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Chapter

Repurposing Infectious 
Pathogen Vaccines in Cancer 
Immunotherapy
Matteo Conti

Abstract

Reports in the literature show that certain vaccines against infectious pathogens, 
can be effective in eliciting antitumor immune response when injected intra-
tumorally. In mouse tumor models, intratumoral delivery of rotavirus, yellow 
fever, and influenza vaccines have been shown to also synergize with checkpoint 
inhibitors, in the leading immunotherapy in the clinical practice today. The 
combined approach can thus become a very promising novel strategy for anti-
cancer immunotherapy. In humans, an attenuated poliomyelitis virus vaccine, a 
peptide-based vaccines against papilloma and one based on detoxified diphthe-
ria protein have already been tested as intratumoral treatments readily. In those 
studies, the role of available anti-pathogen immunity appears an important 
element in mediating the activity of the repurposed vaccines against cancer. We 
therefore suggest how evaluating or eventually developing anti-pathogen immu-
nity before intratumoral delivery could be helpful in repurposing  infectious 
pathogen vaccines in cancer immunotherapy.

Keywords: cancer immunotherapy, cancer vaccines, repurposed vaccines, infectious 
agents vaccines, intratumoral delivery

1. Introduction

The immune system is physiologically able to detect and destroy abnormal 
cells and to curb the growth of clinically meaningful cancers [1]. However, during 
carcinogenesis, immune tolerance and immunosuppression mechanisms become 
more and more prevalent and critically detectable tumor masses start to appear 
in patients [2]. Recognized mechanisms are for instance: (1) genetic changes that 
make cancer cells less visible to the immune system [3], (2) release of specific 
molecular factors that subvert normal mesenchymal cells and certain immune 
cells into alleys [3, 4], (3) expression and/or overexpression of specific cancer cell 
surface proteins, such as checkpoint regulators, that directly inhibit immune cell 
activation [5].

Figure 1 provides an overview of the immunosuppressive interplay between 
a cancerous cell and the immune system into the tumor microenvironment. 
Cancer cells modulate their expression of receptors, release specific molecules and 
microvesicles in order not only to avoid destruction but to also recruit immune 
system components in their favor.
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Only quite recently scientists have started to learn how to interfere with such 
mechanisms and several types of immunotherapies (Table 1) have become available 
to clinicians [6, 7].

One main area of anticancer immunotherapy is that of adoptive cell transfer 
(ACT) therapy, which has shown remarkable activity against blood malignancies 
and even solid tumors [8–10]. In this therapy, immune cells are taken from patients’ 
blood, selected, cultured, genetically modified and multiplied in the laboratory, 
before being reinfused to patients. Chimeric antigen receptor (CAR) T cells, in 
particular, are genetically modified in order to express specific very efficient 
receptors able to target cancer cells. These techniques actually require very special 
laboratories and expensive resources to be performed. Therefore, they are still out 
of reach for most of the patients worldwide.

Figure 2 is a schematic representation of chimeric antigen receptor (CAR) 
constructs delivered by retroviral transfection in T cell collected from patients 
and grown in culture. First-generation constructs employ a single-chain 
variable fragment (SCvf) connected by a linker to a transmembrane domain 
and an intracellular signaling domain. In second-generation constructs, one 
co-stimulatory domain (such as 4-1BB) has been added. In third-generation 
constructs, two co-stimulatory domains (such as 4-1BB or CD 134) have been 
employed. In fourth-generation constructs, a transgene protein for cytokines or 
chemokines has also been added. Despite this elaborated design, much research 
is still needed in order to improve CAR T cells efficacy and limit or control their 
toxicity.

Approved drug Immunotherapeutic category

Nivolumab, pembrolizumab Anti-PD-1 monoclonal antibodies

Atezolizumab, darvalumab, avelumab Anti-PDL-1 monoclonal antibodies

Ipilimumab Anti-CTLA-4 monoclonal antibodies

Sipuleucel-T Dendritic cell-based vaccines

Tisagenlecleucel, axicabtagene ciloleucel (CD19 targeting) CAR T cells

Talimogene laherparepvec Oncolytic viruses

recombinant IL-2 and INFa Immunostimulants

Imiquimod (TLR7 agonist) Toll-like receptor agonists

Recently FDA-approved immunotherapies (left column) with indication of respective immunotherapeutic categories 
(right column).

