 
 ( ,2)( ,4)( ,2)

1 3 1
m m m  
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Fig. 4. TPN modelling a Production To Schedule   
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Several approaches have been proposed to solve the Timed Petri net reachability problem, 
either by restricting their study to a subclass of TPN, like Timed Event Graphs (where a 
place has exactly one input and one output transition), either by using dedicated heuristics. 
A complete bibliography can be found in (Richard, 2000). 
Since the fire of a Timed transition can occur as soon as it is fireable and as late as one wants, 
there may exist, from a given state, an infinite number of reachable markings (depending on 
the time), and no reachability graph can be built. A first approach needs to consider Timed 
PN as a subclass of Time PN, in order to use the state enumeration methods (state class 
graphs) proposed by (Berthomieu and Diaz, 1991). On the other hand, when dealing with 
early semantics (a transition is fired as soon as it is fireable), it is possible to proceed to an 
enumerative and structural analysis (David and Alla, 1992). 
The early semantics has been extensively studied for the special class of Timed Event 
Graphs, using (max,+) algebra (Bacceli et al., 1992). Since their structure does not handle 
conflicts, it is possible to obtain linear equations corresponding to the complete behaviour of 
the net. 
In the following, we will show that our incremental approach can lead to mathematical 
programming models in the most general case. 

3. Incremental approaches 

As said before, the state equation (3) does not bring enough information to solve the 
reachability problem in all cases. This comes from the fact that it does not take into account 
the fireability conditions (1) of the individual transitions fired in the sequence σ . 

Incremental approaches improve this formulation by considering a given number of step 
firings corresponding to parallel and reentrant transitions. In this section, we discuss the 
interest of using steps and a fixed depth formulation. 

3.1 Step based reachability formulation 

Definition  14 (Step). Let R  be a Petri net. A  step (Janicky and Koutny, 1991) is a multiset over 

the set of transitions T . We denote by 
*T  the set of  steps built over T .  

Informally, a  step is a set that can contain several copies of the same element, e.g. 

1 1 2{ , , }t t t , which we would note hereafter simply 1 22 t t⋅ + . We associate a  step 

=1
=

N

j jj
tϕ α ⋅∑  and its Parikh vector ϕ

uur
 in the classical way, as a linear combination 

with non negative integer coefficients jα  of the Parikh vectors of each transition, i.e. 

=1
 =

N

j tj j
eϕ α ⋅∑

uur uur
. A  step is said empty, when =ϕ ∅ , i.e. when ฀ ฀1, , = 0jj N α∀ ∈ . 

Note that a  step can contain the same transition more than once, corresponding to transition 
reentrance. Thus, when working with Timed Petri nets,  steps would only mean that several 
different transitions are considered to be fired at the same time. 
For a  step to be fireable, its preceding marking must contain enough tokens so that each 
transition of the  step may consume its own tokens, as described in the following definition. 
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 Definition 15 (Step Firings).  Let R  be a Petri net, m  be a marking and ϕ  be a  step . The  step 

ϕ  is fireable from m  iff:  

 .  m C ϕ−≥
uur uur

 (8) 

 If this condition is satisfied, the new marking m′  reached from m  by the firing of ϕ  is 

defined as:  

 =  .  m m C ϕ′ +
uuur uur uur

 (9) 

 Hereafter, we will use the notations already used previously: [m ϕ〉 , 0 1[m mϕ〉 , 

0 1 2[ km ϕϕ ϕ 〉K  and 0 1 2[ k km mϕϕ ϕ 〉K  to denote that a  step or a  step sequence is 

fireable, and the marking obtained in each case. The number of  steps of a  step sequence 

1 2= Kϕϕ ϕΦ K  is denoted by | |= KΦ . 

The definition of  step firings corresponds naturally to the firing of the underlying 
transitions. We will show that its use can lead to a formulation that is still equivalent to the 
initial PN behavior, but that can be more conveniently used in a mathematical programming 
framework. The following proposition explains the relation between  step and transition 
firings with respect to reachability issues. 

Proposition 2 (Step Reachability Equivalence).  Let 0( , )R m  be a Petri net and fm  a 

marking. 

fm   is reachable from 0m ⇔  

 
1

1 2 1

1*

1 2

,
[[1, 1]], [

, , , , . . :
[

, , ,

k k kM

k

k K f

K

k
k K m m

m m m s t
m m

ϕ
ϕ

ϕ ϕ ϕ

−
−

−

∃ ∈
∀ ∈ − 〉⎧

∃ ∈ ⎨ ∧ 〉⎩∃ ∈
K

K

N

N

T

 (10) 

Proof. The proof of this proposition is not difficult but quite lengthly and hence is not given 
in this chapter. It can be found in a technical report available at url: 

http://www.eclille.fr/tomnab/asr07/. W 
One must remark that the proof of the proposition 2 shows how it is possible to construct a 

firing sequence leading to fm  from a corresponding  step sequence. Thus, to compute a 

firing sequence leading to a target marking, it will be sufficient to compute a  step sequence 
leading to the same marking. 
The main interest of our formulation is to capture the parallelism caused by the interleaving of 
actions, which is precisely one of the main advantages of using a Petri net as a model of a 
system. This issue has already been followed by (Vernadat et al., 1996), from whom we 
borrow the illustrative example of Fig. 5: ``When two ( n  in the general case) components offer 
independent actions in parallel, the interleaving semantics expresses this behaviour by a diamond (an 
hypercube in the general case) within which each path lead to the same final state. Since all paths 
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converge to the same state, the key idea is to develop only one particular path among the set of possible 
equivalent ones’’. 
  Example 3 (Vernadat's steps). As shown in Fig. 5, there exists several ways to handle 3 
independent transitions from the point of view of the reachability graph. One can consider them one 
by one, which leads to handle 8 states and 12 firings. If we just refer to their corresponding 
Mazurkiewicz's trace (see (Vernadat et al., 1996) for details), we only have to handle 3 transition 
firings and 4 states. In the last case, one can capture the whole behavior in one unique firing that is 
called a step by Vernadat (with the meaning of ``footstep’’).   
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Point of view Exhaustive Trace Step 

