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Chapter

Knowledge-Based Controller
Optimised with Particle Swarm
Optimisation for Adaptive Path
Tracking Control of an
Autonomous Heavy Vehicle

Noor Hafizah Amer, Khisbullah Hudha, Hairi Zamzuri,
Vimal Rau Aparow, Amar Faiz Zainal Abidin,
Zulkiffli Abd Kadir and Muhamad Murrad

Abstract

This chapter discusses the development of an adaptive path tracking controller
equipped with a knowledge-based supervisory algorithm for an autonomous heavy
vehicle. The controller was developed based on a geometric/kinematic controller,
the Stanley controller. One of the mostly known issues with any geometric/kine-
matic controller is that a properly tuned controller may not be valid in a different
operating region than the one it was being tuned/optimised on. Therefore, this
study proposes an adaptive algorithm to automatically choose an optimal controller
parameter depending on the manoeuvring and vehicle conditions. An optimal
knowledge database is developed for an adaptive algorithm to automatically obtain
the parameter values based on the vehicle speed, v, and heading error, ¢. Several
simulations are carried out with different trajectories and speeds to evaluate the
effectiveness of the controller against its predecessors, namely, Stanley and the non-
adaptive modified Stanley (Mod St) controllers. The simulated steering actions are
then compared against human driver’s experimental data along the predefined
paths. It was shown that the proposed adaptive algorithm managed to guide the
heavy vehicle successfully and adapt to various trajectories with different vehicle
speeds while recording lateral error improvement of up to 82% compared to the
original Stanley controller.

Keywords: heavy vehicle, autonomous trajectory tracking, path tracking,
Stanley controller, particle swarm optimisation
1. Introduction

This study proposed a new adaptive steering control strategy for trajectory

tracking controller of a heavy vehicle. The controller aims to automatically steer the
vehicle along the desired trajectory and adapt to various speeds and trajectories
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during varied manoeuvrings. A path tracking controller is a controller module that
is developed to provide electronic actuation to the vehicle system while navigating
the vehicle automatically. An effective controller needs to be developed to ensure a
functional steering module while autonomously navigating through various paths.
Commonly, there are several types of trajectory tracking controllers as reviewed
previously [1, 2]. One of the most common types of controllers is kinematic con-
trollers such as Pure Pursuit and Follow-the-Carrot due to the simplicity and stabil-
ity it can provide. This type of controllers relies on the kinematic properties of the
vehicles such as speed and acceleration, as well as the travelled distance for the
controller feedback. Compared to other dynamic controllers that require the kinetic
properties of the vehicle such as torques, moments, and forces, geometric and
kinematic properties are relatively easier to measure.

In geometric/kinematic controllers, one of the most established controllers is
the Stanley controller as published in [3, 4]. The controller was developed by the
Stanford University racing team on their autonomous vehicle (Stanley) in winning
the DARPA Challenge in 2005 [5]. Compared to other geometric/kinematic con-
trollers, the Stanley controller does not include a lookahead distance in its formu-
lation. This enables the controller to be robust enough without depending on what
lies ahead. However, the Stanley controller poses different problems, which is
common in most of the geometric/kinematic controllers. It was found that the
performance of this controller on any given trajectory depends on how well the
parameter-tuning process was. A finely tuned Stanley controller will be effective
only on the driving conditions that it was tuned for. However, it needs to be re-
tuned to work with another road course and speed range. Previous studies have
been discussing this issue and stated the same conclusion for most of geometric/
kinematic controllers [1, 3, 6].

Therefore, an improvement is proposed to include an adaptive algorithm that
will adjust the controller’s parameters based on the driving conditions. Adaptive
controllers for trajectory tracking controller have been proposed in numerous
studies recently [7-10] to improve the adaptability and stability of the controller
under varying conditions. These controllers are designed to cater robustness in a
specific area, such as for slippery roads [7], unknown slip conditions [9], and
unknown skidding conditions [10]. While the adaptiveness of these controllers in
the designated area was proven, respectively, it may not be as effective when
dealing with multiple types of disturbances other than the ones it was designed
for. For example, an adaptive controller designed to cater various skidding condi-
tions may not be able to cater unknown yaw disturbance. Also, most of the studies
for an autonomous vehicle are using the linear vehicle model to develop the
control structure where most of the nonlinearity in vehicle motions is neglected
such as frictions and aerodynamic effects. In addition, some adaptive algorithms
consist of algorithms that require high computational capability due to its associ-
ated complexity. Therefore, the adaptive controller proposed in this study is
aimed to solve these issues by (1) considering a nonlinear vehicle model
containing most of the nonlinearity of a vehicle motion in the controller develop-
ment phase; (2) using adaptive inputs as vehicle speed and heading error, which
both are directly dependent on the sharpness of turns and vehicle slips; and (3)
using a simple geometric/kinematic controller as the basic controller to be
modified.