Table 1. 
Recent milestone drugs approved for immune oncology.

Figure 1. 
Immune regulation within the tumor microenvironment.
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Checkpoint inhibitors (CIs) are monoclonal antibodies developed to specifically 
target checkpoint regulators that are responsible of immunosuppression by cancer 
cells in many cases. They are arguably becoming the most successful agents in the 
clinical practice. Some of them are already approved by regulatory agencies and 
broadly used in oncology practice (cf. Table 1). They show considerable efficacy, 
albeit still in a small percentage of patients, and much research is needed in order 
to improve their efficacy, avoid resistance development by cancer cells, and, also, 
reduce their systemic toxicity [10–12].

According to various reports, CIs efficacy is very much dependent on the pres-
ence and the number of tumor-infiltrating lymphocytes (TILs) in tumor lesions 
[5] and so various strategies in clinical trials try to increase tumor recognition by 
the immune system, to turn cold turn cold (immunosuppressed) tumors into hot 
(immunoactive) ones [11, 13].

CIs are combined with chemotherapy which, inducing cytolysis and release of 
neoan tigens, can trigger an activation of the immune system. The problem with this 
approach is that most chemotherapies are myelotoxic and immunosuppressive in 
nature, to the point that the immune system can become so weakened and impaired 
to effectively fight against left-over cancer cells. Chemotherapeutic agents, such 
as cyclophosphamide and gemcitabine, having relatively lower myelotoxic effects, 
appear among the best candidates for this approach [14–16].

Radiotherapy is also employed because it is able to cause immunogenic cell 
death, cytolysis, and neoantigen release [14, 17–19]. In principle, it should induce 
lesser systemic immunosuppression than chemotherapy. In addition, the so-called 
abscopal effect enable extending immunotherapeutic effects to nonirradiated 
lesions [20].

Other physics-based techniques, such as cryotherapy, radiofrequency, electroche-
motherapy, phototherapy, chemoembolization, and others, can synergize with CIs as 
well, by causing release of neoantigens secondary to induced cancer cell death [20–22].

Another interesting area of combination therapy with CIs is that with intratu-
moral delivery of pathogen-associated molecules, which could be used to activate 
the immune system inside the tumor microenvironment. This approach is the focus 
of the next sections of this writing. It must be pointed out that it heavily relies on 
the possibility of delivering molecules directly into tumor lesions by interventional 
radiology/oncology techniques, because if delivered systemically these molecules 
would be neutralised by the immune system before they could even reach their 
target [23–25].

Figure 2. 
Chimeric antigen receptor (CAR) constructs.
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2. Intratumoral delivery of pathogen-associated molecules

Probably the most famous historical account on the use of pathogens to treat 
tumors is that of William Coley. He was the first to report the observation that soft 
tissue sarcoma could naturally regress after bacterial infections. Facing cases in his 
clinical practice, he then proceeded to cause such risky infections on purpose, using 
bacterial-derived material (Coley’s toxins) to locally inject tumor masses, observing 
successful tumor regression in some case [26–28].

Another well-known example of an infectious pathogen used for local tumor 
treatment is that of Calmette-Guerrin bacillus for transurethral instillation in 
urothelial carcinoma [29].

We are today able to deliver much better defined preparations of engineered 
recombinant viruses and bacteria into tumors, as well as of a variety of pathogen-
derived molecules to trigger the immune response. In general, the presence of 
pathogens is sensed by specialized immune cell receptors [30].

Main families of these receptors are: toll-like receptors (TLRs) on the plasma 
membrane and in endosomal compartments, cytoplasmic receptors for viral nucleic 
acids, such as retinoic acid-induced gene 1 (RIG-I), melanoma differentiation-
associated protein 5 (MDA-5), stimulator of interferon genes (STING), and the 
intracellular nucleotide-binding oligomerization domain-like receptors (NOD) 
family of receptors. They are also entangled and shared by those that detect stress-
ful cell death (DAMPs) secondary to infectious conditions. Therefore, many types 
of PAMP and DAMP agonists are under study alone and/or in combination with 
other immune system activators, such as CIs but also immune cell direct activators 
and growth stimulators.

