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Chapter

Acute Myocardial Infarction: 
Perspectives on Physiopathology 
of Myocardial Injury and 
Protective Interventions
John G. Kingma

Abstract

Diffuse coronary artery injury produces a host of physiopathological, structural 
and metabolic changes in cardiocytes that, if not rectified, result in significant loss 
of functional myocardium to cause cardiac contractile dysfunction. Restoration 
of blood perfusion to the infarct-related artery helps to limit the acute effects of 
myocardial infarction; however, cardiocyte injury may be exacerbated because of 
the restoration of blood perfusion to the ischemic zone (i.e. reperfusion injury). 
Various manifestations of reperfusion injury include no-reflow, myocardial stun-
ning or hibernation and ventricular arrhythmias. Consequently, reperfusion of 
an infarct related artery is often viewed in the context of being a “double-edged 
sword.” Pharmacologic and non-pharmacologic interventions have been investi-
gated in pre-clinical and clinical studies in the hunt to develop strategies to protect 
cardiomyocytes against the long-term effects of ischemia, or delay development of 
necrosis (resulting from ischemia or reperfusion). This book chapter will update 
current thinking on cardioprotective strategies to improve clinical outcomes in 
patients with coronary artery disease.

Keywords: acute myocardial infarction, cardioprotection, ischemic conditioning, 
myocardial ischemia, reperfusion injury

1. Introduction

Physiopathological mechanisms responsible for myocardial cell death (necrosis, 
apoptosis, autophagy, etc.) caused by coronary artery disease have been abundantly 
discussed over the past several decades. Acute myocardial infarction is a leading 
cause of sudden cardiac death among urban dwellers in North America and Europe. 
Clinical treatment of patients with coronary artery disease is focused on limit-
ing the deleterious consequences that follow coronary artery occlusion; however, 
to do so it is fundamental to understand the mechanisms, at the molecular and 
cellular level, that are involved in cell death and survival. Existing knowledge has 
progressed massively over the years and useful clinical interventions, both pharma-
cologic and non-pharmacologic, are currently available to limit, but not abrogate, 
effects of ischemia. An important question that remains concerns the existence of 
“reperfusion-induced injury”; many adhere to the notion that significant cellular 
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death can occur once blood flow is restored to an infarct-related artery. While 
definitive proof is lacking myocardial stunning, vascular no-reflow (perfusion 
deficit) and ventricular arrhythmias are often attributed to this form of cardiomyo-
cyte loss after ischemia. The objective of the present chapter is to update current 
thinking on the question of lethal reperfusion injury and to summarize current 
treatments used to limit overall effects.

1.1 Acute myocardial infarction

Myocardial ischemia is defined as the condition where coronary blood flow across 
the ventricular wall is insufficient to conserve steady-state metabolism. Acute disrup-
tion of the blood supply to any region of the heart causes cardiomyocyte injury and 
eventually cellular death depending on the duration of perfusion deficit. Cardiac 
cell injury is characterized to be either reversible (if reperfusion of the infarct-
related artery can be instituted rapidly, ≤15 minutes), or irreversible (poor, or no, 
cellular survival even if blood flow is restored). Cardiomyocyte necrosis progresses 
as a transmural gradient across the ventricular wall, from endocardium to epicar-
dium, in most animal models studied [1, 2]. Early development of necrosis in the 
subendocardium is probably related to higher oxygen requirements (due to greater 
contribution to myocardial contraction) of that layer compared to the subepicar-
dium [3–5]; myocardial perfusion is coupled to myocardial oxygen consumption. 
Although we agree that progression of coronary heart disease and symptom pheno-
types may differ in relation to sex this subject is beyond the scope of this review.

Myocardial ischemia initiates multiple changes in cardiomyocyte structure 
including marked swelling, development of contraction bands, mitochondrial 
calcification and membrane disruption; the pathobiology of cellular changes 
produced by ischemia have been characterized in earlier studies [6–8]. Different 
modes (apoptosis, autophagy, oncosis, and necrosis) of cellular injury have been 
described [9] and are discussed elsewhere [10]. The cardiomyocyte cytoskeleton 
(i.e. structure needed to maintain cellular morphology and physiology) is markedly 
altered by biochemical changes caused by disruption of oxygen and nutrient supply 
[11]. Cardiomyocyte death occurs with disruption of the cellular membrane and 
subsequent leakage of intracellular components into the extracellular fluid [12–14]. 
Irreversibly injured cardiomyocytes display small breaks in the plasmalemma along 
with cellular swelling and sarcolemmal blebbing [1]. Necrosis in non-cardiac cells 
is not well described but it is clear that other cell types within the myocardium 
(i.e. vascular endothelial and smooth muscle cells, nervous system cells, etc.) are 
affected by ischemia.

