
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Incremental Integer Linear Programming Models
for Petri Nets Reachability Problems

Thomas Bourdeaud'huy1, Saïd Hanafi² and Pascal Yim1
1L.A.G.I.S. Ecole Centrale de Lille

²L.A.M.I.H. Université de Valenciennes
France

1. Introduction

The operational management of complex systems is characterized, in general, by the
existence of a huge number of solutions. Decision-making processes must be implemented
in order to find the best results. These processes need suitable modeling tools offering true
practical resolution perspectives. Among them, Petri nets (PNs) provide a simple graphical
model taking into account, in the same formalism, concurrency, parallelism and
synchronization. Their graphical and precise nature, their firm mathematical foundation
and the aboundance of analysis methods have made them become a classical modeling tool
for the study of discrete event systems, ranging from operating systems to logistic ones.
However, their interest in the field of problem solving is still badly known.
In this paper, we consider some PN reachability problems. Since PNs can model flows in a
natural and efficient way, many operations research problems can be defined using
reachability between states, e.g. scheduling (Lee and DiCesare, 1994; Van Der AAlst, 1995),
planning (Silva et al., 2000), car-sequencing problems (Briand, 1999). Moreover, research on
Petri nets addresses the issue of flexibility: many extensions have been proposed to facilitate
the modeling of complex systems, by addition of ``color’’, ``time’’ and ``hierarchy’’ (Jensen,
1992; Wang,1998). For example, it is relatively easy to map scheduling problems onto timed
PNs. Their graphical nature reinforce obviously this strength, by allowing a kind of
interactivity with the system. At last, a large number of difficult PN analysis problems are
equivalent to the reachability problem, or to some of its variants or sub-problems (Keller,
1976). Particularly, model-checking (Latvala, 2001) which represents a key point when dealing
with systems analysis is directly linked to an exhaustive traversal of the corresponding PN
reachability graph.
Various methods have been suggested to handle the PNs reachability problem. In this
paper, we propose to use the mathematical programming paradigm. Some PN analysis
problems have already been handled using such techniques (Melzer and Esparza, 1996;Silva
et al., 1998; Khomenko and Koutny, 2000), but none has considered the general PNs
reachability problem.
The proposed approach is based on an implicit traversal of the Petri net reachability graph,
which does not need its construction. This is done by considering a unique sequence of steps
growing incrementally to represent exactly the total behavior of the net. We follow here a

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Petri Net: Theory and Applications

402

previous work from (Benasser and Yim, 1999) called logical abstraction technique. Their
technique was validated on several examples using logical constraint programming
techniques. It has shown more effective than other generic solvers and could even compete
with heuristics dedicated to particular classes of problems. Our methodology allows to
improve this original model using the wide range of tools and adjustments brought by
Operational Research techniques. We model the problem as an integer linear program, then
we solve it with a branch-and-bound technique (divide and conquer), using the Cplex
optimization software.
Moreover, we show how our incremental approach can be extended to Timed Petri nets in
order to solve scheduling problems modelled as Timed Petri Nets reachability problems.
The model built is as general as possible since we do not make assumptions about the firing
policy, contrarywise to other classical approaches dealing with the same issue.
This chapter is organized as follows. In section 2, we formally define the kind of PN
considered, their respective reachabilty problems and the ways such problems are dealt
with in the litterature. Then, in section 3, we give general considerations about step firings
and describe the elements of our incremental approaches. In section 4, we apply our
methodology to express reachability problems using a mathematical programming
formulation. Finally, as a conclusion, we describe a few promising research directions.

2. Petri Nets reachability problems

In this section, we give the terminology of both kinds of the PN we are interested in using
linear algebra -- in order to make our formulations more concise -- and define formally their
respective reachability problems.

2.1 Place/transition Petri nets
2.1.1 Petri net terminology
Definition 1 (Place/Transition Petri Net). A Place/Transition Petri net (Murata, 1989)

= (, , ,)R C C− +P T with its initial marking m is a bipartite weighted directed graph where:

• 1= { , , }mp pKP is a finite set of places, with =| |M P . Places are represented as circles

and indexed by letter i ;

• 1= { , , }nt tKT is a finite set of transitions, with =| |N T . Transitions are represented as

rectangles and indexed by letter j ;

• Incidence matrices ,C C− +
 and C ×∈ P TN (with =C C C+ −−) define the weighted flow

function which associates to each arc (,)i jp t (from place ip to transition jt) or (,)j it p

(from transition jt to place ip) its weight ijC−
 or ijC+

. When there is no arc between place

ip and transition jt , then we have: = = 0ij ijC C− +
. The

thi row vector and
thj column

vector taken from incidence matrices C−
, C+

 and C are denoted respectively iC−
, jC−

,

iC+
, jC+

 and iC , jC . We denote respectively by p•
 and p•

 the set of predecessors and

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

403

successors of place p , and conversely t• and t• are the set of predecessors and successors of

transition t (also known as input and output nodes);

• :m →P N associates to each place p∈P an integer ()m p called the marking of the

place p . Markings are represented as full dots called tokens inside places.

Definition 2 (Characteristic Vectors). Let (,)R m be a Petri net with 1 2= { , , , }mp p pKP

and 1 2= { , , , }nt t tKT :

• The canonical vector p
i

e
uur

 associated to place ip (resp. t
j

e
uur

 associated to transition jt) is the

vector in {0,1}N
 (resp. in {0,1}M

) which takes the value ``1’’ in its
thi (resp.

thj)

component and ``0’’ elsewhere.

• The marking vector m
uur

 associated to marking m is the column vector 1(()m p , 2()m p ,

, ()) M

mm p ∈K ú N .

p
1

p
2

p
4

p
3

t
1

t
2

t
3

t
4

2p
1

p
2

p
4

p
3

t
1

t
2

t
3

t
4

2

1 1 0 0 0 0 0 1 1 1 0 1

0 0 1 0 1 1 0 0 1 1 1 0

0 0 1 0 0 2 0 0 0 2 1 0

0 0 0 1 0 0 1 0 0 0 1 1

C C C

− −
−
−

−
− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Fig. 1. A Petri Net and its Incidence Matrices

Example 1 (PN). An example of a PN and its incidence matrices is presented in Fig.1. Its initial

marking is 0 = (1,0,0,0)m ú
. We have

2
= (0,1,0,0,0)pe

uuur
ú

 and
3

= (0,0,1,0,0)te
uur

ú
.

In a PN, the markings of the places represent the state of the corresponding system at a
given moment. This state can be modified by the firing of transitions. This behaviour is
called the ``token game’’.

Definition 3 (Transition Firings). Let (,)R m be a Petri net. A transition
jt is fireable from

marking m iff:

, ()

i i ij

t
j

p m p C

m C e

−

−

∀ ∈ ≥

⇔ ≥ ⋅
uur uur

P
 (1)

The fireability condition is denoted by [m t〉 . If this condition is satisfied, a new marking m′ is

produced from the marking m , such that:

www.intechopen.com

Petri Net: Theory and Applications

404

, () = ()

 =

i i i ij ij

t
j

p m p m p C C

m m C e

− +′∀ ∈ − +

′⇔ + ⋅
uuur uur uur

P
 (2)

The firing of a transition t from the marking m to the marking m′ is denoted by [m t m′〉 .

Transition firings modify the marking of the net. It is thus interesting to know if one
particular marking can be reached. This problem is known as the ``reachability problem’’ for
Petri nets.

2.1.2 Reachability problem

 Definition 4 (Reachable Marking). A marking m′ is reachable from a marking m iff there

exists a sequence of transitions
1 2

=
k

t t tσ σ σσ K such that: 1 2
1 2

[[[
K

m t m t m t mσ σ σ ′〉 〉 〉K

We denote by [m mσ ′〉 that the marking m′ is reachable from the marking m , where

1 2
=

K
t t tσ σ σσ K is called a firing sequence. The Parikh vector

=1
=

K

tk
k

e
σ

σ ∑
ur uuur

 associated to

the firing sequence σ is the vector whose
thj component is equal to the number of times

the transition j is fired in σ . It is used to formulate a well known property of Petri Nets.

 Proposition 1 (State equation). Let 0(,)R m be a Petri net,
fm a marking and

1 2
=

K
t t tσ σ σσ K a firing sequence. Then we have:

 0 0[=f fm m m m Cσ σ〉 ⇒ + ⋅
uuur uur ur

 (3)

Proof. It is obtained using a simple induction over the number of transitions fired in the

sequence. W
The equation Error! Reference source not found. is called the fundamental (or state) equation
of Petri nets. This equation has been widely studied in PN reachability analysis, but it only
leads to semi-decision algorithms due to the existence of spurious solutions (Silva et al., 1992).
Indeed, in that case, the reverse implication does not hold: the Parikh vector of a firing
sequence is always solution to the state equation, but the reverse is not true. Some
techniques (Colom and Silva, 1989b) have been proposed to improve the strength of this
characterization, but they are still insufficient.

 Definition 5 (Reachability Problem). Let 0(,)R m be a Petri net and fm a marking. The set

of all markings reachable from 0m is denoted by 0(,)R mR ; the set of all possible firing sequences

(within which each transition is fireable from the corresponding marking) is denoted by 0(,)R mF .

The problem of finding whether
0(,)fm R m∈R or not is known as the reachability problem for

Petri nets.
It has been shown that the reachability problem is decidable (Kosaraju, 1982). However it is
EXP-TIME and EXP-SPACE hard in the general case (Lipton, 1976). Of course, practical

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

405

applications need not only to know if a marking is reachable, but also what are the
corresponding firing sequences leading to this marking. To solve this problem, one needs to

find a firing sequence 0(,)R mσ ∈F such that 0[fm mσ 〉 . A ``naive’’ approach consists

in exploring the reachability graph exhaustively. This graph corresponds to the usual formal
representation of the behavior of the net.