# States 2n
 ( 1)n +  2  

# Transition 
Firings 2 1nn× −  n  1 

Fig. 5. Some ways to handle independent transitions, from Vernadat 

The characterization given in proposition 2 can be used to build a mathematical programming 
model based on  steps which can be used to solve reachability-based PN analysis problems: 
one has just to express the right side of equation (10) using the linear equations (8) and (9) 
over integer variables. Such a model will be presented in section 4. 
The advantage of using  steps is that they allow to reduce the number of firings in our model 
– and then the number of variables – while keeping an equivalence with the initial 
properties. Thus it is not a modification of the semantics of PNs, but only a way to capture the 
independence of transitions. Of course, this reduction does not systematically holds, since it is 
easy to construct a Petri net where only one transition can be fired at a time. Thus, in the 
worst of cases, the  step firings formulation may not bring any improvement as far as the 
number of firings used are concerned. However, this is a quite uncommon situation since it 
means that the Petri net does not show any parallelism. 

3.2 Incremental search 

We have seen the interest of using  steps to formulate the reachability problem in PNs as a 
search for instanciations of integer variables constrained by a system of linear equations. 
This formulation allows us to use the paradigm of mathematical programming to solve the 
reachability problem. However, the initial definition of the reachability problem is not well 
adapted to the kind of formulation we propose to use, since definition 5 does not make any 
assumption concerning the number of  steps needed to solve the reachability problem. In 
this paragraph, we define two sub-problems associated with the original reachability problem 
introduced before, which can be conveniently solved using the characterization of 
proposition 2 in a mathematical programming framework. 
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Definition 16 (Fixed Depth Reachability Problem). Let 0( , )R m  be a Petri net, k ∈N  and 

fm  a marking. 

 

1P ( )k  
Find a  step sequence allowing to reach the marking fm  from the marking 

0m  in at most k   steps .  

Definition 17 (Shortest Length Reachability Problem). Let 0( , )R m  be a Petri net, and fm  

a marking reachable from 0m . 

2P  
Find the minimal length, denoted by minK , of a sequence of  steps allowing to 

reach the marking fm  from the marking 0m .  

Of course, each of these sub-problems is directly linked to the initial one defined before, and 
each allows to solve a different kind of PN reachability analysis. For instance, the first 

formulation 1P ( )k  is highly useful for model-checking since it can serve to define an 

exhaustive search of the reachability graph. On the other hand, the second formulation 2P  

is well designed to deal with performance analysis since it returns a firing sequence that 
maximizes the parallelism of the system. It can also give an helpful bound for the definition of 
additional heuristics. Finally, since it is clear that the complexity of the problem grows (w.r.t. 

number of variables and constraints) as the length k  of the sequence of steps used 

increases, it seems also quite reasonable to search for the smallest value of the parameter k  

from which a solution exists. 

The fixed depth reachability problem 1P ( )k  has already been studied by (Benasser, 2000) using 

the logical abstraction technique. His approach is based on the same notion of  steps , but it 
uses constraint programming techniques. His algorithm iterates the number of  steps used, 
adding one new  step at each iteration, in order to test all the lengths of sequences of  steps 

lower than k . Benasser proved that his algorithm is correct since the sequences found are 

effectively sequences of steps which produce the desired final marking. It is also complete 

since it can enumerate all the solutions of length smaller than a given integer k . In each 

iteration, the algorithm uses a mechanism of linear constraints solving. It has been 
implemented using the constraint logic programming software Prolog IV. The interest of 
using a constraint logic programming framework is that its resolution mechanism is 
incremental (Jaffar et al., 1992). Indeed, it is not necessary to redefine in each iteration the 
constraints incorporated into the previous stage. The constraints are added in the constraints 
solver so that it can reuse the results of the previous constraints propagation. The search for 
the concrete results is made at the end by an enumeration of all the possible integer solutions, 

which corresponds exactly to the sub-problem formulation 1P ( )k . 

In section 4, we will adapt Benasser's algorithm to our own mathematical programming 
framework. To achieve the same kind of results, we will prove the correctness and 

completeness of our mathematical programming formulation with respect to 1P ( )k . These 

results will allow us to use integer linear programming techniques to find every solution of 
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1P ( )k . Some objective functions would also be defined to guide the search directly to an 

optimal solution in some way. Since 2P  can be easily expressed by iterating 1P ( )k  instances 

for growing values of the parameter k , it will also be solved using the same technique. 

Here, Operational Research techniques replace Artificial Intelligence ones, but the algorithm 
structure is the same. All techniques based on incremental approaches may share the same 
search algorithms. The most basic algorithm consists in searching in an incremental way 
amongst sequences the length of which are increased one by one. 

3.2.1 Naive algorithm 

This algorithm is fed with a bound maxK  on what we call the ``search depth’’ in order to 

prevent an infinite loop. Once chosen this value, the procedure generates iteratively a 
sequence of mathematical models of increasing size, and search for solutions in the 
corresponding search spaces using mathematical programming techniques. If there is no 

solution in less than maxk  steps, the algorithm stops. It is described in Fig. 6. 

1:  0k ←   

2:  DO  
3:    1k k← +  

4:    Generate MP( )k , a mathematical programming model for the problem 1P ( )k  (which 

corresponds to characterization of proposition 2 with k steps ). 

5:    Solve the model MP( )k  using branch & bound techniques (e.g. Cplex solver). Let 

[[1, ]]i k
X
uur

 be an optimal solution of MP( )k  if it exists. 

6:    
IF ( MP( )k  has a solution),  RETURN 

[[1, ]]i k
X
uur

 

7:  
WHILE ( MP( )k  is infeasible)  AND ( maxk K≤ ) 

Fig. 6. Naive Search Algorithm   

During the formulation of the mathematical programming model at step 4 , one should take 
care of the domain of variables representing the  steps . Indeed: the definitions of  step and  
step firings do not forbid empty  steps  leaving the markings unchanged. By considering 
empty  steps valid in our formulations, we get the following result. 

Proposition 3 (Satisfaction Monotony)  Let k∈N . If the problem 1P ( )k  is feasible, then for 

any integer k k′ ≥ , the problem 1P ( )k′  is also feasible.   

