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Chapter 3

Inverse Scattering Source
Problems
Mozhgan “Nora” Entekhabi

Abstract

The purpose of this chapter is to discuss some of the highlights of the mathe-
matical theory of direct and inverse scattering and inverse source scattering prob-
lem for acoustic, elastic and electromagnetic waves. We also briefly explain the
uniqueness of the external source for acoustic, elastic and electromagnetic waves
equation. However, we must first issue a caveat to the reader. We will also present
the recent results for inverse source problems. The resents results including a
logarithmic estimate consists of two parts: the Lipschitz part data discrepancy and
the high frequency tail of the source function. In general, it is known that due to the
existence of non-radiation source, there is no uniqueness for the inverse source
problems at a fixed frequency.

Keywords: scattering theory, inverse scattering theory, Helmholtz equation,
Bessel functions

1. Introduction

This chapter tries to provide some results and materials on inverse scattering,
direct scattering theory and inverse source scattering problems. There have been
many scientists who have contributed to the different components of this field,
such as linearity or non-linearity of the inverse source problem, computational and
numerical solution to the inverse source problem and analytical aspects of the
problem, which have their own interests. We obviously cannot give a complete
account of inverse scattering here from all angles. Hence, instead of attempting the
impossible, we have chosen to present inverse scattering theory from the of our
own interests and research program. Particularly, we will focus on inverse source
problems for acoustic, elastics and electromagnetic waves. In other words, certain
areas of inverse scattering theory are either ignored.

Scattering theory has played a central role in twentieth century mathematical
physics and applied mathematics. Indeed, from Rayleigh’s explanation of why the
sky is blue, to Rutherford’s discovery of the atomic nucleus, through the modern
medical and clinical applications of computerized tomography, scattering phenom-
ena have attracted scientists and mathematicians for over a hundred years. Broadly
speaking, scattering theory is concerned with the effect an inhomogeneous medium
has on an incident particle or wave. In particular, if the total field is viewed as the
sum of an incident field ui and a scattered field us then the direct scattering problem
is to determine us form a knowledge of ui and the differential equation governing
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the wave motion. There are even more in the inverse scattering problem of deter-
mining the nature of the inhomogeneity from a knowledge of the asymptotic
behavior of us, i.e., to reconstruct the differential equation or its domain or source
functions of definition from the behavior of solutions of the direct problems. In this
chapter, we are following this notation; C denote generic constants depending on
the domain Ω or domain D, which is different in different results, and uk k lð Þ Ωð Þ
denotes the standard norm in Sobolev space Hl

Ωð Þ.

2. The direct and inverse scattering problem

The stationary incoming wave u of frequency k is a solution to the perturbed
Helmholtz equation (scattering by medium)

Au� k2u ¼ 0 in3 (1)

(A is the elliptic operator A ¼ �∇ a∇ð Þ þ b:∇þ c with ℜeb ¼ 0,∇b ¼ 0, and
ℑmc≤0, which coincides with the Laplace operator outside a ball B and which
possesses the uniqueness of continuation property) or to the Helmholtz equation
(scattering by an obstacle D for acoustic waves)

Δuþ k2u ¼ 0 in3nD, (2)

with the Dirichlet boundary data

u ¼ 0on∂D soft obsacleDð Þ: (3)

or the Neumann boundary data

∂νu ¼ 0on∂D hardo bsacleDð Þ: (4)

The function u is assumed to be the sum of the so-called incident plane wave
ui xð Þ ¼ exp ikξ � xð Þ and a scattered wave us satisfying the Sommerfeld radiation
condition

lim
r!∞ r

∂us

∂r
� ikus

� �

¼ 0, (5)

where ξ∈
3, ∣ξ∣ ¼ 1, is the so-called incident direction and

u xð Þ ¼ exp ikξ � xð Þ þ us xð Þ: (6)

The electromagnetic scattering problem corresponding to the electric field E and
magnetic field H such as

curlE� ikH ¼ 0, curlH þ ikE ¼ 0 in3nD, (7)

E xð Þ ¼ i

k
curlcurl exp ikξ � xð Þ þ Es xð Þ, (8)

H xð Þ ¼ curl exp ikξ � xð Þ þHs xð Þ, (9)

ν� E ¼ 0 on ∂D, (10)

with the Silver- Muller radiation condition;
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lim
r!∞ Hs � x� rEsð Þ ¼ 0 (11)

where (7) are the time-harmonic Maxwell equations and ν is again the unit
outward normal to ∂D. As in previous case more general boundary condition can
also be considered, for example the impedance boundary condition