 Definition 6 (Reachability Graph). The reachability graph of a Petri net 0(,)R m , denoted by

0(,)R mG , is defined by:

A set of nodes 0(,)R mR which represents the reachable markings;

A set of arcs, where an arc (,)m m′ labelled t connects nodes m and m′ iff [m t m′〉 .

Example 2 (Reachability Graph). Fig.2. presents a part of the reachability graph for the Petri net
of Fig.1.

(0,1,2,0)T

(1,0,0,0)T

(0,0,1,1)T (0,1,3,0)T

(1,0,1,0)T

(0,1,1,0)T

(0,1,0,0)T

(0,0,0,1)T

t
2

t
1

t
3

t
4 t

2

t
3

t
1

t
3

t
4

(0,1,2,0)T

(1,0,0,0)T

(0,0,1,1)T (0,1,3,0)T

(1,0,1,0)T

(0,1,1,0)T

(0,1,0,0)T

(0,0,0,1)T

t
2

t
1

t
3

t
4 t

2

t
3

t
1

t
3

t
4

Fig. 2. Reachability graph for the PN of Fig. 1

For a given initial marking 0m , the reachability graph 0(,)R mG and the corresponding

reachability set 0(,)R mR may be of infinite size. For instance, the set of markings

reachable from 0m for the net of Fig. 1 is infinite.

Practically, it is not possible to explore the reachability graph exhaustively due to the well
known problem of combinatorial explosion: the size of the state-space (i.e. the size of the
reachability set) may grow exponentially with the size of a system configuration (i.e. the
number of nodes of the Petri net). Many methods have been studied to limit this explosion.
Let us mention the three main families.
 First ones aims at managing the combinatorial explosion without modifying the studied
reachability graph. Classical approaches are graph compressions, particularly bdd encoding
(Gunnarsson, 1998) and forward checking (Fernandez et al., 1992). Both uses depth first
traversal of the reachability graph.

• Other techniques construct a reduced reachability graph associated to the original, based
on some properties to preserve: symmetries (Huber et al., 1985), reductions (Berthelot,
1986) and partial order (covering step graphs (Vernadat et al., 1996), stubborn sets

www.intechopen.com

Petri Net: Theory and Applications

406

(Valmari, 1991)) are the main approaches. The logical abstraction technique (Benasser and
Yim, 1999) belongs also to this category.

• Last ones are based on the PN state equation (cf. Proposition 1): we can distinguish
parametrized analysis (Lindqvist, 1993) and algebraic methods (Lautenbach, 1987).

Many extensions have been proposed to improve the modelling power of Petri nets. Among
them, several extended Petri nets with ``time’’ have been proposed by assigning punctual
firing times (leading to ``Timed PN’’) or time intervals (``Time PN’’) to the components of
Petri nets (transitions, places, arcs or even tokens). To deal with firing times, two main
methods for modeling timing are used: either the timings are associated with the places (the
PN is said to be P-timed) (Sifakis, 1975), or the timings are associated with the transitions
(the PN is said to be T-timed) (Ramchandani, 1974). Depending on the system to be
modeled, one of the models (P-timed or T-timed) may be easier to use than the other one.
However, Sifakis has shown that the two models are equivalent. In the context of scheduling
problems, (Hillion and Proth, 1989) and (Van Der Aalst, 1995) propose to use T-timed Petri
nets, hereafter called simply Timed PN. We describe this model in the following section.

2.2 Timed Petri nets

Timed Petri nets have been introduced by (Ramchandani, 1974). The following presentation
has been adapted from (Chrétienne, 1984). We start by giving an informal introduction on
Timed Petri nets.

2.2.1 Informal presentation

Timed Petri nets correspond to Places/Transitions Petri nets where a duration
*()d t ∈N is

associated to each transition t . A Timed Petri net has the same representation as PN, to

which is added a labelling on transitions. An example of Timed Petri net is given in Fig. 3.

We have: 1() = 3d t , 2() = 4d t , 3() = 5d t , 4() = 2d t .

The firing durations associated to transitions modify the marking validity conditions. As soon
as durations are associated to transitions, the Petri net acts as if tokens ``disappeared’’ at the
time the transition is fired, and then ``reappeared’’ after a delay corresponding to the
duration of the fired transition. Thus, the marking of a Timed Petri net evolves with the
occurences of an external timer. For instance, let's consider the Timed Petri net of Fig. 3. At

date 1, the transition 1t (duration: 3 t.u.) is fired. Then the transition 4t (duration: 2 t.u.) is

fired at date 5. The evolution of marking with time is given in Fig. 3. Note that one could

have fired transition 4t at date 4, since the resource 1r had been released at the end of the

firing of transition 1t . However, the same transition was not fireable at date 3, since the

firing of 1t was not finished.

The firing and ending dates of transitions play a fundamental role in the behaviour of the
Timed Petri net. It is thus necessary to adapt the firing equations according to these firing
dates. In order to respect the underlying semantic of PN, a timed firing sequence is said to be
feasible if and only if, at any time, the transient marking reached is made of non negative
components.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

407

 Date
Marking

(, , , , , , ,)
1 2 3 4 5 6 1 2

p p p p p p r r
ú

Initial date 0 (1,0,0,0,1,0,1,1)
ú

Firing of

1t →
1 (0,0,0,0,1,0,0,1)

ú

 2 (0,0,0,0,1,0,0,1)
ú

 3 (0,0,0,0,1,0,0,1)
ú

End of 1t → 4 (0,1,0,0,1,0,1,1)
ú

Firing of

4t →
5 (0,1,0,0,0,0,0,1)

ú

 6 (0,1,0,0,0,0,0,1)
ú

End of 4t → 7 (0,1,0,0,0,1,1,1)
ú

p
4

p
5

p
6

r
1 r

2

p
1

p
2

p
3

t
3
(5) t

4
(2)

t
1
(3) t

2
(4)

p
4

p
5

p
6

r
1 r

2

p
1

p
2

p
3

t
3
(5) t

4
(2)

t
1
(3) t

2
(4)

 8 (0,1,0,0,0,1,1,1)
ú

Fig. 3. Example of a Timed Petri Net and a Timed Firing Sequence

2.2.2 Timed Petri nets terminology
Definition 7 (TPN -- Timed Petri Net). A Timed Petri net (Ramchandani, 1974) is defined by a

pair (,)R d where R is a Place/Transition Petri Net and
*:d →T N is a mapping associating

a duration to each transition of the net. The vector = () t

t

d d t e
∈

⋅∑
uur ur

T

 is called the duration vector of

the Timed Petri net.
Note that one could more generally consider rational valued durations. Nevertheless, after
having them reduced to the same denominator, and by reasoning over numerators, it is the
same as if durations were integer valued. In addition, to simplify the study, we restrict

ourselves to Timed Petri nets without immediate transitions (i.e. , () > 0t d t∀ ∈T), which is

not so restrictive in real world practice and corresponds well to scheduling problems we are
concerned with.
The transition firing semantics in TPN forbids reentrance. In other words, it is not possible to
fire again a transition that has not yet finished to be fired. Again, this semantics is well fitted
to scheduling problems, where transitions are associated to operations on machines. Thus,
one can associate a unique residual duration to each transition without any possible confusion
between several concurrent transitions activations. The residual duration vector is
associated to the marking of a TPN to define its full state.

 Definition 8 (TPN State). Let (,)R d be a TPN. Its state = (,)m re E E
uur uur

 is given by:

www.intechopen.com

Petri Net: Theory and Applications

408

• Its classical marking vector
M

mE ∈
uur

N , associating to each place its number of tokens;

• A residual durations vector
N

rE ∈
uur

N , associating to each active transition its

remaining duration, and zero if the transition is not active.

The set of all states of a TPN is denoted by (,)R dS . The fundamental concept that

governs Timed Petri net behavior is the controlled execution, which associates to each
transition the sequence of its successive firing dates.

Definition 9 (CE – Controlled Execution) Let (,)R d be a TPN and t∈T a transition. A

firing sequence for the timed transition t : 1() = , ,t t

k K
t

tu u u ∈K N is an increasing sequence of

firing dates, such that:

 1[[1, 1]], ()t t

t k kk K u d t u +∀ ∈ − + ≤ (4)

A controlled execution is a family , [[1,]]()t

k t k K
t

u ∈ ∈T of firing sequences for all transitions of the TPN.

Note that in the previous definition, equation (4) is used to forbid reentrance. For any

transition t , tk and K
t

tu may be infinite. Hereafter, we only consider finite CEs. We denote

by maxv the ending date of the last firing in the CE: ()max = ()max K
tt

tv u d t
∈

+
T

. After

maxv , the state of the TPN under the considered CE will never change and we

have: max() = 0r NE v
uuuuuuuuur uur

.

The formal expression of a CE is used to define several characteristic vectors allowing to
verify the feasability of a CE. We assume that no transition is active at the initial state to
simplify the formulation.
 Definition 10 (Characteristic Vectors of Controlled Executions) Let (R, d) be a TPN with its

initial state ()0
0

= ,0m Ne E
uuuur uur

 given at initial date 0 and
, [[1,

()
]]

t

k t k K
t

u
∈ ∈T

 a controlled

execution. Let max[[0,]]v v∈ . We define three characteristic vectors associated to ()t

ku in the

following way:

 () NN v ∈
uuuuur

N is the vector corresponding to the number of firings that started within the

interval [0,]v , defined by { }, [[1,]]() = | t

k k K k
tt

tN v card u u v∈
⎛ ⎞≤⎜ ⎟
⎝ ⎠

uuuuur
;

• () ND v ∈
uuuuur

N is the vector corresponding to the number of firings that started within

the interval [0, [v , defined by { }, [[1,]]() = | <t

k k K k
tt

tD v card u u v∈
⎛ ⎞⎜ ⎟
⎝ ⎠

uuuuur
;

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

409

• () NF v ∈
uuuuur

N is the vector corresponding to the number of firings that ended within

the interval [0,]v , defined by { }, [[1,]]() = | ()t

k k K k
tt

tF v card u u d t v∈
⎛ ⎞+ ≤⎜ ⎟
⎝ ⎠

uuuuur
.