Restoration of blood flow to the perfusion bed of the infarct-related artery can 
limit damage to cardiomyocyte as long as reperfusion is instituted within a reason-
able period. Indeed, this is the basis for widespread use of percutaneous coronary 
interventions for relief of symptoms in patients with coronary artery disease and is 
responsible for manifest reduction in mortality. Thousands of studies have exam-
ined the physiopathology of ischemia-reperfusion injury over the past half-century 
with the aim to elucidate pathways leading to cellular necrosis; increased knowledge 
gained from these studies has led to the realization that this is a complex and multi-
faceted scenario.

1.2 Lethal reperfusion injury

It is clear that restoration of blood flow to ischemic myocardium is the most 
effective treatment against myocyte necrosis [15, 16]. Timely opening of an infarct-
related artery is essential as the amount of myocardium salvaged rapidly decreases 
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when reperfusion interventions are delayed. Furthermore, reperfusion may itself 
cause further cellular damage; thus it is often viewed in the context of being a 
“double-edged sword” [17]. Studies have confirmed that reperfusion triggers abrupt 
metabolic, electrophysiologic, morphologic and functional changes. The term 
“lethal reperfusion injury” designates damage to viable cardiomyocytes caused 
after successful restoration of blood flow to the ischemic perfusion bed. Several 
possible forms of reperfusion injury such as coronary artery no-reflow, myocar-
dial hibernation, myocardial stunning, ventricular arrhythmias, etc. have been 
advanced [18, 19]; however, definitive proof that reperfusion injury exists remains 
to be established. With that in mind, we believe that reperfusion might accelerate 
expression of injury produced by ischemia but does not itself cause de novo cardio-
myocyte injury.

Physiopathological mechanisms that produce reperfusion injury are complex 
and multifactorial; no specific mechanism has been shown to take precedence over 
others. In experimental animal models, the release of an acute coronary occlusion 
produces a prolonged hyperemic response particularly in the deeper myocardial 
layers (subendocardium > subepicardium); hyperemic responses vary depending 
on the duration of ischemia [20–22]. Reperfusion of the ischemic myocardium 
depends on arterial driving pressure and extravascular compressive forces; this is 
particularly important for the function of coronary collateral vessels that supply 
much needed oxygen and nutrients to surviving cardiomyocytes post-ischemia. 
As such, restoration of coronary blood flow in the infarct-related artery does not 
guarantee homogeneous perfusion of blood across the ventricular wall. Indeed, 
areas where blood flow is less than normal (i.e. no-reflow) are mostly associated 
with myocardial regions where injury is irreversible.

1.2.1 No-reflow

No-reflow is caused by injury at the structural level (i.e. cell swelling, membrane 
gaps, etc.) [23, 24]; microvessels might be more resistant to short periods of ischemia 
compared to cardiomyocytes because their endothelial oxygen requirements are 
modest and they are in close proximity to oxygen supply. No-reflow does not precede 
tissue damage but follows it; furthermore, it does not expand myocardial infarct size 
(role in pathogenesis of tissue damage is considered to be minor) [25, 26]. However, 
it has been suggested to contribute to infarct expansion, ventricular dilatation and 
remodeling by limiting access of inflammatory cells to the ischemic zone to initiate 
cardiac repair [27, 28]. Microvessel damage is also manifest as hemorrhage due to 
abnormalities in vessel permeability [29].

No-reflow occurs in patients with cardiovascular disease [30, 31]; pharmaco-
therapy appears to normalize ischemic zone perfusion and reduce mortality.