Overall, the main contribution of this work is on the development of a
knowledge-based algorithm using the adaptive mechanism of path tracking con-
troller to accommodate the varying trajectories and vehicle’s speed setting.
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Two inputs are considered in triggering the adaptive algorithm, which are the
heading error, ¢, and vehicle speed, v. The range of speed region catered in this
study is based on the limitations and the expected operating region of the auton-
omous heavy vehicle, which is up to 72 km/h. Variations in road course trajectory
are observed in terms of the instantaneous difference between vehicle heading
and trajectory direction, ¢ with a range between 0 and 75 deg. in both directions.
This may as well cater sharp turns. The basic controller is modified to increase its
sensitivity to disturbance. Then, by optimising the controller parameters for
different disturbance input combinations, a knowledge database is developed.
With this, a set of optimum parameters can be chosen depending on the instanta-
neous speed and trajectory experienced by the vehicle. An algorithm has been
developed to carry out the selection process. The controller’s performance is then
evaluated on six different trajectories and four random speed values to evaluate its
effectiveness against the basic Stanley controller and the modified controller
without an adaptive algorithm. Results show a promising prospect for the
proposed controller.

This chapter starts with Introduction section that covers a brief background of
the study, followed by the modelling of a nonlinear seven-degree-of-freedom
(7DoF) vehicle model used to simulate the vehicle’s behaviour. Next, the proposed
adaptive controller is explained in Section 3, beginning with the basic controller’s
and the adaptive algorithm development. The simulation and experiment proce-
dures in evaluating the controllers including the development of road courses used
are presented in Section 4, with the findings discussed in Section 5. Conclusions for
this work are presented in the final section.

2. Modelling of a 7DoF heavy vehicle

In this study, a full vehicle model is developed with the aim to simulate the
vehicle’s behaviour in lateral direction. The model, developed based on a heavy
vehicle, namely, a High Mobility Multipurpose Wheeled Vehicle (HMMWYV), is
closely related to an armoured vehicle as shown in Figure 1. It consists of several

G af gup -

Figure 1.
Heavy vehicle model [11-13].
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Figure 2.
Configuration of the heavy vehicle model [12, 14, 15].

subsystems in order to simulate the different elements in the vehicle system that
contribute to the overall vehicle performance in lateral directions: a 7DoF handling
model to simulate the vehicle dynamic responses at its centre of gravity during
manoeuvrings; a tyre model in order to simulate all four tyres’ behaviour from the
road surface interactions; a slip model to calculate the generated slips in lateral and
longitudinal directions during driving manoeuvrings, which will be an important
input to the tyre model; a load distribution model to estimate the static and dynamic
load transfers in longitudinal and lateral directions, which are significant during
accelerating, braking, and/or cornering; an engine model; and lastly, a kinematic
model to evaluate the vehicle’s position relative to the local and global coordinates.
The configuration of the overall vehicle model and its respective subsystem is
shown in Figure 2.

Few assumptions and simplifications are made in developing this model. Firstly,
this model focuses mainly on the vehicle responses in lateral and longitudinal
directions. Responses and disturbances in vertical direction are considered less
significant by assuming an ideal suspension system between vehicles’ sprung body,
and the vehicle is assumed to travel on even and smooth roads. With these two
assumptions, the ride model involving suspension forces and road disturbances is
not considered in this model. Next, the vehicle is modelled as a rigid body with
concentrated sprung mass at the centre of gravity and four wheels that are
connected to each of the vehicle four corners. The vehicle is moving on a level,
unbanked, and uninclined road, and therefore, the weight is acting along the z-axis.
The vehicle body is represented in three-dimensional x-y-z planes, which is allowed
to displace in lateral and longitudinal directions, as well as rotating about the z-axis
(yaw). Each of the connected wheels is modelled as a rigid body, which is allowed to
rotate about its rotational axis, which is parallel with the vehicle’s lateral axis. Only
the two front wheels are allowed to steer, which is equipped with an active Pitman
arm steering system. Modelling of this system is also considered in this chapter. In
calculating the tyre responses, the vertical load on each tyre is calculated using the
vehicle’s load transfer model by considering the amount of load transfer during
manoeuvrings. The load transfer is based on weight distribution in lateral direction
during cornering and longitudinal direction during acceleration/braking. To ensure
that the model generate response as close as possible to a real condition, rolling and
air resistance are considered in this model. In terms of the steering system, the
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armoured vehicle is equipped with a Pitman arm steering system where the output
steering values were saturated at 10 deg. This is due to the consideration of the
system’s limitation as well as the controller’s stability region that has been tested as
described previously [3, 14].

The previous work from the authors has demonstrated the derivations and
verifications of this model [12, 15]. Also, several previous studies have been evalu-
ating its controller’s performance on the same model [11, 14, 16]. Figure 1 also
shows the symbols and vehicle parameters used in developing the model. Perhaps it
is worth noting a common confusion between the fixed global coordinate axes (X,
Y, and Z), which are commonly associated with the Earth’s longitude, latitude, and
altitude, respectively, and the moving local coordinate axes (x, y, and z). This model
has been validated by verifying the simulated vehicle responses against the
HMMWYV responses from a CarSim software as described in detail by Aparow et al.
[12]. The verification was done using the standard manoeuvring procedures,
namely, Slalom tests, double lane change, and step steer manoeuvrings.