We have introduced above the definitions of state and controlled execution of a TPN. We
define below how the state of a TPN is modified under a CE.

Definition 11 (Instantaneous State of a TPN under a Controlled Execution) Let (,)R d be

a TPN with its initial state ()0
0

= ,0m Ne E
uuuur uur

 given at date 0 and
, [[1,

()
]]

t

k t k K
t

u
∈ ∈T

 a controlled

execution. Let max[[0,]]v v∈ . The instantaneous state ()= () , () v m re E v E v
uuuuuur uuuuuur

 at date v is

given by:

0

() = () () m mE v E C F v C N v+ −+ ⋅ − ⋅
uuuuuur uuuur uuuuur uuuuur

 (5)

() if [[1,]] . . [[, ()[[

, () =
0 otherwise

t t t

k t k k

r
t

u d t v k K s t v u u d t
t E v

⎧ + − ∃ ∈ ∈ +
∀ ∈ ⎨

⎩

uuuuuur
T (6)

Informally, in the previous definition, the quantity () C F v+ ⋅
uuuuur

 corresponds to the tokens

produced by the firings of transitions that ended strictly before the date v . Those tokens can

be used to fire transitions at date v . The quantity () C N v− ⋅
uuuuur

 corresponds to the tokens

used by the firings of transitions that started until the date v . Thus, the quantity () mE v
uuuuuur

corresponds exactly to the tokens remaining in the TPN at date v . The residual durations

vector () rE v
uuuuuur

 denotes the exact remaining time of transitions that are active at date v .

Obviously, there can only be one [[1,]] . . [[, ()[[t t

t k kk K s t v u u d t∈ ∈ + from equation (4).

Note that (Chretienne, 1984) defines also the quantity

() = (0) () () mm v E C F v C D v− + −+ ⋅ − ⋅
uuuuuur uuuuuur uuuuur uuuuur

. This quantity does not consider the tokens

used by the firings of transitions that occur exactly at date v . Thus, it can be used to

formulate the fireability condition for a transition in a TPN, independently from possible
concurrent activations: under a controlled execution, a transition is fireable at date v

iff () tm v C e− −≥ ⋅
uuuuuur ur

.

Obviously, like for Place/Transitions PNs, even if each transition is independently fireable
at every date, the full CE is not necessarily valid as a whole since token may be used by
several transitions at the same time. Thus, an improved condition for a CE to be feasible is
given below.

www.intechopen.com

Petri Net: Theory and Applications

410

Definition 12 (Feasible Controlled Execution). Let (,)R d be a TPN with its initial state

()0
0

= ,0m Ne E
uuuur uur

 given at date 0 and , [[1,]]()t

k t k K
t

u ∈ ∈T a controlled execution. This controlled

execution is said to be feasible iff:

 max[[0,]], () 0m Mv v E v∀ ∈ ≥
uuuuuur uuur

 (7)

The previous condition means that there must be enough tokens so that transitions may fire
simultaneously.

2.2.3 Timed Petri Net Reachability Problem

Using the previous notations, the Timed Petri nets reachability problem consists in
searching for a feasible CE allowing to reach a given final state from the initial state.

Definition 13 (Timed PN Reachability Problem). Let (,)R d be a TPN with its initial state

()0
0

= ,0m Ne E
uuuur uur

 given at date 0 . Let ()= ,0f m N
f

e E
uuuur uur

 be a target state. The reachability

problem for Timed Petri nets consists in finding a CE , [[1,]]()t

k t k K
t

u ∈ ∈T such that

()max max
max

= () , () =v m r fe E v E v e
uuuuuuuuur uuuuuuuuur

.

As said before, it is quite simple to see a parallelism between a scheduling problem and a
Timed Petri net reachability problem. Indeed, let's consider for instance the Timed Petri net
of Fig. 4. One remarks obviously that solving a reachability problem between markings

0 1 2 3 1 2 3= { , , , , , }m p p p m m m and
4 5 6 1 2 3= { , , , , , }fm p p p m m m means exactly

finding a schedule of the production presented in the table on the left side.

Production To
Schedule:

job 1:
 (,2)(,3)(,4)

1 2 3
m m m

job 2:
 (,3)(,2)(,3)(,3)

2 3 1 3
m m m m

job 3:
 (,2)(,4)(,2)

1 3 1
m m m

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

p1

p2

p3

p4

p5

p6

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

p1

p2

p3

p4

p5

p6

Fig. 4. TPN modelling a Production To Schedule

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

411

Several approaches have been proposed to solve the Timed Petri net reachability problem,
either by restricting their study to a subclass of TPN, like Timed Event Graphs (where a
place has exactly one input and one output transition), either by using dedicated heuristics.
A complete bibliography can be found in (Richard, 2000).
Since the fire of a Timed transition can occur as soon as it is fireable and as late as one wants,
there may exist, from a given state, an infinite number of reachable markings (depending on
the time), and no reachability graph can be built. A first approach needs to consider Timed
PN as a subclass of Time PN, in order to use the state enumeration methods (state class
graphs) proposed by (Berthomieu and Diaz, 1991). On the other hand, when dealing with
early semantics (a transition is fired as soon as it is fireable), it is possible to proceed to an
enumerative and structural analysis (David and Alla, 1992).
The early semantics has been extensively studied for the special class of Timed Event
Graphs, using (max,+) algebra (Bacceli et al., 1992). Since their structure does not handle
conflicts, it is possible to obtain linear equations corresponding to the complete behaviour of
the net.
In the following, we will show that our incremental approach can lead to mathematical
programming models in the most general case.

3. Incremental approaches

As said before, the state equation (3) does not bring enough information to solve the
reachability problem in all cases. This comes from the fact that it does not take into account
the fireability conditions (1) of the individual transitions fired in the sequence σ .

Incremental approaches improve this formulation by considering a given number of step
firings corresponding to parallel and reentrant transitions. In this section, we discuss the
interest of using steps and a fixed depth formulation.

3.1 Step based reachability formulation

Definition 14 (Step). Let R be a Petri net. A step (Janicky and Koutny, 1991) is a multiset over

the set of transitions T . We denote by
*T the set of steps built over T .

Informally, a step is a set that can contain several copies of the same element, e.g.

1 1 2{ , , }t t t , which we would note hereafter simply 1 22 t t⋅ + . We associate a step

=1
=

N

j jj
tϕ α ⋅∑ and its Parikh vector ϕ

uur
 in the classical way, as a linear combination

with non negative integer coefficients jα of the Parikh vectors of each transition, i.e.

=1
 =

N

j tj j
eϕ α ⋅∑

uur uur
. A step is said empty, when =ϕ ∅ , i.e. when ฀ ฀1, , = 0jj N α∀ ∈ .

Note that a step can contain the same transition more than once, corresponding to transition
reentrance. Thus, when working with Timed Petri nets, steps would only mean that several
different transitions are considered to be fired at the same time.
For a step to be fireable, its preceding marking must contain enough tokens so that each
transition of the step may consume its own tokens, as described in the following definition.

www.intechopen.com

Petri Net: Theory and Applications

412

 Definition 15 (Step Firings). Let R be a Petri net, m be a marking and ϕ be a step . The step

ϕ is fireable from m iff:

 . m C ϕ−≥
uur uur

 (8)

 If this condition is satisfied, the new marking m′ reached from m by the firing of ϕ is

defined as:

 = . m m C ϕ′ +
uuur uur uur

 (9)

 Hereafter, we will use the notations already used previously: [m ϕ〉 , 0 1[m mϕ〉 ,

0 1 2[km ϕϕ ϕ 〉K and 0 1 2[k km mϕϕ ϕ 〉K to denote that a step or a step sequence is

fireable, and the marking obtained in each case. The number of steps of a step sequence

1 2= Kϕϕ ϕΦ K is denoted by | |= KΦ .

The definition of step firings corresponds naturally to the firing of the underlying
transitions. We will show that its use can lead to a formulation that is still equivalent to the
initial PN behavior, but that can be more conveniently used in a mathematical programming
framework. The following proposition explains the relation between step and transition
firings with respect to reachability issues.

Proposition 2 (Step Reachability Equivalence). Let 0(,)R m be a Petri net and fm a

marking.

fm is reachable from 0m ⇔

1

1 2 1

1*

1 2

,
[[1, 1]], [

, , , , . . :
[

, , ,

k k kM

k

k K f

K

k
k K m m

m m m s t
m m

ϕ
ϕ

ϕ ϕ ϕ

−
−

−

∃ ∈
∀ ∈ − 〉⎧

∃ ∈ ⎨ ∧ 〉⎩∃ ∈
K

K

N

N

T

 (10)

Proof. The proof of this proposition is not difficult but quite lengthly and hence is not given
in this chapter. It can be found in a technical report available at url:

http://www.eclille.fr/tomnab/asr07/. W
One must remark that the proof of the proposition 2 shows how it is possible to construct a

firing sequence leading to fm from a corresponding step sequence. Thus, to compute a

firing sequence leading to a target marking, it will be sufficient to compute a step sequence
leading to the same marking.
The main interest of our formulation is to capture the parallelism caused by the interleaving of
actions, which is precisely one of the main advantages of using a Petri net as a model of a
system. This issue has already been followed by (Vernadat et al., 1996), from whom we
borrow the illustrative example of Fig. 5: ``When two (n in the general case) components offer
independent actions in parallel, the interleaving semantics expresses this behaviour by a diamond (an
hypercube in the general case) within which each path lead to the same final state. Since all paths