1.2.2 Myocardial stunning and hibernation

Reperfusion injury is associated with depletion of high-energy phosphate stores, 
cellular swelling, increases in capillary permeability and reduced microvessel 
reactivity [32–34]. Restoration of blood flow to the ischemic myocardium mitigates 
myocardial injury; however, restoration of contractile function is not necessarily 
immediate. When blood supply to the heart is limited, myocardial contraction is 
restricted as described for the “smart heart theory” [35]. In normal myocardium, 
increases in metabolic demand due to intensification of myocardial work are met by 
regional increases in blood flow as well as increases in oxygen extraction [36]. Post-
ischemic myocardial stunning and myocardial hibernation have been described 
in animals [37, 38] and patients [35, 39] and designate viable but chronically 
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dysfunctional states [40]. Myocardial stunning refers to persistent (but reversible) 
contractile dysfunction [41, 42] produced by a relatively brief ischemic period [43]. 
Myocardial hibernation, on the other hand, refers to viable but chronically dysfunc-
tional myocardium that may be related to poor resting perfusion [35], or general 
absence of perfusion abnormalities [44, 45] but the latter has not been clearly 
established [46, 47]. Recent findings suggest that repetitive ischemia, chronic 
stunning and hibernation are linked as a continuum [40]; in other words, stunned 
myocardium can progressively transform into hibernating myocardium. For both 
dysfunctional myocardial states, downregulation of contractile function might be 
a cellular adaptive mechanism to facilitate preservation of myocardial integrity and 
viability [35]. Perfusion-contraction matching may be key to myocardial hiberna-
tion but this may not be so for myocardial stunning; a number of review articles on 
this subject are available [48–50]. Whether contractile dysfunction can be reversed 
by improved revascularization in stunned or hibernating myocardium is moot after 
the formation of scar [40].

1.2.3 Ventricular arrhythmias

Development of life threatening ventricular arrhythmias, which range from 
ventricular premature beats with long coupling intervals to ventricular fibrillation 
early after onset of reperfusion, also represent a form of reperfusion injury [51, 52]. 
Although the physiopathology causing ventricular arrhythmias during reperfusion is 
ill understood they are known to be initiated by complex cellular changes with regard 
to electrophysiological, metabolic and structural properties [53]; potential chemical 
mediators of arrhythmogenesis have been presented [54, 55]. In rat hearts subject to 
brief coronary artery occlusion (~5 minutes) followed by reperfusion severe ventricu-
lar arrhythmias occur [56]. However, in larger animal species, incidence of lethal ven-
tricular arrhythmias increases when reperfusion is instituted within 30 minutes after 
coronary occlusion [57]. The overall incidence of ventricular arrhythmias decreases 
significantly when reperfusion follows longer durations of ischemia [58, 59].

2. Cardioprotection strategies

Strategies designed to protect against myocardial injury caused by ischemia, or 
reperfusion have been extensively studied. In animal models reduction of infarct 
size is reported with the use of single, or multiple pharmacologicals; however, 
translation of cardioprotection to patients remains disappointing. Efficacy of 
interventions is dependent on a host of factors that include time of administration 
of treatment (i.e. during ischemia, at reperfusion, late reperfusion), duration of 
occlusion, reperfusion status, species, cell types and end targets (i.e. molecular, 
biochemical, etc.). In patients, cellular protection is more difficult; however, multi-
target studies continue to attempt to limit cardiomyocyte injury. The presence of 
comorbidities also affects the cardioprotective capability of different treatments. 
Development of reliable interventions (i.e. pharmacologic, non-pharmacologic) 
remains an ongoing challenge; findings from basic science and clinical studies 
on understanding of mechanisms involved in cellular injury and death have been 
significant but more work is necessary.

2.1 Pharmacologic strategies

For more than 50 years a host of pharmacologic interventions have been 
employed to limit the extent of myocardial necrosis in animal models and clinical 
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studies. Some cardioprotection has been reported for different manifestations of 
ischemic injury but no long-lasting protection has yet been afforded by any drug. 
Many different exogenously administered compounds, which act at different levels 
(i.e. cell membrane receptors, intracellular signaling pathways, platelet aggregation 
pathways, inflammation, etc.), have been tested, but results are highly variable. 
In patients with coronary artery disease/acute myocardial infarction, a “golden 
window of opportunity” may exist after onset of symptoms to attenuate ischemic 
injury [60]; however, to date most pharmacologic strategies to delay progression 
of ischemic injury have not shown great promise with regard to clinical outcomes. 
Potential reasons include problems regarding timing of drug administration and 
drug dosage as well as the heterogeneity of comorbidities within patient popula-
tions [61]. Recent studies have focused on use of pharmaceuticals that target 
molecular mechanisms and signal transduction at different cellular levels (i.e. 
cell membrane, mitochondria, etc.); however, translation of protection with 
pharmaceuticals that act by stimulating intracellular signaling pathways remains 
a challenge [62, 63]. While numerous pharmacologic compounds have been tested 
in animal models and humans to date, none offers protection greater than that 
afforded by ischemic conditioning (cf. below).