ν� curlE� iλ ν� Eð Þ � ν ¼ 0, (12)

where λ is a positive constant. The mathematical technique used to investigate
the direct scattering problems for and electromagnetic waves depends heavily on
the frequency of the wave motion. The first question about direct scattering is about
uniqueness of a solution. The basic tools used to prove the uniqueness are Green’s
theorems and the unique continuation property of solutions to elliptic equations.
Since Eqs. (2)–(5) for exterior problem have constant coefficients, the uniqueness
question is much easier to handle. Similar argument can be applied on the Maxwell
equations. The first result being given by Sommerfeld in 1912 for the case of
acoustic case [1]. His work was generalized by Rellich [2] and Vekua [3], all under
the assumption ℑmk≥0. The uniqueness of a solution to the exterior scattering
problems for acoustic and electromagnetic is more difficult since use must now be
made of the unique continuation principle for elliptic equations with non-analytic
coefficients. After uniqueness, the most important questions would be the existence
and numerical approximation of the solution. The most common technique to
existence has been through the method of integral equation. For example for
Eqs. (2)–(5), it is easy to see that for all positive values of wave number k the field u
is the unique solution of the Lippman-Schwinger equation

u xð Þ ¼ ui þ us (13)

¼ exp ikξ � xð Þ þ 1

r
exp ikrð ÞA x

r
, ξ, k

� �

þ O
1

r2

� �

(14)

where r ¼ ∣x∣ and the function A is called the scattering amplitude (or the
scattering pattern or far field pattern).

The representation (14) follows from the fact that any solution us to the
Helmholtz equation satisfying the radiation condition (5) has the representation by
a single layer potential

ui xð Þ ¼
ð

∂B
g yð ÞK x� y; kð ÞdΓ yð Þ, (15)

where K x; kð Þ ¼ eik∣x∣= 4π∣x∣ð and B is some large ball (i.e., see [4]).
As showed above, the direct scattering problem has been thoroughly investi-

gated and a considerable amount of information is available concerning its solution.
In contrast, the inverse scattering problem has only recently progressed. It is worth
to mention that the inverse problem is inherently nonlinear. In areas such as radar,
sonar, geophysical exploration, medical imaging and nondestructive testing. As in
with direct problem, the first question in inverse scattering problem is, how about
uniqueness?. The first result in uniqueness brought up to the attention by Schiffer

[5] who showed for the problem (2)–(5) the far field pattern A x
r , ξ, k
� �

with fixed
wave number k uniquely determines the scattering obstacle D. And result for
corresponding exterior problem obtained by Nachman [6], Novikov [7, 8].
Uniqueness theorems for electromagnetic problems were obtained by Colton and
Päivärinta [9]. The next step will be the question of existence of the to the inverse
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scattering problem. The mathematically speaking, the solution of the inverse scat-
tering problem does not exist, but we can speak about stabilization and approxima-
tion of the solutions. The earliest efforts in this direction attempted to linearize the
problem by reducing it to the problem of solving a linear integral equation of the
first kind. The initial attempts to treat the inverse scattering problem without
linearizing were investigated by Imbriale and Mittra [10]. Their techniques were
based on analytic continuation. In 1980’s a number of methods were given to
solving the inverse scattering problem which explicitly acknowledged the nonlinear
and ill-posed nature of the problem. The two-dimensional case can be used as an
approximation for the scattering from finitely long cylinders. In the next sections,
we will discuss Helmholtz equation and two and three dimensional inverse source
scattering problems for acoustic, elastic and electromagnetic waves. The following

lemma is establishing the uniqueness for the direct solution(1) in R3. The following
lemma is stated in [4].

Theorem 1.1. If u solves Eq. (1) in 
3 and satisfies the radiation condition (5),

then u ¼ 0.
Proof. There is a weak solution to Eq. (1) in Bwith the test function ϕ ¼ uwe have

ð

∂B
∂νuu ¼

ð

B
a∇u � ∇uþ b � ∇uuþ c� k2

� �

uu
� �

(16)

¼
ð

B
a∇u � ∇uþ b � ∇uuþ c� k2

� �

uu
� �

(17)

using the conditionℜeb ¼ 0,∇b ¼ 0 and integration by part over ∂B the internal
is a sum of two part; one involving ∇u and another cuu. The first term coincides
with its complex conjugate, so its imaginary part is zero, and the second one has a
non-positive imaginary part due to the condition on c, hence

ℑm

ð

∂B
∂νuu≤0: (18)

since u satisfied the Helmholtz equation and the radiation condition, the known
results imply that u ¼ 0 outside B. By uniqueness of the continuation for the elliptic

operator A� k2 we obtain that u ¼ 0 in 
3, so the proof is complete.