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

413

converge to the same state, the key idea is to develop only one particular path among the set of possible
equivalent ones’’.
 Example 3 (Vernadat's steps). As shown in Fig. 5, there exists several ways to handle 3
independent transitions from the point of view of the reachability graph. One can consider them one
by one, which leads to handle 8 states and 12 firings. If we just refer to their corresponding
Mazurkiewicz's trace (see (Vernadat et al., 1996) for details), we only have to handle 3 transition
firings and 4 states. In the last case, one can capture the whole behavior in one unique firing that is
called a step by Vernadat (with the meaning of ``footstep’’).

e
2

e
1

e
2

e
1

e
3

e
3

e
3

e
3

e
2

e
1

e
2

e
1

e
2

e
1

e
2

e
1

e
3

e
3

e
3

e
3

e
2

e
1

e
2

e
1

e
2

e
1

e
3

e
2

e
1

e
3

{e
1
,e

2
,e

3
}{e

1
,e

2
,e

3
}

Point of view Exhaustive Trace Step

States 2n
 (1)n + 2

Transition
Firings 2 1nn× − n 1

Fig. 5. Some ways to handle independent transitions, from Vernadat

The characterization given in proposition 2 can be used to build a mathematical programming
model based on steps which can be used to solve reachability-based PN analysis problems:
one has just to express the right side of equation (10) using the linear equations (8) and (9)
over integer variables. Such a model will be presented in section 4.
The advantage of using steps is that they allow to reduce the number of firings in our model
– and then the number of variables – while keeping an equivalence with the initial
properties. Thus it is not a modification of the semantics of PNs, but only a way to capture the
independence of transitions. Of course, this reduction does not systematically holds, since it is
easy to construct a Petri net where only one transition can be fired at a time. Thus, in the
worst of cases, the step firings formulation may not bring any improvement as far as the
number of firings used are concerned. However, this is a quite uncommon situation since it
means that the Petri net does not show any parallelism.

3.2 Incremental search

We have seen the interest of using steps to formulate the reachability problem in PNs as a
search for instanciations of integer variables constrained by a system of linear equations.
This formulation allows us to use the paradigm of mathematical programming to solve the
reachability problem. However, the initial definition of the reachability problem is not well
adapted to the kind of formulation we propose to use, since definition 5 does not make any
assumption concerning the number of steps needed to solve the reachability problem. In
this paragraph, we define two sub-problems associated with the original reachability problem
introduced before, which can be conveniently solved using the characterization of
proposition 2 in a mathematical programming framework.

www.intechopen.com

Petri Net: Theory and Applications

414

Definition 16 (Fixed Depth Reachability Problem). Let 0(,)R m be a Petri net, k ∈N and

fm a marking.

1P ()k
Find a step sequence allowing to reach the marking fm from the marking

0m in at most k steps .

Definition 17 (Shortest Length Reachability Problem). Let 0(,)R m be a Petri net, and fm

a marking reachable from 0m .

2P
Find the minimal length, denoted by minK , of a sequence of steps allowing to

reach the marking fm from the marking 0m .

Of course, each of these sub-problems is directly linked to the initial one defined before, and
each allows to solve a different kind of PN reachability analysis. For instance, the first

formulation 1P ()k is highly useful for model-checking since it can serve to define an

exhaustive search of the reachability graph. On the other hand, the second formulation 2P

is well designed to deal with performance analysis since it returns a firing sequence that
maximizes the parallelism of the system. It can also give an helpful bound for the definition of
additional heuristics. Finally, since it is clear that the complexity of the problem grows (w.r.t.

number of variables and constraints) as the length k of the sequence of steps used

increases, it seems also quite reasonable to search for the smallest value of the parameter k

from which a solution exists.

The fixed depth reachability problem 1P ()k has already been studied by (Benasser, 2000) using

the logical abstraction technique. His approach is based on the same notion of steps , but it
uses constraint programming techniques. His algorithm iterates the number of steps used,
adding one new step at each iteration, in order to test all the lengths of sequences of steps

lower than k . Benasser proved that his algorithm is correct since the sequences found are

effectively sequences of steps which produce the desired final marking. It is also complete

since it can enumerate all the solutions of length smaller than a given integer k . In each

iteration, the algorithm uses a mechanism of linear constraints solving. It has been
implemented using the constraint logic programming software Prolog IV. The interest of
using a constraint logic programming framework is that its resolution mechanism is
incremental (Jaffar et al., 1992). Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The constraints are added in the constraints
solver so that it can reuse the results of the previous constraints propagation. The search for
the concrete results is made at the end by an enumeration of all the possible integer solutions,

which corresponds exactly to the sub-problem formulation 1P ()k .

In section 4, we will adapt Benasser's algorithm to our own mathematical programming
framework. To achieve the same kind of results, we will prove the correctness and

completeness of our mathematical programming formulation with respect to 1P ()k . These

results will allow us to use integer linear programming techniques to find every solution of

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

415

1P ()k . Some objective functions would also be defined to guide the search directly to an

optimal solution in some way. Since 2P can be easily expressed by iterating 1P ()k instances

for growing values of the parameter k , it will also be solved using the same technique.

Here, Operational Research techniques replace Artificial Intelligence ones, but the algorithm
structure is the same. All techniques based on incremental approaches may share the same
search algorithms. The most basic algorithm consists in searching in an incremental way
amongst sequences the length of which are increased one by one.

3.2.1 Naive algorithm

This algorithm is fed with a bound maxK on what we call the ``search depth’’ in order to

prevent an infinite loop. Once chosen this value, the procedure generates iteratively a
sequence of mathematical models of increasing size, and search for solutions in the
corresponding search spaces using mathematical programming techniques. If there is no

solution in less than maxk steps, the algorithm stops. It is described in Fig. 6.

1: 0k ←

2: DO
3: 1k k← +

4: Generate MP()k , a mathematical programming model for the problem 1P ()k (which

corresponds to characterization of proposition 2 with k steps).

5: Solve the model MP()k using branch & bound techniques (e.g. Cplex solver). Let

[[1,]]i k
X
uur

 be an optimal solution of MP()k if it exists.

6:
IF (MP()k has a solution), RETURN

[[1,]]i k
X
uur

7:
WHILE (MP()k is infeasible) AND (maxk K≤)

Fig. 6. Naive Search Algorithm

During the formulation of the mathematical programming model at step 4 , one should take
care of the domain of variables representing the steps . Indeed: the definitions of step and
step firings do not forbid empty steps leaving the markings unchanged. By considering
empty steps valid in our formulations, we get the following result.

Proposition 3 (Satisfaction Monotony) Let k∈N . If the problem 1P ()k is feasible, then for

any integer k k′ ≥ , the problem 1P ()k′ is also feasible.

Proof. It is easy to construct a feasible solution for 1P ()k′ from a feasible solution of 1P ()k

for k k′ ≥ by adding empty steps. W

Note the same result would be true when dealing with the family of mathematical

programming models MP()k : if there exists k ∈N such that MP()k admits a solution,

any model MP()k′ with k k′ ≥ would be feasible too. This property motivates the jump

search techniques proposed in the next paragraph.

www.intechopen.com

Petri Net: Theory and Applications

416

3.2.2 Jump search

From proposition 3 and the definition of parameter minK , we get:

min 1

min 1

< P () is infeasible

P () is feasible

k K k

k K k

∀⎧
⎨∀ ≥⎩

 (11)

This property can help us to define new iterative techniques, since – for example – it shows

that it is not necessary to solve all the problems 1P ()k for mink K≤ , like in the naïve

search described before.
Of course, as said before, we must keep using an incremental procedure in order to avoid the
use of large models if they are not needed. We propose finally some techniques based on
jumps over the values of the search depth. These techniques allow to decrease the number of
iterations needed, thus improving the search efficiency. Several jump strategies are possible.
We describe briefly some elementary ones.

• Forward jump search The first family continously increases the value of the search depth.
We can distinguish two main politics, depending on how the amplitude of jumps is
defined.

- Fixed amplitude Its value must be chosen in order to obtain a high exploration
speed while minimizing the possible redundant steps. This type of strategy
allows to estimate the profit precisely.

- Dynamic amplitude This second strategy uses variable amplitudes. Increasing

amplitudes should be used for small values of k , and decreasing ones when

the exploration becomes more difficult. This kind of behavior is less easily
quantifiable.

These politics both can lead to overtake minK when a solution is found. In this

case, it is not anymore possible to answer precisely the problem 2P , since we do

not get the exact value of minK . To compensate this lack of information, one can

use a dichotomic search.

• Dichotomic search This kind of procedure needs to know a maximal bound for k . Its

value is given by a previous successful execution of the forward jump search.
The main interest of jump search is that it allows to win in efficiency. Since we do not know
the number of steps needed to find a solution if it exists, the use of such a technique allows
us, when it is possible, not to have to develop the entire set of formulations of length lower

than minK . Numerical experiments show that even if the size of models is increasing, the

corresponding practical complexity does not always follows the same evolution.
Finally, it must be said that the procedure described in Fig. 6 is only a semi-complete one.

Indeed, in the context of unbounded PNs, the value of maxk is set arbitrarily, as we do not

know any information on the number of steps needed to find a possible solution. Thus, if no

solution is obtained before the value of k has been reached, one cannot conclude on the

reachability property.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

417

To the contrary, when dealing with bounded PNs, it is possible to set maxK to the value of

the sequential depth of the net, a parameter we have defined in (Bourdeaud’huy et al., 2004a)
and which guarantee the complete exploration of the reachability graph. Using this parameter
as search depth, it is always possible to conclude when the algorithm stops.

3.3 Adaptation to timed Petri nets

We have seen in the previous section the awaited benefits from using an incremental
approach made of step firings. Before introducing the mathematical models in section 4, we
propose to adapt the step based formulation to Timed Petri nets.
We start by adapting the previous formalism to Timed Petri nets. The key idea is again to
consider the evolution of a Timed Petri net `` step by step ‘’.

Definition 18 (Timed step). Let (,)R d be a Timed Petri net. A timed step is a pair

= (,)vψ ϕ such that:

•
[[1,]]

= j jj n
tϕ α

∈
⋅∑ is a step

*∈T for the Place/Transition Petri net R , such that

฀ ฀1, , {0,1}jj N α∀ ∈ ∈ ;

• v is a date ∈N .