Proof. It is easy to construct a feasible solution for 1P ( )k′  from a feasible solution of 1P ( )k  

for k k′ ≥  by adding empty steps. W  

Note the same result would be true when dealing with the family of mathematical 

programming models MP( )k : if there exists k ∈N  such that MP( )k  admits a solution, 

any model MP( )k′  with k k′ ≥  would be feasible too. This property motivates the jump 

search techniques proposed in the next paragraph. 
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3.2.2 Jump search 

From proposition 3 and the definition of parameter minK , we get: 

 
min 1

min 1

< P ( ) is infeasible

P ( ) is feasible

k K k

k K k

∀⎧
⎨∀ ≥⎩

 (11) 

This property can help us to define new iterative techniques, since – for example – it shows 

that it is not necessary to solve all the problems 1P ( )k  for mink K≤ , like in the naïve 

search described before. 
Of course, as said before, we must keep using an incremental procedure in order to avoid the 
use of large models if they are not needed. We propose finally some techniques based on 
jumps over the values of the search depth. These techniques allow to decrease the number of 
iterations needed, thus improving the search efficiency. Several jump strategies are possible. 
We describe briefly some elementary ones. 

• Forward jump search The first family continously increases the value of the search depth. 
We can distinguish two main politics, depending on how the amplitude of jumps is 
defined. 

- Fixed amplitude Its value must be chosen in order to obtain a high exploration 
speed while minimizing the possible redundant steps. This type of strategy 
allows to estimate the profit precisely. 

- Dynamic amplitude This second strategy uses variable amplitudes. Increasing 

amplitudes should be used for small values of k , and decreasing ones when 

the exploration becomes more difficult. This kind of behavior is less easily 
quantifiable. 

These politics both can lead to overtake minK  when a solution is found. In this 

case, it is not anymore possible to answer precisely the problem 2P , since we do 

not get the exact value of minK . To compensate this lack of information, one can 

use a dichotomic search. 

• Dichotomic search This kind of procedure needs to know a maximal bound for k . Its 

value is given by a previous successful execution of the forward jump search.  
The main interest of jump search is that it allows to win in efficiency. Since we do not know 
the number of steps needed to find a solution if it exists, the use of such a technique allows 
us, when it is possible, not to have to develop the entire set of formulations of length lower 

than minK . Numerical experiments show that even if the size of models is increasing, the 

corresponding practical complexity does not always follows the same evolution. 
Finally, it must be said that the procedure described in Fig. 6 is only a semi-complete one. 

Indeed, in the context of unbounded PNs, the value of maxk  is set arbitrarily, as we do not 

know any information on the number of steps needed to find a possible solution. Thus, if no 

solution is obtained before the value of k  has been reached, one cannot conclude on the 

reachability property. 
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To the contrary, when dealing with bounded PNs, it is possible to set maxK  to the value of 

the sequential depth of the net, a parameter we have defined in (Bourdeaud’huy et al., 2004a) 
and which guarantee the complete exploration of the reachability graph. Using this parameter 
as search depth, it is always possible to conclude when the algorithm stops. 

3.3 Adaptation to timed Petri nets 

We have seen in the previous section the awaited benefits from using an incremental 
approach made of  step firings. Before introducing the mathematical models in section 4, we 
propose to adapt the  step based formulation to Timed Petri nets. 
We start by adapting the previous formalism to Timed Petri nets. The key idea is again to 
consider the evolution of a Timed Petri net `` step by  step ‘’. 

Definition 18 (Timed step). Let ( , )R d  be a Timed Petri net. A  timed step is a pair 

= ( , )vψ ϕ  such that:   

•  
[[1, ]]

= j jj n
tϕ α

∈
⋅∑  is a  step 

*∈T  for the Place/Transition Petri net R , such that 

฀ ฀1, , {0,1}jj N α∀ ∈ ∈ ;  

•  v  is a date ∈N .  

The set of all  timed steps of a Timed Petri Net is denoted by 
*

TPNT .   

Definition 19 (Timed steps Firings).  Let ( , )R d  be a Timed Petri net. Let = ( , )m re E E
uur uur

 be a 

state given at date v . Let v v′ ≥  and =v v v′Δ − ∈N . The  timed step = ( , )vψ ϕ ′  is fireable 

from e iff:  

 , r v
t

t Eϕ∀ ∈ ≤ Δ
uur

 (12) 

 

,

0<

 m t
t

E
r vt

C E C eϕ− +

∈
⋅ ≤ + ⋅

≤Δ

∑
uur uur ur

ur
T

 (13) 

If this condition is satisfied, the new state = ( , )m re E E′ ′ ′
uur uur

 reached at date v′  from e  by the firing 

of = ( , )vψ ϕ ′  is defined as:  

 

,

0<

=  m m t
t

E
r vt

E E C C eϕ− +

∈

′ − ⋅ + ⋅

≤Δ

∑
uur uur uur ur

ur
T

 (14) 

 

( ) if 

, = if > 0

0

r r v r v
t t t

d t t

t E E E

otherwise

ϕ∈⎧
⎪⎪′∀ ∈ −Δ −Δ⎨
⎪
⎪⎩

uur uur uur
T  (15) 
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The above definition follows the firing semantics of Timed Petri nets described above, from 
the point of view of a punctual firing between two markings. Informally, equation (12) 
means that a transition fired within a  step must not be active at the time of the firing, in 
order to comply with the non-reentrance hypothesis. Equation (13) verifies that there is 

enough tokens at date v' to fire the  step ϕ . The set = { ,0 < }r v
t

t E∈ ≤ Δ
uur

A T  used in 

equations (13) and (14) denotes the transitions that were active at date v  and are no longer 

alike at date v′ . Thus, the quantity tC e+ ⋅∑
ur

A
 corresponds to the tokens that would 

appear between dates v  and v′ . At last, the update of the residual durations vector at 

equation (15) is made as follows: 

• If the transition t  is fired in the  step ϕ , its duration is used to initialize the 

corresponding component of the residual vector; 

• If a transition that was previously active is still active at date v′ , its residual duration is 

updated by taking into account the time elapsed from the previous date; 

• Otherwise, if a transition was active and has finished, or if a transition was not active 
and is not fired in the  step ϕ , its residual duration is null.  