Current pharmacologic interventions targeting ischemia-reperfusion injury 
include use of beta-blockers; these drugs were among the first reported to delay 
progression of ischemic injury more than 40 years ago [64–67]. Infarct limiting 
properties were mostly attributed to reductions in myocardial energy and oxygen 
consumption. More recently, the selective β1-adrenergic receptor antagonist, 
metoprolol, administered before reperfusion has been shown to inhibit neutrophil-
platelet interactions and protect ischemic myocardium in patients [68]; other ele-
ments (i.e. neutrophil trafficking, formation of neutrophil-platelet co-aggregates, 
etc.) associated with neutrophil dynamics might also be involved [69, 70]. The 
role of neutrophils in ischemia-reperfusion injury is well established. Protection 
by metoprolol could be due to reduced microvessel plugging, or microvascular 
obstruction, by neutrophil-platelet plugs, or other inflammatory cell aggregates. 
Additionally, metoprolol could directly affect platelet aggregation but this remains 
to be proven.

Platelet aggregation is a crucial factor for post-ischemic vessel re-occlusion in 
patients with coronary artery disease even after successful percutaneous coronary 
interventions. Activated platelets release potent chemotactic factors that stimulate 
formation of thrombus and microaggregates, which can cause microvascular 
obstruction underperfusion of the ischemic myocardium [71–73]. Anti-platelet 
and anti-thrombotic interventions provide significant protection against ischemic 
injury; though poorly understood, protection is probably mediated through path-
ways that are similar to those activated by ischemic conditioning [74, 75]. In animal 
studies, platelet aggregation inhibitors such as ticagrelor (P2Y12 receptor blocker) 
markedly reduce myocardial infarct size that effectively translates to improved 
cardiac contractile function [76–78]. However, this is not necessarily true for drugs 
such as clopidogrel (thienopyridine—class of platelet aggregation blockers) which 
efficiently limits platelet aggregation but does not influence ischemic myocardial 
injury [75, 79]. Protection probably occurs through adenosine-related mechanisms 
more than anti-platelet aggregation actions [80, 81]. Other classes of platelet activa-
tion blockers (i.e. glycoprotein 2b/3a blockers, etc.) have also reported significant 
anti-necrosis and anti-arrhythmic effects [82, 83]; however, cardioprotective 
efficacy of these agents may be limited with extended ischemic durations [84].

Mitochondria are considered an important target for reduction of ischemia-
reperfusion injury [85]; mitochondria are responsible for generation of high-energy 
phosphates and contribute to ion homeostasis, formation of reactive oxygen species 
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and Ca2+ handling. Myocardial ischemia-reperfusion markedly alters mitochondrial 
function that can ultimately lead to cell death. Recent studies have focused on a 
large conductance pore of the mitochondrial membrane—mitochondrial transition 
pore (mPTP) located in the inner mitochondrial membrane, which opens at onset 
of reperfusion leading to osmotic swelling and a decrease in oxidative phosphoryla-
tion. In the heart, mPTP inhibitors have been studied in animal models of ischemia-
reperfusion injury; several have been reported to be cardioprotective [86–88]. In 
clinical studies, pharmacologicals that target mitochondrial function have not had 
positive results with respect to limiting ischemic injury [89–92].