3. Knowledge-based adaptive controller development for a path
tracking system

3.1 Basic structure of trajectory tracking controller

In this study, the adaptive controller was based on the previously developed
controller from the previous publication by Amer et al. [14], namely, the modified
Stanley (Mod St) controller. Equation (1) shows the original Stanley controller from
Hoffmann et al. [3]. The same publication has extended the controller to include the
yaw rate compensation as shown in Eq. (2). A modification has been carried out to
these controllers to increase their sensitivity towards the disturbance input as pro-
posed previously in [14]. The Mod St controller used in this work is shown in
Eq. (3), where the main parameters are shown in Figure 3. Here, ¢ is the lateral
error of the vehicle (m), measured between the vehicle and the perpendicular point
on path; ¢ is the heading error (rad), which is the difference between the vehicle’s
and the path’s instantaneous directions; v is the vehicle speed (m/s); y is the
instantaneous yaw rate of the vehicle (rad/s); and y,,,; is the trajectory yaw rate
(rad/s). Meanwhile, &, k;, k, and &, are the tuneable gains. In this study, the
original Stanley controller from Eq. (1) is used as the benchmark, while the Mod St
controller from Eq. (3) is used as the base controller for the adaptive control
structure.

S=¢+tan” beliy (1)

v(7)

8(t)=¢ +arctan (ke—(t)] +k, (l/)—l/]rraj) (2)

1+v(1,‘)

5(1‘) =k,0+k arctan[llj_e‘fzz)J+kw (W—Wzraj) (3)

Six trajectories are chosen for this study in order to portray the different kinds of
road courses, shown in Figure 4. Each was named based on the trajectory shape,
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Road courses for controller testing.
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namely, “straight road”, “multiple lane change”, “double lane change”, “curve”,
“S”, and “hook”. Each trajectory is defined as a set of points with X-Y coordinates.
Therefore, lateral error is obtained based on the current X position for the vehicle,
such thate = Ypath (Xvehicle) — Yoehicle (Xvehicle)-

Further analysis on the application of controller on a heavy vehicle yields an
important issue in tuning the parameters as discussed previously by Snider [6] and
Shan et al. [17]. A perfectly tuned controller will work properly within a certain
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range of vehicle speed, as well as a certain type of trajectory and road courses. Also,
the more parameters included in the controller, the more sensitive it is to changes,
which will make it less robust. These effects can be shown in Figure 5 where all the
three variants of the Stanley controller were simulated on the heavy vehicle model
with different speeds on S road. Each of the controllers was properly tuned for 6 m/s
speed on the particular trajectory using particle swarm optimisation (PSO) algo-
rithm with the same approach as presented in [13-15]. Table 1 shows the parameter
values for each controller upon optimisations for each trajectory at 6 m/s speed,
which was used throughout the testing for all speed values. From the figures, it can
be seen that the properly tuned controller is valid only for a certain range of speed
and the number of parameters is one of the main factors that affect the robustness
of the controller. The controller with the least parameters showed better robustness
and performance in varying speeds. However, significantly large error (0.4-0.8 m)
can be noticed. This is agreeable to the finding by Wallace et al. [18], which
concludes that it is a conflicting factor in tuning a geometric controller between
stability and robustness. Therefore, this study proposes an adaptive controller with
the ability to supervise the selection of an optimum set of controller parameters
based on the speed and trajectory experienced by the vehicle. With this, the con-
troller can be used regardless of the manoeuvring conditions without the need to be
re-tuned.

With the original Stanley controller modified into the Mod St controller in
Eq. (3) to increase its sensitivity, an adaptive algorithm is proposed to automatically
tune the four parameters in Mod St, namely, k,, k4, k, and k,,. An adaptive algorithm
using a three-dimensional control surface is used. Since it was known that the main
factors affecting the validity of any set of controller parameters are both the vehicle
speed and type of trajectory, two inputs are chosen for the algorithm, which are the
heading error, ¢, and vehicle speed, v. Each of the controller parameters is
optimised for each input combination to form a knowledge database. With this, the
adaptive algorithm is developed and converted into separate control surfaces for
each parameter where the adaptive algorithm will be developed to automatically

Variation of speed for Modified Stanley (Mod St) Controller

o0k |--'v =18 ms™ = 65 kmh
400l |~~~V =12ms™ = 42 km/h
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Figure 5.

Effect of varying speeds on the S road for the Mod St controller [Eq. (3)], Stanley controller [Eq. (1)], and
Stanley controller with yaw compensation [Eq. (2)].
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St Mod-St
kol k k ky kg
Straight 10 10 10 -2.964 0.7719
Multiple Lane Change 10 10 10 0.3046 1.892
Double Lane Change 10 10 | 9.689 | 0.0901 0.819
Hook 10 10 10 0.0423 -0.058
S 10 10 | 9.757 | 0.0642 0.0199
Curve 10 10 10 0.1762 -0.0051
Table 1.
Controller parameters for St and Mod St controllers for each trajectory.
C START )

Figure 6.
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choose parameter values from the surfaces. The overall procedure can be illustrated

in Figure 6.