As above, we will use the notations [eψ 〉 , 0 1[e eψ 〉 , 0 1 2[ ke ψ ψ ψ 〉K  and 

0 1 2[ k ke eψ ψ ψ 〉K  to indicate that a  timed step or a  timed step sequence is fireable, and 

the state obtained in each case. We give finally below the main proposition concerning the 
use of  timed steps in the context of Timed Petri nets. 
Proposition 4 (Equivalence between Controlled Executions and  timed step firings).  Let 

( , )R d  be a TPN with its initial state ( )0
0

=  ,0m Ne E
uuuur uur

 given at date 0 = 0v . Let 

( )=  ,0f m N
f

e E
uuuur uur

 be a state. 

There exists a feasible controlled execution allowing to reach fe  at date maxv  from 0e ⇔  

 
฀ ฀1 2

1

1 2

max

1 1 1 2

*

max max TPN

,

, , ,
1, , [

, , , ( , ). . . :
[

= ( , ), , , = ( , ),

         = (0 , )

K

k k k

K

K f

K K K

N

k

v v v
k K e e

e e e R d s t
e e

v v

v

ψ
ψ

ψ ϕ ψ ψ ϕ

ψ

−

∃ ∈
∃ ∈

⎧∀ ∈ 〉⎪∃ ∈ ⎨ 〉⎪⎩∃

∈

K

K

K
uur

N

N

T

S  (16) 

Proof. Here again, the reader is referred to the technical report available at 

http://www.eclille.fr/tomnab/asr07/ for the complete proof. W  
Following the previous proposition, it is sufficient to search for  timed step sequences to 
solve the reachability problem in TPN. The advantage of such an approach is obvious: like 
for basic PN, it is well adapted to the definition of a mathematical programming model with 
a reduced number of variables and constraints, since it allows to consider explicitly parallel 
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executions. Moreover, it is incremental since one can progressively increase the number of  
steps used in the formulation without redefining the whole set of constraints. 
Since reachability by controlled execution or  timed step sequence is equivalent, we define 
as above a sub-problem of the TPN reachability problem, which can be conveniently solved 
using the characterization of proposition 4 in a mathematical programming framework. 

 Definition 20 (Fixed Depth Timed PN Reachability Problem). Let ( , )R d  be a TPN with 

its initial state ( )0
0

=  ,0m Ne E
uuuur uur

 given at date 0 . Let ( )=  ,0f m N
f

e E
uuuur uur

 be a target state. 

1TP ( )v  
Find a timed step sequence allowing to reach the state fe  from the state 0e  

in at most v  timed steps.  

In the next section, we prove the correctness and completeness of our mathematical 
programming model with respect to this formulation. 

4. Integer linear programming models 

In this section, we give integer linear programming models corresponding to the 
characterizations introduced in propositions 2 and 4. 

4.1 Place/transition Petri nets 
4.1.1 Integer linear programming model 

In the previous section, we have shown that  step sequences are sufficient to prove that a 
marking is reachable and to find the firing sequence leading to it. In this section, we show 
how the search for a  step sequence can be expressed as a mathematical programming problem. 
We prove also that this model is correct and complete with respect to the fixed depth 

reachability problem 1P ( )k . 

Our integer programming model is directly built from equations and inequalities (8), (9) 
and (10). Thus we get: 

Model 1 (Integer Programming Model). Let 0( , )R m  be a Petri net with 

1= { , , }Mp pKP , 1= { , , }Nt tKT , 
fm  a marking and K ∈N  . The integer linear program 

IP( )K  is defined by: 

Minimize (  )Xω
uur

 (17a) 

subject to:  
1

 0

=1

[[1, ]],
i

j i

j

i K C X C X M
−

−∀ ∈ ⋅ − ⋅ ≥ −∑
uuur uuur uuur

 (17b) 

0

=1

 =
K

i f

i

C X M M⋅ −∑
uur uuur uuur

 (17c) 

IP( )K  

[[1, ]], [[1, ]], iji K j N X∀ ∈ ∀ ∈ ∈N  (17d) 

In the model IP( )K , variables ijX  represent the components of K steps in the sense of 

definition 14. Inequalities (17b) correspond to the combination of fireability (8) and 
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reachability (9) conditions presented in definition 15. To reduce the size of the problem, the 

variables ฀ ฀1,
( )i K
m  of equation (10) have been dropped by using the substitution of 

equation (9). Equation (17c) corresponds to the target marking to reach like in (10). The 

integrality constraints of variables ijX  are expressed by (17d). The expression of objective 

function (  )Xω
uur

 will be described later. 

The following proposition is central in our construction: it shows that our model IP( )k  

characterizes all the solutions of the problem 1P ( )k . 

Proposition 5 (Correctness and completeness of  IP(k) w.r.t. P1(k)).  Let 0( , )R m  be a PN 

and k ∈N . Then we have:   

• Any solution of IP( )k  is also a solution of 1P ( )k  (Correctness)  

• Any solution of 1P ( )k  can be expressed as a solution of IP( )k  (Completeness)  

Proof. Those results come directly from the proof of proposition 2.  W  
According to proposition 5, to solve the fixed-depth PN reachability problem is equivalent 
to search for the solutions of an integer linear programming problem. In this way, the 
exploration of the reachability graph and the resolution of the corresponding reachability 
problems are reduced to the resolution of a system of equations. The ``combinatorially 

explosive’’ reachability graph is reduced to a sequence of ``abstract’’  steps . Since IP( )k  

needs .k n  variables and ( 1)k M+ ⋅  constraints, the size of the IP( )k  model grows 

linearly with the value of the parameter k . This having been said, two remarks must be 

done. 

• Of course, we do not pretend that the combinatorial explosion problem has been wiped 
out. It is only postponed to the mathematical programming solution phase. Meanwhile, 
our formulation allows to benefit automatically from today's best solvers. 