The set of all timed steps of a Timed Petri Net is denoted by
*

TPNT .

Definition 19 (Timed steps Firings). Let (,)R d be a Timed Petri net. Let = (,)m re E E
uur uur

 be a

state given at date v . Let v v′ ≥ and =v v v′Δ − ∈N . The timed step = (,)vψ ϕ ′ is fireable

from e iff:

 , r v
t

t Eϕ∀ ∈ ≤ Δ
uur

 (12)

,

0<

 m t
t

E
r vt

C E C eϕ− +

∈
⋅ ≤ + ⋅

≤Δ

∑
uur uur ur

ur
T

 (13)

If this condition is satisfied, the new state = (,)m re E E′ ′ ′
uur uur

 reached at date v′ from e by the firing

of = (,)vψ ϕ ′ is defined as:

,

0<

= m m t
t

E
r vt

E E C C eϕ− +

∈

′ − ⋅ + ⋅

≤Δ

∑
uur uur uur ur

ur
T

 (14)

() if

, = if > 0

0

r r v r v
t t t

d t t

t E E E

otherwise

ϕ∈⎧
⎪⎪′∀ ∈ −Δ −Δ⎨
⎪
⎪⎩

uur uur uur
T (15)

www.intechopen.com

Petri Net: Theory and Applications

418

The above definition follows the firing semantics of Timed Petri nets described above, from
the point of view of a punctual firing between two markings. Informally, equation (12)
means that a transition fired within a step must not be active at the time of the firing, in
order to comply with the non-reentrance hypothesis. Equation (13) verifies that there is

enough tokens at date v' to fire the step ϕ . The set = { ,0 < }r v
t

t E∈ ≤ Δ
uur

A T used in

equations (13) and (14) denotes the transitions that were active at date v and are no longer

alike at date v′ . Thus, the quantity tC e+ ⋅∑
ur

A
 corresponds to the tokens that would

appear between dates v and v′ . At last, the update of the residual durations vector at

equation (15) is made as follows:

• If the transition t is fired in the step ϕ , its duration is used to initialize the

corresponding component of the residual vector;

• If a transition that was previously active is still active at date v′ , its residual duration is

updated by taking into account the time elapsed from the previous date;

• Otherwise, if a transition was active and has finished, or if a transition was not active
and is not fired in the step ϕ , its residual duration is null.

As above, we will use the notations [eψ 〉 , 0 1[e eψ 〉 , 0 1 2[ke ψ ψ ψ 〉K and

0 1 2[k ke eψ ψ ψ 〉K to indicate that a timed step or a timed step sequence is fireable, and

the state obtained in each case. We give finally below the main proposition concerning the
use of timed steps in the context of Timed Petri nets.
Proposition 4 (Equivalence between Controlled Executions and timed step firings). Let

(,)R d be a TPN with its initial state ()0
0

= ,0m Ne E
uuuur uur

 given at date 0 = 0v . Let

()= ,0f m N
f

e E
uuuur uur

 be a state.

There exists a feasible controlled execution allowing to reach fe at date maxv from 0e ⇔

฀ ฀1 2

1

1 2

max

1 1 1 2

*

max max TPN

,

, , ,
1, , [

, , , (,). . . :
[

= (,), , , = (,),

 = (0 ,)

K

k k k

K

K f

K K K

N

k

v v v
k K e e

e e e R d s t
e e

v v

v

ψ
ψ

ψ ϕ ψ ψ ϕ

ψ

−

∃ ∈
∃ ∈

⎧∀ ∈ 〉⎪∃ ∈ ⎨ 〉⎪⎩∃

∈

K

K

K
uur

N

N

T

S (16)

Proof. Here again, the reader is referred to the technical report available at

http://www.eclille.fr/tomnab/asr07/ for the complete proof. W
Following the previous proposition, it is sufficient to search for timed step sequences to
solve the reachability problem in TPN. The advantage of such an approach is obvious: like
for basic PN, it is well adapted to the definition of a mathematical programming model with
a reduced number of variables and constraints, since it allows to consider explicitly parallel

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

419

executions. Moreover, it is incremental since one can progressively increase the number of
steps used in the formulation without redefining the whole set of constraints.
Since reachability by controlled execution or timed step sequence is equivalent, we define
as above a sub-problem of the TPN reachability problem, which can be conveniently solved
using the characterization of proposition 4 in a mathematical programming framework.

 Definition 20 (Fixed Depth Timed PN Reachability Problem). Let (,)R d be a TPN with

its initial state ()0
0

= ,0m Ne E
uuuur uur

 given at date 0 . Let ()= ,0f m N
f

e E
uuuur uur

 be a target state.

1TP ()v
Find a timed step sequence allowing to reach the state fe from the state 0e

in at most v timed steps.

In the next section, we prove the correctness and completeness of our mathematical
programming model with respect to this formulation.

4. Integer linear programming models

In this section, we give integer linear programming models corresponding to the
characterizations introduced in propositions 2 and 4.

4.1 Place/transition Petri nets
4.1.1 Integer linear programming model

In the previous section, we have shown that step sequences are sufficient to prove that a
marking is reachable and to find the firing sequence leading to it. In this section, we show
how the search for a step sequence can be expressed as a mathematical programming problem.
We prove also that this model is correct and complete with respect to the fixed depth

reachability problem 1P ()k .

Our integer programming model is directly built from equations and inequalities (8), (9)
and (10). Thus we get:

Model 1 (Integer Programming Model). Let 0(,)R m be a Petri net with

1= { , , }Mp pKP , 1= { , , }Nt tKT ,
fm a marking and K ∈N . The integer linear program

IP()K is defined by:

Minimize ()Xω
uur

 (17a)

subject to:
1

 0

=1

[[1,]],
i

j i

j

i K C X C X M
−

−∀ ∈ ⋅ − ⋅ ≥ −∑
uuur uuur uuur

 (17b)

0

=1

 =
K

i f

i

C X M M⋅ −∑
uur uuur uuur

 (17c)

IP()K

[[1,]], [[1,]], iji K j N X∀ ∈ ∀ ∈ ∈N (17d)

In the model IP()K , variables ijX represent the components of K steps in the sense of

definition 14. Inequalities (17b) correspond to the combination of fireability (8) and

www.intechopen.com

Petri Net: Theory and Applications

420

reachability (9) conditions presented in definition 15. To reduce the size of the problem, the

variables ฀ ฀1,
()i K
m of equation (10) have been dropped by using the substitution of

equation (9). Equation (17c) corresponds to the target marking to reach like in (10). The

integrality constraints of variables ijX are expressed by (17d). The expression of objective

function ()Xω
uur

 will be described later.

The following proposition is central in our construction: it shows that our model IP()k

characterizes all the solutions of the problem 1P ()k .

Proposition 5 (Correctness and completeness of IP(k) w.r.t. P1(k)). Let 0(,)R m be a PN

and k ∈N . Then we have:

• Any solution of IP()k is also a solution of 1P ()k (Correctness)

• Any solution of 1P ()k can be expressed as a solution of IP()k (Completeness)

Proof. Those results come directly from the proof of proposition 2. W
According to proposition 5, to solve the fixed-depth PN reachability problem is equivalent
to search for the solutions of an integer linear programming problem. In this way, the
exploration of the reachability graph and the resolution of the corresponding reachability
problems are reduced to the resolution of a system of equations. The ``combinatorially

explosive’’ reachability graph is reduced to a sequence of ``abstract’’ steps . Since IP()k

needs .k n variables and (1)k M+ ⋅ constraints, the size of the IP()k model grows

linearly with the value of the parameter k . This having been said, two remarks must be

done.

• Of course, we do not pretend that the combinatorial explosion problem has been wiped
out. It is only postponed to the mathematical programming solution phase. Meanwhile,
our formulation allows to benefit automatically from today's best solvers.

• On the other hand, compared to many other exploration techniques, one of the interests
of our formulation is to avoid the ``exploration’’ of the branches of the graph which do
not lead to the desired final marking. Indeed, these cases are ``automatically cut off’’ by the
equation (17c).

From these two statements, we have good reasons to think that our method will bring some
improvements on the research topic considered. We have developed several additional
mechanisms to validate our approach and to improve the performance of the solution. All
these improvements have been formally defined in (Bourdeaud’huy et al., 2004a,b,c, 2007;
Bourdeaud’huy, 2004). We describe them below and refer the reader to these papers for
more information.

4.1.2 Practical improvements

Objective Functions: It is obvious that 1P ()k has a solution if and only if the feasible set of

IP()k problem is non empty. This property stays true for any objective function.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

421

Nevertheless, the efficiency of solving IP()k may depend on the objective function chosen.

Let's remark that some objective functions are more usefull in practice than others.
For example, if there is no difference between solutions, a constant function is valid, which
leads to the selection of the first feasible solution found. We define thus the function
vanishing identically:

1, () = 0X obj X∀
uur uur

This objective function leads to the selection of the first feasible solution found, thus to the
best practical performances. We could also use physical sense objective functions according to
the particular context of the studied problem. For example, we could differentiate the

solutions by their norm, considering thus the 1L norm of steps:

 2 1

=1 =1 =1

 , () = =
K K N

i ij

i i j

X obj X X X∀ ∑ ∑∑
uur uur uuur

P P (18)

The function 2obj allows to search for the ``fastest’’ sequence, in terms of number of firings.

Relaxations: In order to decrease the time needed to conclude on the infeasibility of the

IP()k problem, we propose to use relaxation techniques. They are useful in the field of

combinatorial optimization. The principle of these techniques is to replace the complex
original problem by one or several simpler ones.