3.2 Development of the adaptive controller

An adaptive controller with the ability to supervise the selection of an optimum
set of controller parameters depending on the heading error (¢) and vehicle speed
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Figure 7.
Structure of the adaptive Stanley controller.

v (m/s) 1 5 10 15 20
6 (deg) 1 5 15 30 4 60 75 -1 -5 15 30 45 60 -5

Table 2.
Interval for knowledge database for each input.

(v) is proposed in this study. These two variables are chosen since they represent
the vehicle’s instantaneous speed and the state of trajectory heading with respect to
vehicle’s heading at a particular time. By choosing this as the input for the adaptive
mechanism, and optimising the controller at different values of these two states, the
controller will be able to react to variable speed and trajectory it operates on. The
overall structure for the knowledge-based adaptive Stanley controller is shown in
Figure 7.

3.2.1 Building knowledge database using particle swarm optimisation

In this study, a knowledge database is built to provide artificial insights for the
controller to choose a suitable set of parameter values for the controller based on the
vehicle’s driving conditions, namely, speed (v) and heading error (¢). The database
should have a complete set of parameters (k,, ks, k, and k,,) that correspond to each
range of v and ¢.

Table 2 shows the interval values for input variables that were chosen for the
knowledge database. In choosing the interval values, several sensitivity analyses
were carried out to test the suitability of an optimised parameters set in varying
speeds. It was found that each optimised parameters will yield satisfactory results
within +5 m/s and + 15 deg. Therefore, these intervals are chosen. A minimum of
1 m/s (~ 3.6 km/h) and a maximum of 20 m/s (= 72 km/h) were chosen based on
the common and safe operating speed for the vehicle. A minimum of 1 deg. and a
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maximum of 75 deg. were chosen for ¢ values, which correspond to the minimum
and maximum values of the cornering angle for the vehicle.

A metaheuristic optimisation algorithm, namely, PSO method, is used in build-
ing the knowledge database, as outlined in Amer et al. [13, 15] to optimise the four
controller parameters for each of the v and ¢ combinations. Each of the four
controller parameters is optimised for each of the » and ¢ combinations. PSO is one
of the established optimisation algorithms based on a natural phenomenon. First
introduced in 1995 [19], it is one of the many optimisation algorithms based on
swarm intelligence available as research tools. A comprehensive study on PSO
algorithm and other swarm intelligence algorithms with their associated optimisa-
tion performance can be found in [20]. The study has found that PSO has better
performance in terms of solution consistencies and convergence than the other
swarm algorithms. Zhang [21] has also stated that PSO has better convergence in
achieving global optimum with better accuracy than conventional methods. Also,
with a lesser number of algorithm parameters to tweak than genetic algorithm
(GA), PSO is always preferable. Overall, it was found that PSO converged faster
and the study concluded that PSO provides better accuracy with a fast convergence
for a standard computing capability. The PSO performance has also been studied in
various applications for controller parameter tuning such as [22]. Here, PSO was
used to tune a model predictive controller, and the optimisation performance was
compared against ant colony optimisation (ACO) and gravitational search algo-
rithm (GSA). It was shown that PSO was more superior than the others with up to
90% quicker convergence than ACO and GSA. The PSO-optimised controller also
performed better, showing that PSO managed to find better optimum points than
its counterparts.

PSO algorithm simulates the behaviour of swarmed particles, which move
within the swarm towards an intended position. Each particle will be assigned
random positions within the swarm, and its next movement (position and velocity)
will be determined based on its relative position to an optimum position. Optimum
position will be the position of any particle with an optimum fitness value. Every
particle will have its own fitness value and the memory of its own best position,
pbest, as well as the overall swarm best position, gbest, based on the optimum fitness
value. The particle’s next position will be determined by considering these memo-
ries. This will guarantee that the particles will not be moving too quick towards the
new position that can turn out to be another local optimum. In other words, any of
the 7, particle within the swarm will have position coordinates, x;,, in each of the
dy;, dimensions and move with velocity v’. Its next position, x,, " P, will be deter-
mined based on its next velocity @+ shown in Egs. (4) and (5), respectively.
These processes will be iterated over several cycles, and finally, the swarm will
converge to an optimum position:

x(t+1)id =x(r)id +v(1‘+1) (4)
v =jwxv® + exrand(0,1)x (p,.. ) —xP ) + sxrand(0,1)x (g, —x“ )
(5)

In this study, the optimisation process of Stanley controllers using PSO can be
shown in Figure 8. Referring back to Figure 6, the upper part of the chart shows the
optimisation process of each input combination using PSO, while Table 3 tabulates
the main parameters used in PSO algorithm. In addition, since lateral error is one of
the most significant performance indices for a path tracking controller, fitness
function for each particle will be evaluated by the lateral error between the vehicle

10
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Procedure for PSO.
Parameter Values
Social Coefficient, s 1.42
Cognitive Coefficient, ¢ 1.42
Inertial Weight, iw 0.9
No. of Dimensions, Ny 4 (ki, ks, k, and k&)
Upper Bound Limit [10;10;10;10]
Lower Bound Limit [-10; -10; -10; -10]
No. of Particles, N, 150
No. of Iterations, N; 20
Table 3.