• On the other hand, compared to many other exploration techniques, one of the interests 
of our formulation is to avoid the ``exploration’’ of the branches of the graph which do 
not lead to the desired final marking. Indeed, these cases are ``automatically cut off’’ by the 
equation (17c).  

From these two statements, we have good reasons to think that our method will bring some 
improvements on the research topic considered. We have developed several additional 
mechanisms to validate our approach and to improve the performance of the solution. All 
these improvements have been formally defined in (Bourdeaud’huy et al., 2004a,b,c, 2007; 
Bourdeaud’huy, 2004). We describe them below and refer the reader to these papers for 
more information. 

4.1.2 Practical improvements 

Objective Functions: It is obvious that 1P ( )k  has a solution if and only if the feasible set of 

IP( )k  problem is non empty. This property stays true for any objective function. 
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Nevertheless, the efficiency of solving IP( )k  may depend on the objective function chosen. 

Let's remark that some objective functions are more usefull in practice than others. 
For example, if there is no difference between solutions, a constant function is valid, which 
leads to the selection of the first feasible solution found. We define thus the function 
vanishing identically:  

1, (  ) = 0X obj X∀
uur uur

 

This objective function leads to the selection of the first feasible solution found, thus to the 
best practical performances. We could also use physical sense objective functions according to 
the particular context of the studied problem. For example, we could differentiate the 

solutions by their norm, considering thus the 1L  norm of steps: 

 2  1

=1 =1 =1

 , (  ) = =
K K N

i ij

i i j

X obj X X X∀ ∑ ∑∑
uur uur uuur

P P  (18) 

The function 2obj  allows to search for the ``fastest’’ sequence, in terms of number of firings. 

Relaxations: In order to decrease the time needed to conclude on the infeasibility of the 

IP( )k  problem, we propose to use relaxation techniques. They are useful in the field of 

combinatorial optimization. The principle of these techniques is to replace the complex 
original problem by one or several simpler ones. 

Definition 21 (Relaxation). A relaxation of an optimization problem P  of type maximisation is an 

optimization problem R  such that:  

• Each feasible solution for P  is also a feasible one for R ; 

• The value of the objective function of any solution of R  is greater than or equal to the value of 

the objective function of the same solution for P .  
Among useful properties of the relaxation and duality techniques in solving an optimization 

problem P  is that the optimal value of the relaxation problem provides an upper bound on 

the optimal value of the corresponding P . Moreover, if the relaxed problem is infeasible 

then the problem P  is also infeasible. In our context, this second property is used to 

conclude that the IP( )k  problem is infeasible by solving a relaxed problem before 

reaching minK . 

• LP-relaxation consists in relaxing integrality constraints. Bounds derived from other 

relaxations can be stronger than those obtained from LP . In the literature (Parker and 
Rardin, 1988), Lagrangean relaxation, surrogate relaxation and composite relaxation are 
usually used to obtain such upper bounds. 

• Lagrangean relaxation consists to relax complicating contraints and incorporating them 
into the objective function with a so-called Lagrangean multiplier (Geoffrion, 1974). 
However, note that relaxing fireability (17b) or reachability (17c) constraints is ``too 
strong’’ from the physical point of view. Indeed: without fireability conditions, the 
modified model represents only the state equation, which is already supposed to have 
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solutions. In the other hand, dealing with a model without the reachability constraint 
correspond to study the whole behaviour of the net. Any sequence of fireable transitions 
of the correct length is solution to the relaxed problem and do not bring information.  

• Surrogate relaxation replaces the original constraints by a single new one, called a 
surrogate constraint (Glover, 1977).  

Binary Programming Model: We propose also a binary programming model denoted by 

BIP( )K . In this model, equation (17d) is replaced by:  

฀ ฀ ฀ ฀1, , 1, , {0,1}iji K j N X∀ ∈ ∀ ∈ ∈  

This formulation is still correct since it corresponds to a restriction of the initial model 

IP( )K : parallel behaviours are still allowed, but reentrance is forbidden. This formulation 

may be more efficient since the domain of variables is reduced. However, it may be necessary 

to fire more  steps to reach some markings than using the IP( )K  model. Nevertheless, it is 

quite simple to show that this last model preserves an equivalence with the IP( )K  one. 

Indeed, any solution of BIP( )K  is also obviously a solution of IP( )K . Inversely, any 

solution of IP( )K  could be obtained by an aggregation of a solution of BIP( )K ′ , with 

K K′ ≥  (some  steps in a solution of IP( )K  may have to be splitted into several firings of 

what could be called ``binary  steps’’ of the solution from BIP( )K ′ ). Thus we are able to 

use the model BIP( )K ′  in the same way as IP( )K . The only difference is the value of 

minK ′  associated to BIP( )K ′  which can be greater than minK . 

Empty Steps Management: As said before, to consider empty  steps valid in our 

formulations bring interesting theoretical results. However, practically speaking, empty  

steps do not bring useful information considering the resolution of the reachability problem, 

since they do not change the markings. We propose thus several additional constraints 

dedicated to the management of empty  steps . 

• In the binary model, one can add an extra linear constraint in order to express a notion 
of partial order in the  steps:  

 ฀ ฀ ( 1)

=1 =1

1, 1 ,
N N

ij i j

j j

i K N X X +∀ ∈ − ⋅ ≥∑ ∑  (19) 

These constraints mean that empty steps have to appear at the end of the constrained 

sequence. Indeed: if a  step iX  is empty (i.e. ฀ ฀1, , = 0ijj N X∀ ∈ ), all its successors 

฀ ฀( ). . 1,kX s t k i K∈ +  in the  step sequence have to be empty in a ``chain reaction’’. 