2.1 Helmholtz equation

Studying an inverse problem always requires a solid knowledge of the theory for
the corresponding direct problem. Therefore in this section is devoted to presenting
the foundations of obstacle scattering problems for time harmonic acoustic waves.
The Helmholtz equation often arises in the study of physical problems involving
partial differential equations (PDEs) in both space and time. The Helmholtz equa-
tion, which represents a time-independent form of the wave equation, results from
applying the technique of separation of variables to reduce the complexity of the
analysis. Colton and Kress showed that [11] how one can derived the Helmholtz
equation from the Euler’s equation. Then the domain of the solution is outside a

bounded open set D∈
d, describing the scatterer. The equation is

Δuþ k2u ¼ 0 (19)

where the wave number k is given by the positive constant k ¼ ω=c, with
inhomogeneous boundary conditions on D of Dirichlet or Neumann type:
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u xð Þ ¼ g xð Þ Dirichletð Þ, ∂u xð Þ
∂ν

¼ h xð Þ, x∈ ∂D, Neumannð Þ (20)

and it is a well-posed problem if

lim
r!∞r

d�1
2

∂u

∂r
� iku

� �

¼ 0: (21)

Let G xð Þ be the Green’s function for Helmholtz in d dimensions, e.g.

G x� yð Þ ¼

i

4
H1

0 kjx� yjð Þ, d ¼ 2, x 6¼ y

eik x�yð Þ

4π∣x� y∣
, d ¼ 3, x 6¼ y

8

>

>

<

>

>

:

where H1
0 zð Þ ¼ 1

πi

Ð 1
1þi∞e

izs s2 � 1ð Þ�1=2
ds, for Rez>0, is the Hankel function of the

first kind [12]. It is also can be defined as

H
1ð Þ
0 zð Þ ¼ J0 zð Þ þ iY0 zð Þ, (22)

where

J0 zð Þ ¼
X

∞

m¼0

�1ð Þm 1
2 z
� �2m

m!ð Þ2
,

Y0 zð Þ ¼ 2 γ þ log
1

2
z

� �� 	

J0 zð Þ � 2
X

∞

m¼1

�1ð Þm 1
2 z
� �2m

m!ð Þ2
1þ 1

2
þ … þ 1

m

� 	

,

(23)

and γ ¼ 0:5772157… is the Euler’s constant.
Then, we can solve the single layer potential integral equation

u x, kð Þ ¼
ð

∂D
G x� yð Þψ yð Þdy, x∈D

c
: (24)

Alternatively, we can solve the double layer potential integral equation

�ui x, kð Þ ¼ 1

2
ψ xð Þ �

ð

∂D

∂G x� yð Þ
∂n

ψ yð Þdy, x∈ ∂D: (25)

In this case the scattered solution outside D is given by

u xð Þ ¼ �
ð

∂D

∂G x� yð Þ
∂n

ψ yð Þdy, x∈D
c
: (26)

2.2 Inverse source scattering problem

Motivated by the significant applications, the inverse source problems, as an
important research subject in inverse scattering theory, have continuously attracted
much attention by many researchers. Consequently, a great deal of mathematical
and numerical results are available. In general, it is known that there is no unique-
ness for the inverse source problem at a fixed frequency due to the existence of non-
radiation sources. Hence, additional information is required for the source in order
to obtain a unique solution, such as to seek the minimum energy solution. From the
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numerical and computational point of view, a more challenging issue is lack of
stability. A small variation of the data might lead to a huge error in the reconstruc-
tion. Recently, it has been realized that the use of multi-frequency data is an
effective approach to overcome the difficulties of non- uniqueness and instability
which are encountered at a single frequency. An attempt was made in [13] to extend
the stability results to the inverse random source of the one-dimensional stochastic
Helmholtz equation. The inverse source problem seeks for the right hand side of a
partial differential equation from boundary data. The inverse source problems are
also considered as a basic mathematical tool for solving many imaging problems
including reflection tomography, diffusion-based optical tomography, lidar imag-
ing for chemical and biological threat detection, and fluorescence microscopy. In
general, a feature of inverse problems for elliptic equations is a logarithmic type
stability estimate which results in a robust recovery of only few parameters
describing the source and hence yields very low resolution numerically.