PSO parameters used in building a knowledge database [13, 15].

and trajectory (e), which resulted from the parameter values for each particle’s
position. Lateral error is quantified by the root mean square (RMS) value, as shown

Fitness Function, f(k .k, k.k,) = JM (6)
n

Upon completion, all sets of parameters are compiled and integrated into a
knowledge database consisting all parameters for each combination of ¢ and v

in Eq. (6):

11
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¢x)

Figure 9.
Wrapping an imaginary spline around data points (xi, (i) with point forces (ai) acting at each point.

values. The database is then used to form separate control surfaces for each
corresponding parameter. For the proposed basic controller in Eq. (3), there are
four parameters, which correspond to four separate control surfaces formed from
the knowledge database. For the adaptive method, the controller parameters are
adjusted by an algebraic algorithm that will interpolate a suitable set of parameter
values based on the developed knowledge database. The interpolation will be on a
set of control surfaces that map the optimum set of parameters according to its
respective ¢ and v values.

3.2.2 Generating control surface from the knowledge database

In this study, the developed knowledge database in Section 3.2.1 is transformed
into a set of control surfaces (@) that correspond to each of the four controller
parameters K, k;, k, and k. The transformation of the database to control surfaces
was carried out using the concept named biharmonic spline [23], originally used to
deduce geographical contour from a set of altitude data of the topography. It
worked by assuming an imaginary spline across a one-dimensional data point and
applying a point force (q;) to each of the data points with coordinates (x;, {;). This
can be shown in Figure 9.

Using the biharmonic spline method, the line in Figure 9 satisfies a biharmonic
partial differential equation (PDE) with N = 6 shown in Eq. (7). The solution of
this PDE is satisfied with a point-force Green’s function that is centred at each
point as shown in Eq. (8). Solving for ; in Eq. (9) will yield the strength of each
point force (a;):

T =

d¢ i6a’j5(x—xj) (7)
=1

3

N
é’(x)=2af|x—xf (8)
i=1

£(x)=e,

X =5 ©

12
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Extending this method to a three-dimensional space, one can assume spreading
an imaginary surface over the points instead of a spline. In this study, the
biharmonic interpolation concept is applied on the knowledge database, which
consists of data that are scattered in a three-dimensional space. The control surface
produced needs to pass through each of the data in the database using this concept

_Control Surface for k i
e Knowledge Points

I Interpolated surface

X
20
Vehicle Speed (m/s) Heading Error (deg)
Control Surface for k
e Knowledge Points [
linterpolated surface
20-No - e
= 104—
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Figure 10.
Control surface for each controller parameter.
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by wrapping an imaginary thin lamina around all the data points. The database is
separated into four sets of data, which will generate four control surfaces, which
corresponds to each controller parameter as shown in Figure 10. Each surface
shows the interpolated surface relating to the control parameter values to its
corresponding vehicle speed and heading error.

3.2.3 Using the control surface to generate an optimum set of parameters

Using the control surface generated previously, the interpolation algorithm will
choose corresponding parameter values within the surface based on instantaneous
heading error and vehicle’s speed. This will adaptively tune the modified Stanley
controller, adjusting it to various conditions during manoeuvring regardless of any
path and vehicle speed. In cases where the v and ¢ values are outside of the database
range from Table 2 and surfaces from Figure 10, no extrapolation method will be
used. Instead, parameter values at surface boundaries will be considered. This is to
avoid the controller to enter an unstable controller region and ensure that the
algorithm will continuously tune the parameters even when the v and ¢ values are
outside of the range in the knowledge database. By denoting the kth control surface
as @ k( v, ¢) where k =1, 2, 3, 4 and Kj, corresponds to the controller parameters k,
k1, k, and k,,, the adaptive algorithm to automatically tune the controller parameters
has been developed as a set of controller commands as shown in Eq. (10):

¢ (4.1) ifg <g<g ,ANDv <vp<y
P G (D inimn ) ifg <p<g ,ANDv<v  ORvZv
C 6 (e V) if¢<g_OR g>¢ , ANDv <v<y _
¢k( ) o mm/max) ifg<¢g,. OR¢g=¢ ., ANDv<y ORvzy_ _

(10)
4. Simulation and experimental procedures

The effectiveness of the developed controller is evaluated through simulations
within the MATLAB/Simulink using ODE solver settings, namely, Heun ODE2 and
a fixed-step size of 0.001 s. The controller is implemented on the validated vehicle
model from Section 2 that was set to enter each of the trajectories in Figure 4 with
an initial velocity, zero brake, and throttle settings to keep the vehicle at a constant
speed of 6 m/s. The adaptive controller is compared against the two of its pre-
decessors, namely, the Mod St from Eq. (3) and the original Stanley controller as
shown in Eq. (1). Each of these controllers has been optimised using PSO with
similar procedures as described in Section 3.2.1 and simulated using the same
simulation settings. In evaluating the controller’s performance under varying input
disturbances, a set of simulations were carried out using a different trajectory as
shown in Figure 4 as well as different speed settings. The vehicle was set to travel
with different speed values that are chosen randomly within and outside of the
range of the knowledge database.