Inversely, since we consider binary  steps, equation (19) is obviously true when 

฀ ฀1,j N∃ ∈  s.t. = 1ijX , because then 
=1

 
N

ijj
N X N⋅ ≥∑ . 
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• We propose also a new objective function, which corresponds to maximize the number 
of empty steps in the feasible sequence. This is equivalent to minimize the number of non-

empty steps 3obj  defined below: 

 3

=1

, (  ) = [[1, ]] . . 0
N

ij

j

X obj X card i K s t X
⎧ ⎫

∀ ∈ ≠⎨ ⎬
⎩ ⎭

∑
uur uur

 (1) 

The function 3obj  allows us to look for the shortest solutions in term of ``equivalent 

length’’ when the empty  steps have been removed. To model 3obj , we introduce new 

intermediate binary variables 1 2, , , kα α αK  and we incorporate in the linear 

programming models the following additional constraints: 

=1

[[1, ]], 1 ( 1)

[[1, ]], {0,1}

N

i ij i

j

i

i K B X B

i K

α α

α

∀ ∈ + − ⋅ ≤ ≤ ⋅

∀ ∈ ∈

∑
  

where B  is a sufficiently big number, chosen much bigger than the number of 

transitions and tokens in the net, e.g. B M N K≥ ⋅ ⋅ . Since the variables ฀ ฀1,
( )i K
α  are 

binary, it is easy to check that = 0iα  iff the step iX  is empty (a complete proof is 

given below in proposition 6). Thus the objective function 3obj  can be expressed in the 

following way: 

3

=1

, ( ) =
K

i

i

X obj X α∀ ∑  

• Finally, one could simply forbid empty steps by adding to the models the following 
constraint:  

 1[[1, ]], 1ii K X∀ ∈ ≥
uuur

P P  

Decomposition Technique: To improve the performance of the resolution, we have 
proposed constraints corresponding to a decomposition technique based on a partition of the 

state space according to the solutions of the PN state equation. For each solution  σ
uur

 of the 

underlying state equation – defined between the same initial and final markings –, we add 
the constraint:  

=1

[[1, ]], =  
K

ij
t
ji

j N X σ∀ ∈ ∑
uur
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Such a decomposition technique allows to adress the complexity of the problem in two 
steps: 

• The first step uses well known T-invariants computation techniques (see for example 
(Colom and Silva, 1989a)) which are independent from the initial marking, and thus 
allows to reuse the same information for many different initial and final markings. 

• Given the Parikh vector of the whole firing sequence to discover, the resolution of the 
reachability problem should be slighty simple. However, one should note that this 
second step remains difficult: it is not sufficient to distribute the firings over the  steps 
since each  step  must be fireable. Moreover, developping heuristics methods is 
challenging since deadlock situations can occur late after a bad choice has been made. 
Finally, the mathematical programming approaches proposed here are well designed to 
handle the second step of the search.  

4.1.3 Numerical experiments 

Numerous practical experiments were led in (Bourdeaud’huy et al., 2004a,b,c, 2007; 
Bourdeaud’huy, 2004) in order to assess the efficiency of our mathematical programming 
models. There is no space left to copy them all here, but several results must be pointed out. 

• We have compared the influence of the objective functions 1obj , 2obj  and 3obj . The 

corresponding results were quite foreseeable: 1obj  led to the best results, followed by 

2obj  and finally 3obj . However, it must be said that the performance of resolution 

using 3obj  was very weak, even for the smallest instances of our families, since the size 

of the corresponding models is large. To the contrary, the performance of models using 

2obj  were quite close to the basic performance given by 1obj , about 3 times worse in a 

pinch. 

• Our experiments to validate the pertinence of the LP-relaxation shown that for the whole 

set of PN studied, the gap between minK  for the LP-relaxation and the integer model is 

small. Such statement suggests a property of integrality of the kind of problems 
considered – i.e. continuous solutions are somehow integer –, which may be interesting 
to study. 

• Compared one with another, model BIP behaves better than IP. Of course, one could 
build an example for which the contrary would holds. Nevertheless, this observation 
were made over the whole set of our experiments. 

• Dealing with decomposition technique, preliminary experiments have shown that a 
search inside a given equivalence class is 20% faster than for the whole state space. 

• We have compared our technique with other classical tools from the PN community: 
Ina (Roch and Starke, 2002) and Netched (Benasser, 2000). 

- Ina means Integrated Net Analyzer. It is an analysis tool which allows the 
computation of firing sequences between markings thanks to the exploration of a 
covering graph. It implements some reduction techniques, e.g. persistent sets 
(Valmari, 1991) and symmetries (Schmidt, 1998). 

- Netsched is the implementation of the logical abstraction technique developped 
by Benasser. It has been implemented using the constraint logic programming 
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language Prolog IV. 
Our approach has shown very good results and dominates the other tools on some 
instances. However, there exists some special instances – see for example 
(Bourdeaud’huy et al., 2004c) – for which our method is dominated by Netsched, 
particularly when the underlying reachability graph is sparse.  

In the next section, we develop a similar mathematical programming approach for Timed 
Petri nets. 

4.2 Timed Petri nets 

We proceed as for Place/Transition PN, by adapating the characterization proposition 4 to 
build a mathematical programming model. For that, we need to linearize the equations 
defining timed step firings. We introduce in the next section two operators and the 
corresponding linearization variables and equations that we use to obtain the linear integer 
programming model. 

4.2.1 Discrimination operators 

We start by giving a useful proposition, which has been already used above dealing with the 

formulation of objective function 3obj . 

Proposition 6 (Discrimination Variables).  Let X ∈ ⊂S Z  and 
*B∈N  be ``sufficiently 

large’’. Let {0,1}α ∈  and β ∈N  such that:  

 1 ( 1) B X Bα α+ − ⋅ ≤ ≤ ⋅  (20a) 

 X β≤  (20b) 

 Bβ α≤ ⋅  (20c) 

 (1 )B Xβ α≤ ⋅ − +  (20d) 

Then we have:  

 
> 0 = 1 et =

0 = 0 et = 0

X X

X

α β
α β

⇒⎧
⎨ ≤ ⇒⎩

  

Proof. Let's assume that X  is strictly positive. The right side of inequation (20a) implies 

then 1 X Bα≤ ≤ ⋅ , i.e. 
1

> 0
B

α ≥ . Thus we have = 1α , and the left side of inequation  

(20a) is valid. The inequation (20d) implies then Xβ ≤ , and inequation (20b) implies 

= Xβ . Inequation (20c) is valid only if B  is sufficiently large, namely: ( )max
X

B X
∈

≥
S

. 