For the Helmholtz equations, the results have shown increasing (getting nearly
Lipschitz) stability when the Dirichlet data or Cauchy data are given on the whole
boundary and K is getting large. Similar results are obtained for the time periodic
solutions of the more complicated dynamical elasticity system. For elastic waves,
the inverse source problem is to determine the external force that produces the
measured displacement. The inverse source scattering problem for Maxwell equa-
tion arises in many scientific areas such as medical imaging. More specifically,
Magnetoencephalography (MEG), the imaging modality is a non-invasive neuro-
physiological technique that measures the electric or magnetic fields generated by
neuronal activity of the brain. For electromagnetic waves, the inverse source prob-
lem is to reconstruct the electric current density from tangential trace of electric
field. As we know in [14], the inverse source problem does not have a unique
solution at a single or at finitely many wave numbers. On the other hand, if we use
all wave numbers in 0,Kð Þ one can regain uniqueness. Another purpose of this
chapter is to establish uniqueness for the source from the Cauchy data on any open
non empty part of the boundary for arbitrary positive K. For uniqueness, we will
show two different techniques. The first technique is to use the stability estimate for
the source functions and the second technique is a direct proof.

First increasing stability results were obtained in [15] by using the spatial Fourier
transform. In [16, 17] more general and sharp results were obtained in sub-domain of


3 and 

2 in an arbitrary domains with C2 boundary by the temporal Fourier trans-
form, with a possibility of handling spatially variable coefficients. The recent results
showed that the estimate for source functions is a logarithmic type. The right hand-
side of the estimate consists of two parts: data discrepancy and the high frequency
tail. In the papers [15, 18], Li, Bao and others showed the similar results for disc and
ball. For instance, the results by Entekhabi and Isakov are as follows;

Let the radiated wave field u x, kð Þ solve the scattering problem in 
2 with the

source term �f1 � ikf 0 and the radiation condition

Δþ k2
� �

u ¼ �f1 � ikf 0 in 
2, (27)

lim r1=2 ∂ru� ikuð Þ ¼ 0 as r ¼ ∣x∣ ! þ∞: (28)

Both f0, f1 ∈L2
Ωð Þ are assumed having suppf 0, suppf 1 ⊂Ω where Ω is a bounded

domain with the boundary ∂Ω∈C2.
The stability of functions f0, f1 from the data

u ¼ u0, ∂νu ¼ u1on Γ, when K ∗ < k<K, (29)
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where Γ is an non empty open subset of ∂Ω with outer unit normal ν and
0<K ∗ <K, was the following theorem;

Theorem 1.2. Let ∥ f0∥
2
4ð Þ Ωð Þ þ ∥ f1∥

2
3ð Þ Ωð Þ≤M, 1≤M, and δ< ∣x� y∣, x∈∂Ω,

y∈ suppf 0 ∪ suppf 1 for some positive δ.
Then there exist a constant C ¼ C Ω, δð Þ such that

∥ f1∥
2
0ð Þ Ωð Þ þ ∥ f0∥

2
1ð Þ Ωð Þ≤C ε2 þ M2

1þ K
2
3E

1
4

� �

(30)

for all u∈H2
Ωð Þ solving (27) and (28) with 1<K. Here

ϵ
2 ¼

ðK

0
ω2∥u ,ωð Þ∥20ð Þ ∂Ωð Þ þ ∥∇u ,ωð Þ∥20ð Þ ∂Ωð Þ
� �

dω, 0<E ¼ � ln ϵ: (31)

While Bao, Li and Lu used Dirichlet to Neumann map to simplify the boundary
conditions for two dimensional and three dimensional domains (disks and balls),
Isakov, Lu, Chang and Entekhabi used the Fourier transform and observability
bound for corresponding hyperbolic initial value boundary problem (wave equa-

tion) for two and three dimensional domain with C2-boundary. In papers [19, 20],
authors considered inverse source scattering problems with damping factor for two
and three dimensional domains, that is, they considered the following equation:

Δþ k2 þ ikb
� �

u ¼ �f1 � bf 0 þ ikf 0 (32)

where b>0 is the damping factor. In particular attenuation can have various
reasons and in application, one of the fundamental reasons of poor resolution in
inverse problems is a spatial decay of the signal due in part to the damping factor.
The results was the following theorem:

Theorem 1.3. There exists a generic constant C depending on the domain Ω such
that

∥ f0∥
2
1ð Þ Ωð Þ þ ∥ f1∥

2
1ð Þ Ωð Þ≤CeCb

2

ε2 þ b2 þ 1
� �

M2
3

1þ K
2
3E

1
4 þ b

 !