Pharmaceutical formulations of polyinosinic: polycytosinic acids (poly I:C) can 
mimic double-stranded RNA molecules of viral origin sensed by the endosomal 
TLR3 receptors and by the intracellular RIG-I and MDA-5 sensors, and have been 
studied in transplantable mouse tumors, yielding good results in combination with 
checkpoint inhibitors [31]. Stabilized poly I:C formulation (poly ICLC, Hiltonol) 
has been employed for intratumoral delivery as monotherapy and/or in combina-
tion, in a few clinical trials [31–33].

TLR7/8 natural agonists imiquimod and resiquimod have been used against 
basal cell carcinoma [34, 35], melanoma, and other skin neoplasms [36] as well as 
against common warts [37, 38]. Local imiquimod has also been used in combination 
with radiotherapy for breast cancer in the clinic [39]. Intratumoral administration 
of TLR7/8 agonist NKTR-262 is being studied in patients with locally advanced or 
metastatic solid tumors (NCT03435640). Preliminary results from the phase I/II 
REVEAL trial noted a disease control rate of about 50% [40].

Intratumoral delivery of TLR9 agonists CpG oligonucleotides has been employed 
very successfully in mouse models and seen to be able to even determine cancer 
eradication by the immune system [41]; but, it failed to provide clear benefits in 
clinical trials [42, 43]. A combination of a CpG oligonucleotide with an agonistic 
anti-OX40 antibody intratumorally administered both in syngeneic transplanted 
and genetically determined tumor models was able to induce complete tumor 
eradication in mice [44] and the combination of these two agents (namely SD-101 
and BMS 986178) is now under testing in ongoing trial against a variety of tumors 
(NCT03831295).

Intratumoral injection of STING-agonist dinucleotides can be another way to 
unleash the curative tumor response against transplantable mouse models [45]. 
Human STING agonist adu-s100, for instance, is undergoing clinical development 
(NCT 02675439).
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All these immune activators should be delivered intratumorally, ideally in a neoad-
juvant setting, in order to synergize with current systemic immunotherapies (Figure 3).

3. Intratumoral delivery of pathogens

Entire pathogens, in particular recombinant oncolytic viruses, have been 
engineered to sustain selective replication into malignant cells [46, 47]. However, 
experience with the use of these oncolytic viruses, originally thought as cytolytic 
agents, has shown that antitumor immune response against viral-infected cells is 
a fundamental factor for their anticancer efficacy [48]. Therefore, modern viral 
vectors are genetically engineered to also express cytokines and other immune 
stimulating factors [49].

Vaccinia and herpes viruses have proven most effective when engineered to 
encode for immune-promoting genes such as interleukin 12 (IL-12) and granulo-
cyte macrophage colony-stimulating factor (GM-CSF) [49, 50]. These agents are 
dramatically enhanced in their therapeutic performances by concomitant admin-
istration of PD-1/PDL-1 and CTLA-4 blocking Abs [51] as well as anti-CD137 or 
anti-OX40 agonist Abs [52–54]. Vectors based on vaccinia virus encoding GM-CSF 
(JX-594) are also under clinical development with promising results [55, 56].

The most successful agent so far in this category is herpes virus (HSV-1) modi-
fied to encode GM-CSF, named T-vec (talimogene). It has been granted Food 
and Drug Administration approval for unresectable melanoma [57]. Essentially, 
engineered pathogen preparations are delivered intratumorally in the neoadjuvant 
setting (essentially according to the scheme in Figure 3).

4.  Clinical trials on intratumorally delivered pathogens and  
pathogen-associated molecules

Immunotherapies do not come without adverse effects and complications. 
In addition, patients have their own peculiarities and it is vital that clinicians 
identify the best therapeutic options for each one of them. In this light, there are 
various ongoing clinical trials evaluating intratumoral immunotherapies based 
on pathogen-associated molecules, alone or in combination with other therapies 
[25]. Poly-ICLC (Hiltonol) is in phase I against prostate cancer (NCT03262103); 
TLR7 agonist (Imiquimod) is in phase III against melanoma (NCT01720407); 