Conversely, if X  is negative or null, the left side of inequation (20a) implies 

1 ( 1) 0Bα+ − ⋅ ≤ , which implies 
1

1
B

α ≤ −  < 1. We have then = 0α  and the right 
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side of inequation (20a) is valid. The inequation (20c) implies then 0β ≤ , i.e. = 0β . 

Inequation (20b) is valid and inequation (20d) is valid if B  is sufficiently large, again if 

(| |)max
X

B X
∈

≥
S

. W  

Using 2 variables and 5 equations per unknown X , one can thus obtain linearly 
sX  and 

X +
, corresponding to the ``sign’’ of X  and its ``positive component’’. We extend these 

operators ``+’’ and ``s’’ to vector objects, by applying them uniformly on each component of 
the considered vector. 

Definition 22 (Discrimination Operators). Let k ∈N  and 
kx∈

r
Z . We denote by:  

•  kx
+
∈

ur
N  the vector of its positive components, such that [[1, ]], ( ) = ( )c k x c x c

+
∀ ∈

r r
 if 

( ) > 0x c
r

 and 0 otherwise; 

•  {0,1}
s

kx ∈
ur

 the vector representing its sign, such that: [[1, ]], ( ) = 0
s

c k x c∀ ∈
r

 if 

( ) 0x c ≤
r

 and ( ) = 1
s

x c
r

 otherwise.  

Since the operators above are easily expressed using linear equations, we use them to 
reformulate the characterization proposition 4. The new formulation will be used to build a 
linear programming model corresponding to the firing of a  timed step sequence. 

4.2.2 Timed steps linear formulation 

In this section, we consider the equations (12) to (15) defining  timed step firings and 
reformulate each of them using the discrimination operators given above. In order to avoid 

confusions of notations, we use lower case letters to denote the state vectors ( , )m re e
uur ur

 

expressed using discrimination operators. 

Proposition 7 (Timed step Firings Reformulation).  Let ( , )R d  be a Timed Petri net. Let 

= ( , )m re e e
uur ur

 be a state given at date v . Let v v′ ≥  and =v v v′Δ − ∈N . Let = ( , )vψ ϕ′ ′ ′  

be a  timed step . Then we have: 

(21) 
1 ( 1 )

[
( ( 1 ) ) 0

s

n r v n

s
s

m r r v n m

e
e

e C C e e

ϕ
ψ

ϕ− +

⎧ ′ ≤ − −Δ ⋅⎪′〉 ⇔ ⎨
′− ⋅ + ⋅ − − Δ ⋅ ≥⎪⎩

uur ur ur ur

uur uur ur ur ur uur  

(22) 

(23) 
= ( ( 1 ) )[

[
= ( 1 ) ( )= ( , )

s
s

m m r r v n

r r v n tm r t
t

e e C C e ee e
e

e e d t ee e e

ϕψ
ψ

ϕ

− +

+

∈

⎧ ′ ′− ⋅ + ⋅ − − Δ ⋅′ ′〉 ⎪′⇔ 〉 ∧ ⎨ ′ ′− Δ ⋅ + ⋅ ⋅′ ′ ′ ⎪⎩
∑

uur uur uur ur ur ur

ur ur ur uur uruur ur

T

 

(24) 

Proof. To prove the above proposition, one has just to verify that equations (21) to (24) 

correspond exactly to equations (12) to (15) from definition 19. W 
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4.2.3 Illustrative example 

 

Fig. 7. Intermediary Calculations (Markings) 

 

Fig. 8. Intermediary Calculations (Residual Durations) 

In order to help understanding the above equations, we propose to illustrate them using a 
particular example. Let's consider the Timed Petri net of Fig. 3. Its initial marking at the date 

1 = 0v  is given by: (0) = (1,0,0,0,1,0,1,1) , (0) = (0,0,0,0)m re e
uur ur

ú ú
. 

www.intechopen.com



 
Petri Net: Theory and Applications 

 

428 

We assume that 1t  is fired at the date 1 = 1v , then simultaneously 2t  and 4t  at the date 

2 = 4v . We need to calculate the state reached at the date 3 = 6v . The details of the 

calculation are given in Fig. 7 and 8. The physical sense of the equations is explained below:   

• The quantity ( 1 )r v Ne +−Δ ⋅
ur uur

 represents the update of the residual durations vector at 

the date vv + Δ , from its value re
ur

 at the date v . The ``+’’ operator allows to take into 

account only positive values. Moreover, if a transition t  is still active at date vv + Δ , 

we have: ( 1 ) = 1s

r v N
t

e −Δ ⋅
ur uur

; 

• The quantity ( ) t
t

t

d t eϕ
∈

′⋅ ⋅∑
uur ur

T

 represents the new residual durations coming from the 

execution of the firing sequence ϕ′  at the date vv + Δ ; 

• Finally, the quantity ( 1 )
s

s

r r v Ne e− −Δ ⋅
ur ur uur

 represents the Parikh vector of the 

transitions, the firing of which ends at the date vv + Δ . This expression is made from 

the comparison between the Parikh vector of the transitions that were pending at the date 

v : vector 
s

re
ur

, and the Parikh vector of the transitions that will be still active at the date 

vv + Δ : vector ( 1 )s

r v Ne −Δ ⋅
ur uur

.  

4.2.4 Mathematical programming model 

Since proposition 7 has been formulated in a linear way, it allows to express the linear 
mathematical programming model given below. 

Model 2 (TPN Integer Programming Model). Let ( , )R d  be a TPN with its initial state 

( )0
0

=  ,0m Ne e
uuur uur

 given at date 0 = 0v . Let ( )=  ,0f m N
f

e e
uuuur uur

 be a target state. Let V ∈N . 