Definition 21 (Relaxation). A relaxation of an optimization problem P of type maximisation is an

optimization problem R such that:

• Each feasible solution for P is also a feasible one for R ;

• The value of the objective function of any solution of R is greater than or equal to the value of

the objective function of the same solution for P .
Among useful properties of the relaxation and duality techniques in solving an optimization

problem P is that the optimal value of the relaxation problem provides an upper bound on

the optimal value of the corresponding P . Moreover, if the relaxed problem is infeasible

then the problem P is also infeasible. In our context, this second property is used to

conclude that the IP()k problem is infeasible by solving a relaxed problem before

reaching minK .

• LP-relaxation consists in relaxing integrality constraints. Bounds derived from other

relaxations can be stronger than those obtained from LP . In the literature (Parker and
Rardin, 1988), Lagrangean relaxation, surrogate relaxation and composite relaxation are
usually used to obtain such upper bounds.

• Lagrangean relaxation consists to relax complicating contraints and incorporating them
into the objective function with a so-called Lagrangean multiplier (Geoffrion, 1974).
However, note that relaxing fireability (17b) or reachability (17c) constraints is ``too
strong’’ from the physical point of view. Indeed: without fireability conditions, the
modified model represents only the state equation, which is already supposed to have

www.intechopen.com

Petri Net: Theory and Applications

422

solutions. In the other hand, dealing with a model without the reachability constraint
correspond to study the whole behaviour of the net. Any sequence of fireable transitions
of the correct length is solution to the relaxed problem and do not bring information.

• Surrogate relaxation replaces the original constraints by a single new one, called a
surrogate constraint (Glover, 1977).

Binary Programming Model: We propose also a binary programming model denoted by

BIP()K . In this model, equation (17d) is replaced by:

฀ ฀ ฀ ฀1, , 1, , {0,1}iji K j N X∀ ∈ ∀ ∈ ∈

This formulation is still correct since it corresponds to a restriction of the initial model

IP()K : parallel behaviours are still allowed, but reentrance is forbidden. This formulation

may be more efficient since the domain of variables is reduced. However, it may be necessary

to fire more steps to reach some markings than using the IP()K model. Nevertheless, it is

quite simple to show that this last model preserves an equivalence with the IP()K one.

Indeed, any solution of BIP()K is also obviously a solution of IP()K . Inversely, any

solution of IP()K could be obtained by an aggregation of a solution of BIP()K ′ , with

K K′ ≥ (some steps in a solution of IP()K may have to be splitted into several firings of

what could be called ``binary steps’’ of the solution from BIP()K ′). Thus we are able to

use the model BIP()K ′ in the same way as IP()K . The only difference is the value of

minK ′ associated to BIP()K ′ which can be greater than minK .

Empty Steps Management: As said before, to consider empty steps valid in our

formulations bring interesting theoretical results. However, practically speaking, empty

steps do not bring useful information considering the resolution of the reachability problem,

since they do not change the markings. We propose thus several additional constraints

dedicated to the management of empty steps .

• In the binary model, one can add an extra linear constraint in order to express a notion
of partial order in the steps:

 ฀ ฀ (1)

=1 =1

1, 1 ,
N N

ij i j

j j

i K N X X +∀ ∈ − ⋅ ≥∑ ∑ (19)

These constraints mean that empty steps have to appear at the end of the constrained

sequence. Indeed: if a step iX is empty (i.e. ฀ ฀1, , = 0ijj N X∀ ∈), all its successors

฀ ฀(). . 1,kX s t k i K∈ + in the step sequence have to be empty in a ``chain reaction’’.

Inversely, since we consider binary steps, equation (19) is obviously true when

฀ ฀1,j N∃ ∈ s.t. = 1ijX , because then
=1

N

ijj
N X N⋅ ≥∑ .

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

423

• We propose also a new objective function, which corresponds to maximize the number
of empty steps in the feasible sequence. This is equivalent to minimize the number of non-

empty steps 3obj defined below:

 3

=1

, () = [[1,]] . . 0
N

ij

j

X obj X card i K s t X
⎧ ⎫

∀ ∈ ≠⎨ ⎬
⎩ ⎭

∑
uur uur

 (1)

The function 3obj allows us to look for the shortest solutions in term of ``equivalent

length’’ when the empty steps have been removed. To model 3obj , we introduce new

intermediate binary variables 1 2, , , kα α αK and we incorporate in the linear

programming models the following additional constraints:

=1

[[1,]], 1 (1)

[[1,]], {0,1}

N

i ij i

j

i

i K B X B

i K

α α

α

∀ ∈ + − ⋅ ≤ ≤ ⋅

∀ ∈ ∈

∑

where B is a sufficiently big number, chosen much bigger than the number of

transitions and tokens in the net, e.g. B M N K≥ ⋅ ⋅ . Since the variables ฀ ฀1,
()i K
α are

binary, it is easy to check that = 0iα iff the step iX is empty (a complete proof is

given below in proposition 6). Thus the objective function 3obj can be expressed in the

following way:

3

=1

, () =
K

i

i

X obj X α∀ ∑

• Finally, one could simply forbid empty steps by adding to the models the following
constraint:

 1[[1,]], 1ii K X∀ ∈ ≥
uuur

P P

Decomposition Technique: To improve the performance of the resolution, we have
proposed constraints corresponding to a decomposition technique based on a partition of the

state space according to the solutions of the PN state equation. For each solution σ
uur

 of the

underlying state equation – defined between the same initial and final markings –, we add
the constraint:

=1

[[1,]], =
K

ij
t
ji

j N X σ∀ ∈ ∑
uur

www.intechopen.com

Petri Net: Theory and Applications

424

Such a decomposition technique allows to adress the complexity of the problem in two
steps:

• The first step uses well known T-invariants computation techniques (see for example
(Colom and Silva, 1989a)) which are independent from the initial marking, and thus
allows to reuse the same information for many different initial and final markings.

• Given the Parikh vector of the whole firing sequence to discover, the resolution of the
reachability problem should be slighty simple. However, one should note that this
second step remains difficult: it is not sufficient to distribute the firings over the steps
since each step must be fireable. Moreover, developping heuristics methods is
challenging since deadlock situations can occur late after a bad choice has been made.
Finally, the mathematical programming approaches proposed here are well designed to
handle the second step of the search.

4.1.3 Numerical experiments

Numerous practical experiments were led in (Bourdeaud’huy et al., 2004a,b,c, 2007;
Bourdeaud’huy, 2004) in order to assess the efficiency of our mathematical programming
models. There is no space left to copy them all here, but several results must be pointed out.

• We have compared the influence of the objective functions 1obj , 2obj and 3obj . The

corresponding results were quite foreseeable: 1obj led to the best results, followed by

2obj and finally 3obj . However, it must be said that the performance of resolution

using 3obj was very weak, even for the smallest instances of our families, since the size

of the corresponding models is large. To the contrary, the performance of models using

2obj were quite close to the basic performance given by 1obj , about 3 times worse in a

pinch.

• Our experiments to validate the pertinence of the LP-relaxation shown that for the whole

set of PN studied, the gap between minK for the LP-relaxation and the integer model is

small. Such statement suggests a property of integrality of the kind of problems
considered – i.e. continuous solutions are somehow integer –, which may be interesting
to study.

• Compared one with another, model BIP behaves better than IP. Of course, one could
build an example for which the contrary would holds. Nevertheless, this observation
were made over the whole set of our experiments.

• Dealing with decomposition technique, preliminary experiments have shown that a
search inside a given equivalence class is 20% faster than for the whole state space.

• We have compared our technique with other classical tools from the PN community:
Ina (Roch and Starke, 2002) and Netched (Benasser, 2000).

- Ina means Integrated Net Analyzer. It is an analysis tool which allows the
computation of firing sequences between markings thanks to the exploration of a
covering graph. It implements some reduction techniques, e.g. persistent sets
(Valmari, 1991) and symmetries (Schmidt, 1998).

- Netsched is the implementation of the logical abstraction technique developped
by Benasser. It has been implemented using the constraint logic programming

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

425

language Prolog IV.
Our approach has shown very good results and dominates the other tools on some
instances. However, there exists some special instances – see for example
(Bourdeaud’huy et al., 2004c) – for which our method is dominated by Netsched,
particularly when the underlying reachability graph is sparse.

In the next section, we develop a similar mathematical programming approach for Timed
Petri nets.

4.2 Timed Petri nets

We proceed as for Place/Transition PN, by adapating the characterization proposition 4 to
build a mathematical programming model. For that, we need to linearize the equations
defining timed step firings. We introduce in the next section two operators and the
corresponding linearization variables and equations that we use to obtain the linear integer
programming model.

4.2.1 Discrimination operators

We start by giving a useful proposition, which has been already used above dealing with the

formulation of objective function 3obj .

Proposition 6 (Discrimination Variables). Let X ∈ ⊂S Z and
*B∈N be ``sufficiently

large’’. Let {0,1}α ∈ and β ∈N such that:

 1 (1) B X Bα α+ − ⋅ ≤ ≤ ⋅ (20a)

 X β≤ (20b)

 Bβ α≤ ⋅ (20c)

 (1)B Xβ α≤ ⋅ − + (20d)

Then we have:

> 0 = 1 et =

0 = 0 et = 0

X X

X

α β
α β

⇒⎧
⎨ ≤ ⇒⎩

Proof. Let's assume that X is strictly positive. The right side of inequation (20a) implies

then 1 X Bα≤ ≤ ⋅ , i.e.
1

> 0
B

α ≥ . Thus we have = 1α , and the left side of inequation

(20a) is valid. The inequation (20d) implies then Xβ ≤ , and inequation (20b) implies

= Xβ . Inequation (20c) is valid only if B is sufficiently large, namely: ()max
X

B X
∈

≥
S

.

Conversely, if X is negative or null, the left side of inequation (20a) implies

1 (1) 0Bα+ − ⋅ ≤ , which implies
1

1
B

α ≤ − < 1. We have then = 0α and the right

www.intechopen.com

Petri Net: Theory and Applications

426

side of inequation (20a) is valid. The inequation (20c) implies then 0β ≤ , i.e. = 0β .