Figure 3. 
Schematic diagram of the neoadjuvant intratumoral delivery of a therapeutic vaccine.
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TLR9 agonist (CMP-001) in combination with Anti-PD-1 (Nivolumab) is in phase 
II against melanoma and lymph node cancer (NCT03618641); and TLR8 agonist 
(VTX-2337) in combination with Anti-PD-1 (Tislelizumab) is in phase I against 
head and neck cancer (NCT03906526). JX-594 (Oncolytic virus) is in phase II 
against colorectal carcinoma (NCT01329809); and T-VEC (Oncolytic virus) is 
in phase II against melanoma (NCT02211131), in combination with Anti-PD-L1 
(Atezolizumab) in phase I against breast cancer (NCT03802604), in combina-
tion with chemotherapy in phase I/II against breast cancer (NCT02779855), in 
combination with Anti-PD-1 (Pembrolizumab) in phase II against melanoma 
(NCT03842943), in combination with BRAF Inhibitor and MEK Inhibitor in phase 
II against melanoma (NCT03972046), in combination with radiotherapy in phase I/
II against soft tissue sarcoma (NCT02453191), in combination with chemotherapy, 
radiotherapy, in phase I against rectal cancer (NCT03300544). Rilimogene gal-
vacirepvec (PROSTVAC) in combination with Anti-PD-L1 (Atezolizumab) is in 
phase II against prostate adenocarcinoma (NCT04020094); GMCI (Adenovirus) 
in combination with radiotherapy, chemotherapy, is in phase II against pancreatic 
adenocarcinoma (NCT02446093); and HF10 (Oncolytic virus) in combination 
with Anti-PD-1 (Nivolumab) is in phase II against melanoma (NCT03259425). 
OrienX010 (Oncolytic virus) in combination with Anti-PD-1 (Treprizumab) is in 
phase I against melanoma (NCT04197882).

5. Intratumoral delivery of repurposed vaccines

Success with T-vec and other immune-boosting viruses have prompted various 
groups to search among routinely available attenuated viral vaccines to find other 
therapeutic options. The advantage of repurposing such approved and marketed 
agents is that clinical development would be much simplified, based on well- 
established safety records [58].

Commercially available attenuated rotavirus vaccines are preparations of 
double-stranded RNA attenuated strains. They are very potent stimulators of 
the nuclear factor kappa-light-chain-enhancer of activated B cells and type I 
interferon pathways. Interestingly, this stimulation is independent from the 
innate Toll-like immune receptors but dependent on RIG-I, which is able to detect 
intracytoplasmic dsRNA. Furthermore, rotavirus exerts cytocidal effects on 
adult and pediatric cancer cell lines in culture with features of immunogenic cell 
death. Intratumoral delivery to mouse bearing transplantable tumors, including 
pediatric syngeneic neuroblastoma models, elicited clear therapeutic effects medi-
ated by natural killer (NK) cells and CD4 and CD8 T cells. In models of tumors 
refractory to checkpoint inhibitors, intratumoral rotavirus enabled to overcome 
resistance. Prevaccination of mice prior such intratumoral virotherapy did not 
spoil its efficacy [59].

A vaccine based on the 17D strain of the yellow fever virus, commonly used 
for travelers and dwellers in endemic areas, was demonstrated cytocidal for a large 
panel of human and mouse tumor cell lines. Its intratumoral administration was 
able to delay tumor progression by activating CD8 T cell-mediated immunity and 
some measurable effect could be observed against non-injected tumor lesions [60]. 
Additive effects with systemic immunostimulatory monoclonal antibodies directed 
to anti-PD1 or anti-CD137 were demonstrated. Very importantly, efficacy was 
potentiated by previous vaccination against the same virus in a manner dependent 
on T-cell antiviral acquired immunity [61].

Intratumoral injections of anti-influenza vaccines were also demonstrated to elicit 
immune-mediated antitumor activity in melanoma, in a series of experiments with 
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syngeneic transplantable tumor model [62]. Most surprisingly, only unadjuvanted 
inactivated influenza vaccines were able to generate such antitumor efficacy. Indeed, 
squalene-based adjuvanted influenza vaccines were losing their antitumor activity 
because adjuvants were recruiting interleukin-10-secreting B regulatory cells [62]. The 
detrimental role of adjuvants was observed in another seminal study when analyzing 
the cause of a lack of therapeutic enhancement of anti–CTLA-4 monotherapy by con-
current vaccination with gp100 peptide in incomplete Freund’s adjuvant (IFA) [63].