(33)

for all u∈H2
Ωð Þ solving (1), with 1<K andM3 ¼ max ∥ f0∥ 4ð Þ Ωð Þ þ ∥ f1∥ 3ð Þ Ωð Þ, 1

n o

.

As you can see, the results showed a deterioration of stability with growing
attenuation/damping constant b.

In papers [21, 22], authors considered inverse source scattering problems for
double layers medium. The results in the papers [23, 24] showed an stability esti-
mate for elastic and electromagnetic waves. Also authors in [23] proved a stability
estimate using just Dirichlet data. Increasing stability for the Schrodinger potential
from the complete set of the boundary data (the Dirichlet-to Neumann map) was
demonstrated in [25, 26]. They showed that the boundary condition for elastic
waves they considered the following equation

σ uð Þ þ k2u ¼ �f1 � ikf0 in 
n, (34)

u ¼ u0 in Γ, (35)

where σ ¼ μΔþ μþ λð Þ∇ � ∇ð Þ, where μ, λ are Lame constants satisfying μ>0 and

μþ λ>0, functions f1, f0 ∈L2
Ωð Þ are the external force are assumed to be compactly

supported in a C2-boundary domain Ω⊂
n and Γ⊂∂Ω is an open non-void set. By

the Helmholtz decomposition, the displacement filed u can be written as
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u ¼ up þ us in 
nnΩ, (36)

where up and the sheer part us which satisfy Sommerfeld radiation conditions

lim
r!∞ r ∂rup � ikpup

� �

¼ 0, lim
r!∞ r ∂rus � iksusð Þ ¼ 0, r ¼ ∣x∣, (37)

To achieve the result, authors used Helmholtz decomposition. The decomposi-
tion was allowed them to break the Navier-Lame equation to two elliptic equations.

The results for discrete data for inverse source problem which was obtained in
[27] are as follows:

Theorem 1.4. Let u be the solution of the following scattering problem
corresponding source f ∈FM ð Þ,

μΔþ μþ λð Þ∇ � ∇ð Þ uð Þ þ ω2u ¼ f in 
n, (38)

with radiation condition (37),
Then

∥f∥20ð Þ BRð Þ≤C ϵ
2
2 þ

M2

N
5
8 ln ϵ3j j

1
9

6m�3nþ3ð Þ3

� �2m�nþ1

0

B

B

B

@

1

C

C

C

A

(39)

where

ϵ2 ¼
X

N

n¼1

∥u :,ωp,n

� �

∥20 ΓRð Þ þ ∥u :,ωs,nð Þ∥20 ΓRð Þ
 !1

2

,

ϵ3 ¼ sup

ω∈ 0, π
cpR

,

i� �

∥u :,ωð Þ∥20 ΓRð Þ,

and

FM ð Þ ¼ f ∈Hmþ1 BRð Þ : ∥f∥ mþ1ð Þ BRð Þ≤M
n o

:

The stability increases as N increases, i.e., the inverse problem is more stable
when higher frequency data is used.

2.2.1 Uniqueness of source function

To achieve the uniqueness, we introduced two different approaches. The first
approach is using the estimate for the source function. Letting the norm of the
boundary data goes to zero, then the proof is complete. For instance, consider
Theorem 1.2 and let ϵ ! 0. The second approach is the result has proved by Isakov,
Chang and Lu. They used classical result of the hyperbolic initial value boundary
problem indirectly. The following theorem is the result of [16]. In the following
theorem Ω⊂

n with n ¼ 2, 3 and Γ⊂∂Ω.
Theorem 1.5. Let u be a solution to the scattering problem (27) and (28) with

f0 ∈H1
Ωð Þ, f1 ∈L2

Ωð Þ. If the Cauchy data u0 ¼ u1 ¼ 0 on Γ when k∈ K ∗ ,Kð Þ, then
f0 ¼ f1 ¼ 0 in Ω.