Inequation (20b) is valid and inequation (20d) is valid if B is sufficiently large, again if

(| |)max
X

B X
∈

≥
S

. W

Using 2 variables and 5 equations per unknown X , one can thus obtain linearly
sX and

X +
, corresponding to the ``sign’’ of X and its ``positive component’’. We extend these

operators ``+’’ and ``s’’ to vector objects, by applying them uniformly on each component of
the considered vector.

Definition 22 (Discrimination Operators). Let k ∈N and
kx∈

r
Z . We denote by:

• kx
+
∈

ur
N the vector of its positive components, such that [[1,]], () = ()c k x c x c

+
∀ ∈

r r
 if

() > 0x c
r

 and 0 otherwise;

• {0,1}
s

kx ∈
ur

 the vector representing its sign, such that: [[1,]], () = 0
s

c k x c∀ ∈
r

 if

() 0x c ≤
r

 and () = 1
s

x c
r

 otherwise.

Since the operators above are easily expressed using linear equations, we use them to
reformulate the characterization proposition 4. The new formulation will be used to build a
linear programming model corresponding to the firing of a timed step sequence.

4.2.2 Timed steps linear formulation

In this section, we consider the equations (12) to (15) defining timed step firings and
reformulate each of them using the discrimination operators given above. In order to avoid

confusions of notations, we use lower case letters to denote the state vectors (,)m re e
uur ur

expressed using discrimination operators.

Proposition 7 (Timed step Firings Reformulation). Let (,)R d be a Timed Petri net. Let

= (,)m re e e
uur ur

 be a state given at date v . Let v v′ ≥ and =v v v′Δ − ∈N . Let = (,)vψ ϕ′ ′ ′

be a timed step . Then we have:

(21)
1 (1)

[
((1)) 0

s

n r v n

s
s

m r r v n m

e
e

e C C e e

ϕ
ψ

ϕ− +

⎧ ′ ≤ − −Δ ⋅⎪′〉 ⇔ ⎨
′− ⋅ + ⋅ − − Δ ⋅ ≥⎪⎩

uur ur ur ur

uur uur ur ur ur uur

(22)

(23)
= ((1))[

[
= (1) ()= (,)

s
s

m m r r v n

r r v n tm r t
t

e e C C e ee e
e

e e d t ee e e

ϕψ
ψ

ϕ

− +

+

∈

⎧ ′ ′− ⋅ + ⋅ − − Δ ⋅′ ′〉 ⎪′⇔ 〉 ∧ ⎨ ′ ′− Δ ⋅ + ⋅ ⋅′ ′ ′ ⎪⎩
∑

uur uur uur ur ur ur

ur ur ur uur uruur ur

T

(24)

Proof. To prove the above proposition, one has just to verify that equations (21) to (24)

correspond exactly to equations (12) to (15) from definition 19. W

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

427

4.2.3 Illustrative example

Fig. 7. Intermediary Calculations (Markings)

Fig. 8. Intermediary Calculations (Residual Durations)

In order to help understanding the above equations, we propose to illustrate them using a
particular example. Let's consider the Timed Petri net of Fig. 3. Its initial marking at the date

1 = 0v is given by: (0) = (1,0,0,0,1,0,1,1) , (0) = (0,0,0,0)m re e
uur ur

ú ú
.

www.intechopen.com

Petri Net: Theory and Applications

428

We assume that 1t is fired at the date 1 = 1v , then simultaneously 2t and 4t at the date

2 = 4v . We need to calculate the state reached at the date 3 = 6v . The details of the

calculation are given in Fig. 7 and 8. The physical sense of the equations is explained below:

• The quantity (1)r v Ne +−Δ ⋅
ur uur

 represents the update of the residual durations vector at

the date vv + Δ , from its value re
ur

 at the date v . The ``+’’ operator allows to take into

account only positive values. Moreover, if a transition t is still active at date vv + Δ ,

we have: (1) = 1s

r v N
t

e −Δ ⋅
ur uur

;

• The quantity () t
t

t

d t eϕ
∈

′⋅ ⋅∑
uur ur

T

 represents the new residual durations coming from the

execution of the firing sequence ϕ′ at the date vv + Δ ;

• Finally, the quantity (1)
s

s

r r v Ne e− −Δ ⋅
ur ur uur

 represents the Parikh vector of the

transitions, the firing of which ends at the date vv + Δ . This expression is made from

the comparison between the Parikh vector of the transitions that were pending at the date

v : vector
s

re
ur

, and the Parikh vector of the transitions that will be still active at the date

vv + Δ : vector (1)s

r v Ne −Δ ⋅
ur uur

.

4.2.4 Mathematical programming model

Since proposition 7 has been formulated in a linear way, it allows to express the linear
mathematical programming model given below.

Model 2 (TPN Integer Programming Model). Let (,)R d be a TPN with its initial state

()0
0

= ,0m Ne e
uuur uur

 given at date 0 = 0v . Let ()= ,0f m N
f

e e
uuuur uur

 be a target state. Let V ∈N .

The integer linear programming model TIP()V is defined by:

[[0, 1]]

v
i

i V

Minimize
∈ −

Δ∑ (25)

 subject to:

 [[1,]],k M∀ ∈ 0m ke =
0

m
k

e
uuur

 (26)

 [[1,]],k M∀ ∈
mVke = 0 (27)

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

429

 [[1,]],j N∀ ∈ 0r je =
0

r
j

e
uur

 (28)

 [[1,]],j N∀ ∈ rVje = 0 (29)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ij rijB a e⋅ − ≤ 1B − (30)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ rij ije B a− ⋅ ≤ 0 (31)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ij rij v
i

B eα⋅ − + Δ ≤ 1B − (32)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ rij v ij
i

e B α−Δ − ⋅ ≤ 0 (33)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ rij v ij
i

e β−Δ − ≤ 0 (34)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ij ijBβ α− ⋅ ≤ 0 (35)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ij ij rij v
i

B eβ α+ ⋅ − + Δ ≤ B (36)

[[1,]],i V∀ ∈ [[1,]],k M∀ ∈ (1)

=1

N

mik m i k kc ic

c

e e C ϕ−
−− + ⋅∑

 (1) (1)

=1

()
N

kc i c i c

c

C a α+
− −− ⋅ −∑ = 0 (37)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈
(1) |rij i j j ije dβ ϕ−− − ⋅

uur
 = 0 (38)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ (1)ij i jϕ α −+ ≤ 1 (39)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ijϕ ∈ {0,1} (40)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ija ∈ {0,1} (41)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ijα ∈ {0,1} (42)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ ijβ ∈ N (43)

[[1,]],i V∀ ∈ [[1,]],j N∀ ∈ rije ∈ N (44)

www.intechopen.com

Petri Net: Theory and Applications

430

[[1,]],i V∀ ∈ [[1,]],k M∀ ∈ mike ∈ N (45)

[[0, 1]],i V∀ ∈ − v
i

Δ ∈ N (46)

Equations (26) to (29) correspond to conditions over initial and final states. Equations (30) to
(36) express the constraints over discrimination variables used to compute the ``+’’ and ``s’’

operators. Variables ()ia , ()iα and ()iβ denote respectively the values of ()s

r ie v
ur

,

(() 1)s

r i v n
i

e v −Δ ⋅
ur ur

 and (() 1)r i v n
i

e v +−Δ ⋅
ur ur

 from equations (23) and (24). Equations (37)

and (38) correspond to intermediate state computation equations (23) and (24). Equation (39)
correspond to nonreentrance condition (21). Finally, equations (40) to (46) define the domain
of the used variables.
Again, our model is well defined enough to allow the following proposition.

 Proposition 8 (Correctness and completeness of TIP(v) w.r.t. TP1(v)). Let (,)R d be a

TPN and v∈N . Then we have:

• Any solution of TIP()v is also a solution of 1TP ()v (Correctness)

• Any solution of 1TP ()v can be expressed as a solution of TIP()v (Completeness)

Proof. Those results come directly from the construction of TIP(V). W

Obviously, the same remarks as for proposition 5 hold. Even if problem 1TP is

parametrized by a given number of timed steps , a large class of scheduling problems can
be adressed using such formulation. We are more particularly interested in flexible
manufacturing systems (FMS) scheduling problems. FMS are characterized by the
simultaneous production of several types of products, and the possibility to use several
methods (flexibilities) to produce the same kind of product. Using TPN, such flexibilities are
modeled by conflicts, which justifies the use of our approach.
Another interest in the framework of FMS is the formulation of cyclic scheduling problems
in a smart way. Indeed: such scheduling problems correspond to reachability between the
same states (Bourdeaud’huy and Korbaa, 2006). Using our approach, one can formulate a
cyclic scheduling problem by considering a timed reachability problem between two
identical unknown states. The corresponding model allows then not only to find the schedule
but also the initial state within the cycle.
Note finally that our mathematical model remains valid to solve the reachability problem
between states defined by not null residual durations. One has just to consider that these
states belong to a bigger problem between states without residual durations.

4.2.5 Numerical experiments

In order to validate the model above, preliminary experiments were carried out using the
linear programming solver CPLEX 9.0. (Bourdeau’huy et al., 2006). They have shown
promising results, but need to be extended in order to assess the efficiency of our approach
compared to concurrent approaches from Operations Research litterature.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

431

We also propose to develop cutting techniques allowing to improve the resolution
performances. For instance, we suggest to reuse the decomposition technique described
above. A preliminary resolution of the reachability problem between the initial and final state
vectors in the underlying P/T Petri net can be used to obtain the Parikh vector of the firing
sequence of the controlled execution searched for.