To date, no single pharmacologic compound has achieved a level of cardio-
protection greater than that obtained by ischemic conditioning. In an attempt to 
enhance protection, new initiatives have begun to examine the efficacy of com-
bined treatments (i.e. drug plus ischemic conditioning) that target different cellular 
mechanisms (i.e. insulin signaling, energy metabolism, etc.) affected by ischemia 
and reperfusion. For instance, combined glucose-insulin-potassium-exenatide 
with remote conditioning reduced infarct size in a large animal model [93]. In a 
combined basic science and clinical study from Hauerslev’s laboratory, it was shown 
that treatment with glyceryl trinitrate (nitric oxide donor) in combination with 
remote conditioning abolished the individual protective effects obtained with either 
intervention alone [94]. Similar results have been reported in patients [95] but not 
all data are consistent [96]. In a canine study from our laboratory, we reported that 
ischemic conditioning (classic and delayed) significantly reduced ischemic injury; 
however, combined treatment with EMD 87580 (NHE1 blocker) and ischemic 
conditioning did not affect the level of cardioprotection [97]. These findings 
suggest that the level of protection possible with any intervention is limited (i.e. 
not additive). Underlying explanations for these controversial findings need to be 
resolved with further investigation.

2.2 Non-pharmacologic strategies

In the clinical setting, percutaneous coronary interventions (PCI) remain the 
benchmark to restore perfusion in the infarct related artery; however, efficacy of 
these interventions is variable. An unfortunate aspect of PCI that is often underes-
timated is the release of micro particulate debris and platelet micro-aggregates that 
can cause additional myocardial injury downstream at the level of the microvas-
culature [98–100]. As a result, mechanical thrombectomy (i.e. passive aspiration, 
active mechanical catheters, etc.) is being developed to limit untoward effects of 
distal embolization by atherothrombotic debris [101–103].

Keeping in mind that “time is muscle” it is clear that any delay in onset of 
treatment considerably influences overall success. Combined pharmacotherapy 
with mechanical reperfusion (i.e. facilitated PCI) is being tested to improve clinical 
outcomes [104, 105].

Cardiac regeneration therapies (i.e. cardiomyocyte transplantation, biocompat-
ible matrices, etc.) to repair damaged myocardium is another promising interven-
tion to restore post-ischemic cardiac dysfunction (cf. recent review from Kingma 
[106]). Basic studies designed to better understand underlying mechanisms are 
ongoing; however, many limitations (i.e. rejection of transplanted cells, presence of 
scar, poor vascularization, tumor formation, myocardial location, etc.) underscore 
initial optimism afforded to these interventions for improvement of ventricular 
function.

Cardiac conditioning (also organ conditioning) is a promising intervention 
that may eventually prove to be useful for protection of ischemic myocardium 
(or other organs) in patients; this intervention was first described as ischemic 
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preconditioning more than 30 years ago [107]. Since then, more than 8000 studies 
have consistently reported protection against necrosis, ventricular dysrhythmias 
and myocardial contractile dysfunction in experimental animal and in clinical 
studies [108–111]. At the moment, the clinical usefulness of ischemic conditioning 
as a preventive strategy for tissue protection remains controversial; the presence 
of multiple comorbidities may be important [112, 113] but their effect may be 
overcome depending on the scale of stimulus that is used to trigger cytoprotective 
pathways [114].

In the original ischemic preconditioning study by Murry and colleagues, dog 
hearts were exposed in situ to brief, repetitive non-lethal cycles of ischemia-
reperfusion prior to a prolonged ischemic event [107]. Development of myocardial 
necrosis was initially delayed and protection was transient depending on the 
duration of coronary occlusion. An essential requirement for protection against 
ischemic injury by this intervention is reperfusion of the ischemic region [18]. 
Publication of this landmark paper paved the way for numerous studies not only 
with respect to the heart on potential contributory endogenous cellular protection 
pathways. To date, anesthetic drugs, other pharmacologic or remote interventions, 
have all demonstrated ischemic conditioning (pre-, per-, post-conditioning) 
mediated protection. A cross-tolerance phenomenon could also be involved since 
many triggers for intracellular signaling pathway-mediated protection are similar 
[115–117]. Prospective contributory mechanisms to conditioning mediated protec-
tion have been reviewed elsewhere [109, 118–120].