4.1 Experimental validation against the human driver

The adaptive path tracking controller developed in this study is validated exper-
imentally against the human-driven responses when navigating similar paths. For
this, an instrumented heavy vehicle was driven, and the driver’s steering input was
recorded. The same manoeuvring was simulated using the developed controller,
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and the resulted steering input from the controller was compared against the

human’s driving input, to observe the validity of the automatic steering input from
the controller.

(a) (b)

Figure 11.
Road course used in the experiment: (a) single lane change and (b) double lane change.

Desired Trajectory - Single Lane Change Desired Trajectory - Double Lane Change

0 ] 0
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:‘2’ 1=
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o o
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(a) (b)
Figure 12.

Road course for simulations taken from real dimensions for (a) single lane change and (b) double lane change.

Armoured Vehicle

@ (b)

Figure 13.
(a) Prototype of heavy vehicle and (b) sensor configuration in driver’s cockpit.
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In the experiment, two types of manoeuvrings were conducted, namely, single
and double lane changes. The dimensions of the desired road were set on a level,
open space as shown in Figure 11 for both single and double lane change
manoeuvrings, based on ISO-3888 [24]. These dimensions were converted into a
series of coordinate points for simulation stages as shown in Figure 12. As one can
see, the dimensions are quite short due to the limited space available. For this, only
20 km/h speed was chosen to ensure good manoeuvrings.

The manoeuvring tests are carried out with an instrumented prototype of a
heavy vehicle as shown in Figure 13. The prototype was installed with various
sensors and actuators as shown. However, for this experiment, the main sensors
used are the accelerometer, gyro sensor, and rotary encoder. The rotary encoder
will record the driver’s steering input from steering column rotation, and from this,
the wheel angle data can be deduced. Meanwhile, position data is acquired by a
built-in GPS sensor in IMC DAQ that is attached to the roof of the vehicle to ensure
good data transmission. Should the GPS fail, one can use the recorded acceleration
data from the accelerometer, as well as vehicle speed data from the speed sensor to
calculate the vehicle position in local coordinates.

From this experiment, automated manoeuvrings from the controller will be com-
pared against the actual driving inputs from the human driver. Two observations can
be deduced due to the nature of the short trajectories. First, the controller’s ability in
mimicking human driver behaviour can be evaluated. Second, the path tracking
performance of the controller in guiding the heavy vehicle along short roads and sharp
cornering can be evaluated also. The findings will be detailed in the next section.

5. Results and discussions

In evaluating the performance of the proposed adaptive controller, trajectory
tracking performance was observed. Two aspects were compared, namely, (a) the
vehicle trajectories and (b) the lateral error while navigating the trajectories with
each respected controller. The performance of the proposed knowledge-based
adaptive controller was compared against its two predecessors, which are the orig-
inal St controller from Eq. (1) and Mod St from Eq. (3) as explained in Section 3.1.
All simulation results for the six trajectories are shown in Figure 14 for the straight
road, Figure 15 for the Multiple Lane Change Road, Figure 16 for the Double Lane
Change Road, Figure 17 for the Hook Road, Figure 18 for the S Road, and Figure 19
for the Curved Highway Road.
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ry Stanley Controller with ,f*’/ "‘0 4 i =Modified Stanley Controller (Mod St)
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Figure 14.

Trajectory tracking performance for straight voad: (a) vehicle trajectories, (b) lateral error, e.

16



Knowledge-Based Controller Optimised with Particle Swarm Optimisation for Adaptive Path...
DOI: http://dx.doi.org/10.5772/intechopen.92667

Multiple Lane Change Lateral Elrror for M'ultiple Lane Change
P e | =008 g sy ||
= Ui, s gV I | Modfied Staniey Conlroter
£ | 59 A3 /\/ — [Mod St
: ;;; !6 = Basic Stanley Controller
5.8 L / [
o b
= 550 552 w0 : o
8 pet \ {3 gt
g / - i i
o \\ / =Trajectory o li
' 4 |"=Adaptive Controller with Gain Scheduling - 1
b =+Modified Stanley Controller (Mod St) j 0.05 sAdaptive StRMS =5.68e-03 %
: ‘ ~Basic Starley Contrler ‘ z T Mod St RMS = 294003 r
0 200 400 600 0 e W 600
X - Position (m) X - Position (m)
(a) (b)
Figure 15.