5. Conclusion and future work

In this chapter, we present techniques for solving reachability problems in PN and TPN based
on mathematical programming. The approach is based on an incremental search using step
sequences that represent parallel and reentrant firings of transitions. The mathematical
model used allows the formulation and verification of reachability-based analysis problems.
Concerning PNs, we have proposed two formulations of the reachability problem, leading
to integer and/or binary programming models. For each of them, we have developped
some additional procedures, relaxation techniques and objective functions in order to
improve the computational efficiency of the resolution. Numerical experiments have
demonstrated the efficiency of our approach compared to standard ones from Artificial
Intelligence and Petri nets community.
Several promising tracks will be considered in the future, such that:

• To develop rules to adjust dynamically the amplitudes of jump search, for example
by exploiting information from the previous iterations and/or from the structure of
the considered PN;

• To use heuristic methods to speed up the search or find a good bound on minK .

Concerning TPN, we have shown how a linear integer programming model could be
developped to solve the Timed Petri net reachability problem. This model is very general
since it allows to deal with weighted Timed Petri nets, without restricting ourselves to an
immediate firing semantic or Timed Event Graphs as it is done in the litterature. It can thus
be directly used on flexible manufacturing models.
In the future, we propose to compare our computational results with concurrent approaches
dedicated to scheduling problems. We also propose to develop cutting techniques allowing
to improve the resolution performances.
Finally, we are currently adapting our incremental approaches to Time Petri nets, in order to
be able to model scheduling problems with Time Windows associated to the tasks.

6. References

Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J.-P. (1992). Synchronization and
linearity :

 An algebra for Discrete Event Systems. Wiley, New York
Benasser, A. (2000). L’accessibilité dans les réseaux de Petri : une approche basée sur la

programmation par contraintes. PhD thesis, Université des sciences et
techologies de Lille

Benasser, A. and Yim, P. (1999). Railway Traffic Planning with Petri nets and Constraint
Programming. JESA, 33(8-9), pp. 959–975

Berthelot, G. (1986). Transformations and Decompositions of Nets. Advances in Petri Nets
1986 Part I, Proceedings of an Advanced Course, Vol. 254, pp. 359–376

www.intechopen.com

Petri Net: Theory and Applications

432

Berthomieu, B. and Diaz, M. (1991). Modeling and Verification of Time Dependent
Systems using Time Petri Nets. IEEE Trans. on Software Eng., 17(3), pp. 259–273

Bourdeaud’huy, T. (2004). Techniques d’Abstraction pour l’Analyse et la Synthèse de
Réseaux de Petri. PhD thesis, Ecole Centrale de Lille

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004a). Efficient Reachability Analysis of
Bounded Petri nets using Constraint Programming. SMC’04, International
Conference on Systems, Man and Cybernetics, La Hague, Hollande

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004b). Recherche de Séquences
d’Accessibilité dans les Réseaux de Petri utilisant l’Abstraction Logique et une
réduction fondée sur l’équation d’état. CIFA’04, Conférence Internationale
Francophone d’Automatique, Douz, Tunisie

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004c). Solving the Petri Nets Reachability
Problem using the Logical Abstraction Technique and Mathematical
Programming. CPAIOR’04, International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems,
LNCS 3011, pp. 112–127, Nice, France

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2006). Scheduling of Flexible Manufacturing
Systems using Timed Petri nets and Mathematical Programming. WODES’06,
Workshop on Discrete Event Systems, Ann Arbor, Michigan, USA

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2007). Mathematical Programming
Approach for the Petri Nets Reachability Problem. EJOR, 177(1)

Bourdeaud’huy, T. and Korbaa, O. (2006). A Mathematical Model for Cyclic Scheduling
with Work-In-Progress Minimization. INCOM’06, IFAC Symposium on
Information Control Problems in Manufacturing, Saint Etienne, France

Briand, C. (1999). Solving the Car-Sequencing Problem using Petri Nets. International
Conference on Industrial Engineering and Production Management, Vol. 1, pp. 543–
551

Chrétienne, P. (1984). Exécutions Contrôlées dans les Réseaux de Petri Temporisés.
T.S.I., 3

Colom, J. and Silva, M. (1989a). Convex Geometry and Semiflows in P/T nets: a
Comparative Study of Algorithms for Computation of Minimal P-semiflows.
Proceedings of the 10th International Conference on Application and Theory of Petri
Nets

Colom, J. and Silva, M. (1989b). Improving the Linearly based Characterization of P/T
nets. Proceedings of the 10th International Conference on Application and Theory of
Petri nets, pp. 52–73, Bonn, Germany

David, R. and Alla, H. (1992). Petri Nets and Grafcet: Tools for Modelling Discrete
Event Systems. Prentice-Hall

Fernandez, J.-C., Jard, C., Jéron, T., andMounier, L. (1992). ``On the fly” Verification of
Finite Transition Systems. Formal Methods in System Design

Geoffrion, A. (1974). Lagrangean Relaxation for Integer Programming. Mathematical
Programming Study, Vol. 2, pp. 82–114

Glover, F. (1977). Heuristics for Integer Programming using Surrogate Constraints.
Decision Sciences, Vol. 8, pp. 156–166

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems

433

Gunnarsson, J. (1998). Symbolic Tools for Verification of Large Scale DEDS. Proc. IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC’98), 11-14 October 1998, San
Diego, CA, pp. 722–727.

Hillion, H. and Proth, J. (1989). Performance Evaluation of Job-Shop Systems using
Timed Event Graphs. IEEE Transactions on Automatic Control, Vol. 34

Huber, P., Jensen, A. M., Jepsen, L. O., and Jensen, K. (1985). Towards Reachability
Trees for High-level Petri Nets. Lecture Notes in Computer Science: Advances in
Petri Nets 1984, Vol. 188, pp. 215–233

Jaffar, J., Michaylov, Stuckey, P., and Yap, R. (1992). The CLP (R) Language and System.
ACM Transactions on Programming Languages and Systems, Vol. 14(3), pp. 339–
395

Janicky, R. and Koutny, M. (1991). Optimal Simulations, nets and Reachability Graphs.
Advances in Petri Nets, Lecture Notes In Computer Science, Vol. 524, pp. 205–226

Jensen, K. (1992). Coloured Petri nets - Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs on Theoretical Computer Science, Vol. 1, pp. 1–234.
Springer

Keller, R. (1976). Formal Verification of Parallel Programs. Comm. of the ACM, Vol. 19(7),
pp. 371–384

Khomenko, V. and Koutny, M. (2000). Verification of Bounded Petri Nets using Integer
Programming, technical report cs-tr-711, Department of Computing Science,
University of Newcastle upon Tyne

Kosaraju, S. R. (1982). Decidability of Reachability in Vector Addition Systems. Proc. Of
the 14th Annual ACM Symp. on Theory of Computing, pp. 267–281

Latvala, T. (2001). Model checking LTL Properties of High-level Petri Nets with Fairness
Constraints. Lecture Notes in Computer Science 2075

Lautenbach, K. (1987). Linear Algebraic Techniques for P/T Nets. Advances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, Vol. 254, pp. 142–167

Lee, D. Y. and DiCesare, F. (1994). Scheduling Flexible Manufacturing Systems using
Petri nets and Heuristic Search. IEEE Transactions on Robotics and Automation,
Vol. 10(2), pp. 123–132

Lindqvist, M. (1993). Parameterized Reachability Trees for Predicate/Transition Nets.
Lecture Notes in Computer Science; Advances in Petri Nets 1993, Vol. 674, pp. 301–
324

Lipton, R. (1976). The Reachability Problem requires Exponential Space. Technical report,
Computer Science Dept., Yale University

Melzer, S. and Esparza, J. (1996). Checking System Properties via Integer Programming.
ESOP’96

Murata, T. (1989). Petri Nets : Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, pp. 541–580

Parker, R. and Rardin, R. (1988). Discrete Optimization. Academic Press
Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed Petri

Nets. PhD thesis, Massachusetts Institute of Technology
Richard, P. (2000). Modelling Integer Linear Programs with Petri nets.

RAIRO/Operations Research, Vol. 34(3), pp. 305–312
Roch, S. and Starke, P. (2002). INA Manual, Integrated Net Analyzer, Version 2.2.

Humboldt- Universität zu Berlin, Institut für Informatik

www.intechopen.com

Petri Net: Theory and Applications

434

Schmidt, K. (1998). On the new Low Level Symmetry tool in INA. GI Petri Net Newsletter
54

Sifakis, J. (1975). Performance Evaluation of Systems using Nets. Advanced Course: Net
Theory and Applications, pp. 307–319

Silva, F., Castilho, M. A., and Kunzle, L. A. (2000). Petriplan: A new Algorithm for Plan
Generation (preliminary report). IBERAMIA-SBIA, pp. 86–95

Silva, M., Colom, J., and Campos, J. (1992). Linear Algebraic Techniques for the
Analysis of Petri Nets. Recent Advances in Mathematical Theory of Systems,
Control, Networks, and Signal Processing II

Silva,M., Teruel, E., and Colom, J.M. (1998). Linear Algebraic and Linear Programming
Techniques for the Analysis of P/T Net Systems. Lecture Notes in Computer
Science: Lectures on Petri Nets I: Basic Models, Vol. 1491, pp. 309–373

Valmari, A. (1991). Stubborn Sets for Reduced State Space Generation. Lecture Notes in
Computer Science; Advances in Petri Nets 1990, Vol. 483, pp. 491–515

Van der Aalst,W.M. P. (1995). Petri Net Based Scheduling. Number 95. Eindhoven
University of Technology Computing Science Reports/23

Vernadat, F., Azéma, P., and Michel, P. (1996). Covering Steps Graphs. 17th Int. Conf on
Application and Theory of Petri Nets 96.

Wang, J. (1998). Timed Petri Nets, Theory and Application. Kluwer Academic Publishers

www.intechopen.com

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Thomas Bourdeaud'huy, Said Hanafi and Pascal Yim (2008). Incremental Integer Linear Programming Models

for Petri Nets Reachability Problems, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN: 978-3-

902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/incremental_integer_linear_programmin

g_models_for_petri_nets_reachability_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