Genetically engineered poliovirus vaccine antitumor activity was studied in 
mice a few years ago [64]. It has later been moved to a phase I clinical trial for 
recurrent glioblastoma with interesting results [65]. In this study, patients were 
pre-immunized with the vaccine against poliomyelitis and then treated intratumor-
ally with the genetically engineered virus. The role of previously developed immu-
nity was important for successful activation of immunity against tumors treated 
locally [65].

In an older phase I-II trial, a recombinant nontoxic diphtheria protein 
(CRM197), used in many common vaccines, was used to treat a variety of accessible 
tumors by local delivery. Response was observed in patients that had an already 
developed immunization (measured both by IgG titer and delayed type hypersensi-
tivity) against diphtheria [66].

Since immunosuppression mechanisms are in place in the tumor microenviron-
ment [67], from these examples it is clear that an effective immunity developed 
outside tumors could enable a better response when antigens are later delivered 
intratumorally. The fact that developing immunity outside the tumor microen-
vironment is a valuable strategy has been also demonstrated in the case of a new 
neoantigen vaccine formulation. In fact, the biomaterial-based vaccine prevented 
the engraftment of AML cells when administered as a prophylactic and when 
combined with chemotherapy, and eradicated, established AML even in the absence 
of a defined vaccine antigen [67, 68].

As a last example, a recent Report in JAMA Dermatology suggested that 
Gardasil®9 might be employed for cancer treatment. Cutaneous basaloid squa-
mous cell carcinoma (BSCC) was eradicated by intratumoral administration of the 
vaccine. Preventive systemic immunization was performed by a standard initial 
dose and a booster one, followed by intratumoral delivery of the same vaccine into 
just a few of the largest lesions, injected monthly over the next months. During 
this relatively long period, even tumors that had not been injected went into 
complete regression. Notably, no recurrence was observed in the follow-up period 
(18 months). This report first presents clinical evidence that a prophylactic antiviral 
vaccine may be used as an effective immunotherapy for cancer [69].

All mentioned studies point out to the value of a therapeutic strategy outlined in 
Figure 4.

Figure 4. 
Schematic diagram of the neoadjuvant intratumoral delivery of repurposed vaccines.
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Available immunity against pathogen can be checked initially in patients by 
means of standard serological testing and/or delayed-type hypersensitivity testing. 
A standard vaccination protocol can be performed when required before starting 
intratumoral delivery of a corresponding vaccine. Afterward, timely standard 
delivery of other therapies (i.e., with systemic CIs) follows.

6. Future perspective

Developments in cancer immunotherapy during the last years have significantly 
increased our hopes for successfully treating different cancer types. However, the 
development of new, more effective anticancer immunotherapeutic agents and 
strategies urges a thorough understanding of the aspects that allow cancer cells to 
escape elimination by immune cells.

In addition, there are important clinical, industrial, regulatory, and economic 
issues that must be addressed, outside the realm of advances in cancer immunol-
ogy and biology, and that would make all the difference between success or failure 
in real life. Under the clinical perspective, for instance, there is a strong need to 
develop a community of trained interventional radiologists/oncologists able to actu-
ally translate the presented approaches into practice. This is an issue basically in the 
hands of training centers and schools of medicine abroad. Of foremost relevance 
is also the involvement of the industry for all new approaches to actually become 
available to patients worldwide.

7. Conclusion

Designing of novel immunotherapies would require personalized approaches, 
tailored not only on patient’s genetic profiles but also on immunologic tumor char-
acterization. To overcome specific immune inactivation, vaccines against pathogens 
could become a usable tool in optimized combo-therapies, particularly with 
checkpoint inhibitors. The role of preexisting immunity on their efficacy has been 
observed in a few presented studies. In fact, immunization from previous vaccina-
tion or previous infections, developed outside the tumor microenvironment, can 
promote activity of intratumorally delivered preparations. In this light, we warrant 
future research on available and commercial vaccine preparations to be repurposed 
as anticancer therapeutic vaccines.
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