Trajectory tracking performance for curved highway road: (a) vehicle trajectories, (b) lateral error, e.
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Figure 16.
Trajectory tracking performance for multiple lane change road: (a) vehicle trajectories, (b) lateral error, e.
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It can be seen that the proposed controller managed to guide the heavy vehicle
along the desired trajectories successfully. Overall, the adaptive controller
performed significantly better than the St controller. The proposed controller man-
aged to guide the vehicle with better precision closer to the path, which can be
indicated further by the lateral error graphs in (b). These improvements are mainly
caused by the fact that the adaptive controller adopts Mod St steering command
from Eq. (3) as the base controller to be automatically tuned. This controller con-
siders the yaw rate error feedback, which can improve the overall trajectory track-
ing performance. Also, it has more controller parameters, which made the
controller more sensitive to tuning, which, in turn, improve the tracking perfor-
mance upon parameter selection. This also explains the exceptional performance by
the Mod St controller shown in the graphs. For shorter and tight manoeuvring road

hiry
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Figure 17.
Trajectory tracking performance for double lane change road: (a) vehicle trajectories, (b) lateral ervor, e.
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Figure 18.
Trajectory tracking performance for hook road: (a) vehicle trajectories, (b) lateral error, e.

Curved Highway Road !.ateral Error for (_:urved Rpad
' ' ' B SR, 0.4 Adaptive stRMS = 3.41e-02 |
— x N E Mod St RMS = 6.26e-03 i
SLRMS =1.85001  Aeimimmimimmsd
E400} ,,, /./ N\ £ st A
o o ey /’ e 4 5y
= 3 o= ul: P — l ",
@« " 4 - 0 i, . — m
o200r 33 35305 F iR r o i
o 2 = Trajectory = - & )
' +++Adaptive Controler with Gain Scheduling 'E :: ARO[ G Sohed g k \.\
> - Modfied Stariey Controllr (Mod St) || _3-0-2" 'g' odified Starley Controllr (Mod St) T
0 . . "Balséc Stanley Contlmller . asic Staln)ey CcnntrollerI : ‘ LN
0 200 400 600 800 1000 0 200 400 600 800 1000
X - Position (m) X - Position (m)
(a) (b)
Figure 19.

Trajectory tracking performance for S road: (a) vehicle trajectories, (b) lateral error, e.

courses, namely, straight, multiple lane change, and lane change, shown in

Figures 14-16 respectively, the vehicle was manoeuvred successfully along the
intended road courses with significantly better lateral error than the original Stanley
controller. However, unwanted oscillations can be observed in Figures 16 and 17
due to rapid cornering that exists in these courses. This can be minimised by
preparing smoother curvature for the vehicle to follow [6].

However, one might notice the inferior performance shown by the proposed
controller when compared against the Mod St controller. As stated before, this is the
base controller where the adaptive algorithm was built on. In the simulation, the
Mod St controller was tuned specifically for each trajectory using a metaheuristic
optimisation algorithm, namely, PSO. The procedures are explained by Amer et al.
[15]. Since the controller was specifically tuned for each trajectory and the 6 m/s
speed, the controller parameter has been chosen to optimise the vehicle perfor-
mance for each of the roads. This explains the fact that the base controller
performed better than the adaptive controller, which was automatically tuned by
the adaptive algorithm. However, despite the inferior performance compared to the
Mod St controller, the adaptive controller still managed to guide the vehicle with a
satisfactory performance. Looking at the RMS values for lateral error, the adaptive
controller recorded a lateral error of 0.00154-0.0341 m across all the six trajecto-
ries, which are well below the average lateral error of 0.1 m recorded by the Stanley
vehicle in the original publication [3]. Therefore, it can be concluded that the
proposed adaptive controller performed well in navigating various trajectories.
Overall comparison results for the RMS values on lateral error between the evalu-
ated controllers are listed in Table 4.

The response of the controller under various vehicle speeds was studied next for
hook, S, and curved highway road, as shown in Figure 20. These roads were chosen
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Adaptive Mod St St % Diff w.r.t. Mod St % Diff w.r.t. St
Straight 3.11E-02 5.43E-02 8.85E-02 -74.60 -64.86
Multiple Lane Change  5.68E-03 2.94E-03 1.48E-02 48.24 -61.62
Double Lane Change 1.54E-03 7.99E-04 6.17E-03 48.12 -75.04
Hook 245E-02  2.59E-03 1.42E-01 89.43 -82.75
S 3.13E-02 6.29E-03 1.70E-01 79.90 -81.59
Curved 341E-02 6.26E-03 1.85E-01 81.64 -81.57

Table 4.
Comparison of RMS values for lateral ervor between the controllers.
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Figure 20.

Effect of varying speeds for (a) hook road, (b) S road, and (c) curved highway road.

due to its suitability for a high-speed testing. Straight, multiple lane change, and
double lane change roads have shorter courses and extreme manoeuvrings, which
are not suitable for a high-speed testing. In each analysis, six constant speed values
were chosen to evaluate the controller, namely, 3, 8, 12, 17, 20, and 30 m/s. Based on
knowledge database range and intervals listed in Table 2, 20 and 30 m/s were
chosen to observe the controller’s behaviour on the knowledge database boundary
and outside the boundary. Other values were chosen randomly to observe the
controller’s performance with vehicle speeds well within the knowledge database
boundary. From the figures, one can see that the proposed adaptive controller
managed to steer the heavy vehicle well along the desired trajectory. However, as
the vehicle speeds increase, larger error was observed since the vehicle is moving
further than the intended trajectory. This is understandable since an increasing
speed means that the vehicle can be diverted faster. Nevertheless, the controller still
managed to bring the vehicle back to its intended direction with lateral error of well
within 1 m as shown in Table 5.