The integer linear programming model TIP( )V  is defined by: 

  
[[0, 1]]

v
i

i V

Minimize
∈ −

Δ∑    (25) 

  subject to:    

      

 [[1, ]],k M∀ ∈  0m ke  =
0

m
k

e
uuur

 (26) 

 [[1, ]],k M∀ ∈  
mVke  = 0  (27) 
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 [[1, ]],j N∀ ∈  0r je  =
0

r
j

e
uur

 (28) 

 [[1, ]],j N∀ ∈  rVje  = 0  (29) 

      

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ij rijB a e⋅ −  ≤ 1B −  (30) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  rij ije B a− ⋅  ≤ 0  (31) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ij rij v
i

B eα⋅ − + Δ  ≤ 1B −  (32) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  rij v ij
i

e B α−Δ − ⋅  ≤ 0  (33) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  rij v ij
i

e β−Δ −  ≤ 0  (34) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ij ijBβ α− ⋅  ≤ 0  (35) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ij ij rij v
i

B eβ α+ ⋅ − + Δ  ≤ B  (36) 

      

[[1, ]],i V∀ ∈  [[1, ]],k M∀ ∈  ( 1)

=1

N

mik m i k kc ic

c

e e C ϕ−
−− + ⋅∑     

  ( 1) ( 1)

=1

( )
N

kc i c i c

c

C a α+
− −− ⋅ −∑  = 0  (37) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  
( 1)  |rij i j j ije dβ ϕ−− − ⋅

uur
 = 0  (38) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ( 1)ij i jϕ α −+  ≤ 1 (39) 

      

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ijϕ  ∈ {0,1}  (40) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ija  ∈ {0,1}  (41) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ijα  ∈ {0,1}  (42) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  ijβ  ∈ N  (43) 

[[1, ]],i V∀ ∈  [[1, ]],j N∀ ∈  rije  ∈ N  (44) 
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[[1, ]],i V∀ ∈  [[1, ]],k M∀ ∈  mike  ∈ N  (45) 

[[0, 1]],i V∀ ∈ −   v
i

Δ  ∈ N  (46) 

Equations (26) to (29) correspond to conditions over initial and final states. Equations (30) to 
(36) express the constraints over discrimination variables used to compute the ``+’’ and ``s’’ 

operators. Variables ( )ia , ( )iα  and ( )iβ  denote respectively the values of ( )s

r ie v
ur

, 

( ( ) 1 )s

r i v n
i

e v −Δ ⋅
ur ur

 and ( ( ) 1 )r i v n
i

e v +−Δ ⋅
ur ur

 from equations (23) and  (24). Equations (37) 

and (38) correspond to intermediate state computation equations (23) and (24). Equation (39) 
correspond to nonreentrance condition (21). Finally, equations (40) to (46) define the domain 
of the used variables. 
Again, our model is well defined enough to allow the following proposition. 

 Proposition 8 (Correctness and completeness of TIP(v) w.r.t. TP1(v)).  Let ( , )R d  be a 

TPN and v∈N . Then we have:   

• Any solution of TIP( )v  is also a solution of 1TP ( )v  (Correctness)  

• Any solution of 1TP ( )v  can be expressed as a solution of TIP( )v  (Completeness)  

Proof. Those results come directly from the construction of TIP(V).  W  

Obviously, the same remarks as for proposition 5 hold. Even if problem 1TP  is 

parametrized by a given number of  timed steps , a large class of scheduling problems can 
be adressed using such formulation. We are more particularly interested in flexible 
manufacturing systems (FMS) scheduling problems. FMS are characterized by the 
simultaneous production of several types of products, and the possibility to use several 
methods (flexibilities) to produce the same kind of product. Using TPN, such flexibilities are 
modeled by conflicts, which justifies the use of our approach. 
Another interest in the framework of FMS is the formulation of cyclic scheduling problems 
in a smart way. Indeed: such scheduling problems correspond to reachability between the 
same states (Bourdeaud’huy and Korbaa, 2006). Using our approach, one can formulate a 
cyclic scheduling problem by considering a timed reachability problem between two 
identical unknown states. The corresponding model allows then not only to find the schedule 
but also the initial state within the cycle. 
Note finally that our mathematical model remains valid to solve the reachability problem 
between states defined by not null residual durations. One has just to consider that these 
states belong to a bigger problem between states without residual durations. 

4.2.5 Numerical experiments 

In order to validate the model above, preliminary experiments were carried out using the 
linear programming solver CPLEX 9.0. (Bourdeau’huy et al., 2006). They have shown 
promising results, but need to be extended in order to assess the efficiency of our approach 
compared to concurrent approaches from Operations Research litterature. 
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We also propose to develop cutting techniques allowing to improve the resolution 
performances. For instance, we suggest to reuse the decomposition technique described 
above. A preliminary resolution of the reachability problem between the initial and final state 
vectors in the underlying P/T Petri net can be used to obtain the Parikh vector of the firing 
sequence of the controlled execution searched for. 

5. Conclusion and future work 

In this chapter, we present techniques for solving reachability problems in PN and TPN based 
on mathematical programming. The approach is based on an incremental search using  step 
sequences that represent parallel and reentrant firings of transitions. The mathematical 
model used allows the formulation and verification of reachability-based analysis problems. 
Concerning PNs, we have proposed two formulations of the reachability problem, leading 
to integer and/or binary programming models. For each of them, we have developped 
some additional procedures, relaxation techniques and objective functions in order to 
improve the computational efficiency of the resolution. Numerical experiments have 
demonstrated the efficiency of our approach compared to standard ones from Artificial 
Intelligence and Petri nets community. 
Several promising tracks will be considered in the future, such that: 

• To develop rules to adjust dynamically the amplitudes of jump search, for example 
by exploiting information from the previous iterations and/or from the structure of 
the considered PN; 

• To use heuristic methods to speed up the search or find a good bound on minK .  

Concerning TPN, we have shown how a linear integer programming model could be 
developped to solve the Timed Petri net reachability problem. This model is very general 
since it allows to deal with weighted Timed Petri nets, without restricting ourselves to an 
immediate firing semantic or Timed Event Graphs as it is done in the litterature. It can thus 
be directly used on flexible manufacturing models. 
In the future, we propose to compare our computational results with concurrent approaches 
dedicated to scheduling problems. We also propose to develop cutting techniques allowing 
to improve the resolution performances. 
Finally, we are currently adapting our incremental approaches to Time Petri nets, in order to 
be able to model scheduling problems with Time Windows associated to the tasks. 
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