The principal difficulty with ischemic conditioning strategies is the inability 
to translate success in animal models to the clinical setting to improve overall 
outcomes. A major liability is the requirement to physically apply an ischemic 
conditioning intervention prior to onset of acute ischemia (incapacity to determine 
its occurrence). The observation that remote ischemic conditioning could provide 
robust protection against ischemic injury is promising [121]. In their initial canine 
cardiac ischemia-reperfusion injury study, Przyklenk and coworkers pretreated a 
region of the heart with brief non-lethal cycles of repetitive ischemia and reperfu-
sion and showed marked protection (i.e. reduced infarct size) of a distant adjacent 
region in the same heart. Since the publication of this study, others have reported 
significant limitation of different manifestations of ischemic injury in various 
experimental models [122]. A crucial question concerns the mechanism(s) by 
which cytoprotective signals are transported from conditioned tissue to the distant 
target tissue. Blood or perfusate-borne humoral factors, neuronal stimulation and 
transmission as well as systemic alteration of circulating immune cells have all been 
proposed [123–125]. Findings, in animal models, from our laboratory tend to favor 
the humoral hypothesis; in dogs subject to acute ischemia-reperfusion injury, pro-
tection was not reversed after either pharmacologic or surgical decentralization of 
the intrinsic cardiac nervous system [126]. On this basis we hypothesized that inter-
organ crosstalk did not require an intact autonomic nervous system. Stimulation 
of the nervous system, either locally or within cardiac ganglia could potentially 
stimulate release of cardioprotective substances (chemokines, leukotrienes, 
microRNA, etc.) into the bloodstream to initiate downstream effects [109, 127–129]. 
Interestingly, activation of the sympathetic nervous system is not required for clas-
sical ischemic conditioning, however, it is essential for second-window, or delayed, 
conditioning [130, 131].

A key element for protection by remote conditioning is restoration of blood 
flow to affected tissues [111, 132]; without it transfer of triggering mediators 
would be constrained. In humans, it is not clear that conditioning strategies 
afford significant protection (against endothelial dysfunction, increased perme-
ability, structural alterations, etc.) at the level of the microcirculation in the 
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deeper myocardial tissue layers [115, 133, 134]. Nonetheless, improved myocardial 
perfusion with remote conditioning may occur based on findings of higher TIMI 
(thrombosis in myocardial infarction) scores, myocardial blush grade and coro-
nary reserve in cardiac patients. Restoration of blood flow to the deeper layers of 
the myocardial wall is a crucial risk factor for ventricular remodeling and major 
adverse cardiac events [135–137].

In the clinical setting, results with this intervention (i.e. repeated arm or leg 
ischemia-reperfusion) are mixed; studies report either manifest cardioprotection 
[138, 139], no benefit [18, 140, 141] or exacerbation of injury [112, 142]. Failure to 
provide protection by remote conditioning in patients may be associated with the 
use of anesthetics such as propofol that abrogates protection [18]; volatile anes-
thetics are mostly recommended for at-risk cardiac patients [143, 144]. In proof-
of-concept studies, other forms of remote conditioning, such as remote ischemic 
perconditioning (intervention performed during evolving myocardial infarction) 
have reported protection against tissue injury, ST-segment resolution and bio-
marker release in animal models and patients [145–147].

3. Concluding comments

Pathogenesis of lethal reperfusion injury remains to be established; the principle 
that reperfusion injury contributes to post-ischemic myocardial dysfunction is 
generally accepted but definitive evidence for its existence is lacking. While evalua-
tion of the nature of cellular changes produced by ischemia and subsequent reper-
fusion has produced significant novel insights it is unclear that cardiomyocytes are 
the only cell types (within the myocardium) that are at risk of further injury. Of 
principle importance is that interventions to limit myocardial injury be instituted 
at the time of, or in conjunction with other reperfusion strategies. Pharmacologic 
compounds currently being used in the clinical setting delay, at best, short-term 
progression of cellular injury; long-term effects of these treatments in large animal 
ischemia-reperfusion injury models have not been properly investigated. The 
concept of a “magic bullet” intervention remains utopic, at present, considering the 
complexity of physiopathological mechanisms involved in cell death and myocar-
dial remodeling. Utilization of exogenous interventions such as ischemic condition-
ing in combination with pharmacologic treatments remains a significant challenge. 
Further investigations into combination therapy, particularly in longer-term studies 
should be envisaged; consideration should also be paid to the existence of comor-
bidities within the patient population since overall efficacy of any treatment option 
will be affected.
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