19



Automation and Control

Vehicle Constant Speed (m/s)

3 8 12 17 20 30

Hook 0.0089 0.0511 0.1448 0.3290 0.4721 0.7547

0.0100 0.0625 0.1728 0.3976 0.5706 0.8488

Curve 0.0098 0.0676 0.1870 0.4337 0.6163 0.9322

Road Course
tA

Table 5.
RMS values of lateral ervor for various vehicle speeds with the adaptive controller.

5.1 Validation of steering angle against the human driver

For this analysis, three responses were observed, namely, vehicle trajectories,
lateral error, and vehicle wheel angle throughout the manoeuvrings, which are single
lane change and double lane change from Figure 11, and described in detail in Section
4.1. The actual data from the instrumented vehicle are compared against the simula-
tion results with the adaptive controller using the same trajectory and road courses in
Figure 12 and constant vehicle speed of 20 km/h. Figure 21 shows the comparison
between experimental results by the human driver and simulation results by the
adaptive controller for the single lane change manoeuvring. Meanwhile, Figure 22
shows the same comparison for the double lane change manoeuvring.

In both figures, graphs in (a) show the vehicle trajectories, which indicate that
the proposed controller managed to automatically provide correctional steering
input in guiding the vehicle closer to the desired trajectories. There is a noticeable
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Figure 21.

Comparison between experimental vesults and simulations for single lane change road: (a) vehicle trajectory,
(b) lateral ervor w.r.t. trajectory, (c) steeving input required.
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Comparison between experimental vesults and simulations for double lane change voad: (a) vehicle trajectory,
(b) lateral ervor w.r.t. trajectory, (c) steering input required.

overshoot in vehicle trajectory from simulation (X = 80 m) for both manoeuvrings,
which can be attributed to the speed of the vehicle. In the experiment, it was hard to
keep the constant speed, and human instinct has caused the driver to slow down the
vehicle while navigating sharp corners, whereby the speed was kept constant
throughout the simulations. This has caused dissimilarities between the two results.
Also, the road courses used here are very short, which may account to the inabilities
of the controller, as well as the human driver, to perfectly track the trajectories.
Nevertheless, the controller did well in steering the vehicle. This can be further
studied through the lateral error results shown in graphs (b). The adaptive control-
ler recorded better lateral error 82 and 78% less RMS values for single lane change
and double lane change manoeuvrings, respectively.

Looking at the wheel angle from graphs (c), one can observe the correctional
steering input provided by the human driver in the experiment, as well as the inputs
from the adaptive controller in simulation. Compared against the human driver for
the same manoeuvrings, the controller provides the steering input to the wheel with
the same trend and input shape as the human driver, but with a faster response.
Having a fast controller is always advantageous for any unaccountable delays and
uncertainties that may happen in real implementation. Also, the controller is able to
adapt to various speeds and trajectories while mimicking the human driver actions,
which was proven from the results presented here.

6. Conclusions

In this study, an adaptive controller for an autonomous heavy vehicle is presented.
The controller was developed based on an established Stanley controller that was
modified to increase its sensitivity to the parameter changes. An adaptive algorithm
was constructed to automatically tune the controller parameters based on the instan-
taneous vehicle speeds, v, and heading error, ¢, between the vehicle and road course
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trajectory. In constructing the adaptive algorithm, a knowledge database was built by
optimising a set of parameters for the modified Stanley controller that corresponds to
various combinations of v and ¢ using particle swarm optimisation.

The developed controller was applied on a validated 7DOF, nonlinear heavy
vehicle model. Six trajectories were chosen representing long and short courses as
well as courses with large and very small turning curvatures. With these, a series of
simulations were carried out, and the performance of the proposed controller was
compared against the basic original Stanley and also the modified Stanley controllers.

From the simulations, it was found that the proposed adaptive controller
performed well in guiding the vehicle along all trajectories. It recorded significantly
lower lateral error RMS between 61 and 82% improvement when compared against
the original Stanley controller. However, 48-89% increases in lateral error RMS were
observed when comparing the controller against the modified Stanley controller. This
can be explained by the fact that the Mod St controller was optimised specifically for
the respective courses and, therefore, performed exceptionally well on the roads.

In terms of the controller’s ability in adapting to various trajectories and vehicle
speeds, the controller was tested with various vehicle speeds within and outside of
the knowledge database region. It was capable of navigating the vehicle smoothly
regardless of the vehicle speed, with understandably larger error in maximum
speed. However, the overall lateral error was well kept below 1 7. While the
maximum testing speed was 30 m/s, the autonomous heavy vehicle will be operat-
ing with speeds much lower than that. Previous studies and implementations of
autonomous passenger’s vehicles have been recorded to operate with about 10 m/s
and lower [4, 25, 26]. In this study, the proposed adaptive controller has managed to
perform well without depending on any planner to provide a smooth trajectory.
This ensures the applicability of the proposed controller to be operated on a heavy
vehicle on various trajectories and vehicle speed values.
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