Proof. Denote by U0 the solution to the following hyperbolic problem
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∂
2
tU0 � ΔU0 ¼ 0 on Ω� 0,∞ð Þ,

U0 ¼ �f0, ∂tU0 ¼ f1 on Ω� 0f g,U0 ¼ 0 on ∂Ω� 0,þ∞ð Þ:
(40)

Under their assumptions, there is a unique solution to the problem (40) with

∥U0 , tð Þ∥ 1ð Þ Ωð Þ þ ∥∂tU0 , tð Þ∥ 0ð Þ Ωð Þ≤C ∥f0∥ 1ð Þ Ωð Þ þ ∥f1∥ 0ð Þ Ωð Þ
� �

.

Now let

u ∗ x, kð Þ ¼ 1
ffiffiffiffiffi

2π
p

ð

∞

0
U0 x, tð Þeiktdt

Due to the properties of U0, in particular to the conservation of the energy, the
function u ∗ x, kð Þ is well defined and analytic with respect to k ¼ k1 þ ik2, k2 >0.
Applying the integration by parts and using standard properties of the Fourier-
Laplace transform we conclude that

Δþ k2
� �

u ∗ ¼ �f1 � ikf 0 in Ω, u ∗ ¼ 0 on ∂Ω: (41)

Due to the assumption, the function u solves the same Dirichlet problem for

Δþ k2 when 0< k1, 0< k2. Indeed, u solves the homogeneous Helmholtz equation

in 
nnΩ and has zero Cauchy data on Γ. By the uniqueness in the Cauchy problem

for elliptic equations, u ¼ 0 on 
nnΩ and hence on ∂Ω provided K ∗ < k<K. As

follows from the integral representation of solution (27), the function u ; kð Þ is
(complex) analytic when 0<ℜek, hence u ; kð Þ ¼ 0 on ∂Ω provided 0<ℜek. Since
k2 >0, the solution of (41) is unique, hence u ¼ u ∗ on Ω (see Section 4). Conse-
quently, we obtain u ∗ ¼ u ¼ 0, ∂νu ∗ ¼ ∂νu ¼ 0 on Γ. Since u ∗ is an analytic
function, we can conclude that u ∗ ¼ 0, ∂νu ∗ ¼ 0 on Γ for all k ¼ k1 þ ik2 with
k2 >0. Due to the uniqueness of the inversion of the Fourier-Laplace transform we
will obtain

∂νU0 ¼ 0 on Γ� 0,∞ð Þ:

Due to the uniqueness in the lateral Cauchy problem for the wave equation (40)
with the Cauchy data on Γ� 0,þ∞ð Þ [Holmgren-John theorem ([28], Section 3.4)],
we can conclude that U0 ¼ 0 on Ω� T,þ∞ð Þ for some positive T. Hence from the
uniqueness in the backward initial boundary value problem for the hyperbolic
equation (39) in Ω� 0,Tð Þ with zero boundary data on ∂Ω� 0,Tð Þ and initial data
at Ω� Tf g we conclude that U0 ¼ 0 on Ω� 0,Tð Þ. So �U0 , 0ð Þ ¼ f0 ¼
0, ∂tU , 0ð Þ ¼ f1 ¼ 0 on Ω which finishes the proof of uniqueness.

3. Conclusions

In this section, the scattering and inverse scattering theory, inverse source scat-
tering problem were considered briefly. The recent results such stability estimates
for external source and electric current density from boundary measurements of
radiated wave field and uniqueness for source function for Helmholtz equation,
Elasticity and Maxwell system have showed. We also show some result for discrete
data. In addition, we also showed some results of using just Dirichlet data for
improving stability which was a big improvement. There are still many challenges
remain in this field. For instance, studying the stability in the inverse source prob-
lems for inhomogeneous media where the analytical Green tensors are not available
and the present method may not be directly applicable. Another interesting topic in
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stability of the external source is to consider the governing equation in the time
domain. The non-linear case is also is a very challenging problem. The direct and
inverse scattering problems when both the source and the linear load are random is
also an open problem. Another challenging problem is to study the random source
scattering problem for three dimensional elastic wave equation. As I mentioned
before, there are many scientist and researcher have been working on inverse
scattering and more specifically on inverse source problems. To expand your
knowledge and further mathematical development in this field of research, please
see the result authors in [29–41], which were discussed different aspects of the
problems.
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