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1. Introduction  

Augmented marked graphs were first introduced in 1997 (Chu & Xie, 1997). They are not 
well known as compared to other sub-classes of Petri nets such as free-choice nets (Desel & 
Esparza, 1995), and the properties of augmented marked graphs are not studied extensively. 
However, augmented marked graphs possess a structure which is desirable for modelling 
shared resources, and for this reason, they are often used in modelling shared resource 
systems, such as manufacturing systems (Chu & Xie, 1997; Zhou & Venkatesh, 1999; Jeng et 
al., 2000; Jeng et al., 2002; Huang et al., 2003; Cheung & Chow, 2005). 
There are a few published works on augmented marked graphs. Based on siphons and 
mathematical programming, Chu and Xie proposed a necessary and sufficient condition of 
live and reversible augmented marked graphs, which checks the existence of potential 
deadlocks (Chu & Xie, 1997). However, this involves the flow of tokens during execution 
and cannot be checked simply by looking into the structure. Chu and Xie also proposed 
another siphon-based characterisation for live and reversible augmented marked graphs but 
it provides a sufficient condition only. On the other hand, the boundedness and 
conservativeness of augmented marked graphs were not investigated. 
In the literature, apart from (Chu & Xie, 1997), the studies of augmented marked graphs 
mainly focus on their property-preserving synthesis or composition. Jeng et al. proposed a 
synthesis of process nets (covering augmented marked graphs) for manufacturing system 
design, where the condition of liveness and reversibility are based on siphons and the 
firability of transitions (Jeng et al., 2000; Jeng et al., 2002). Huang et al. also investigated the 
composition of augmented marked graphs so that properties such as liveness, boundedness 
and reversibility can be preserved (Huang et al., 2003). 
In our earlier works on augmented marked graphs, we proposed characterisations for their 
liveness, boundedness, reversibility and conservativeness and applied the characterisations 
to the analysis and design of manufacturing systems, object-oriented systems and shared 
resource systems (Cheung, 2004; Cheung, 2005; Cheung & Chow, 2005a; Cheung & Chow, 
2005b; Cheung & Chow, 2005c; Cheung, 2006; Cheung & Chow, 2006; Cheung et al., 2006; 
Cheung, 2007). This paper consolidates our previous works with a special focus on the 
properties of augmented marked graphs. 
First, we provide a number of characterisations for live and reversible augmented marked 
graphs, based on siphons and cycles. In particular, a property called R-inclusion property is 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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introduced to characterise the siphon-trap property of augmented marked graphs. With this 
property, the liveness and reversibility of an augmented marked graph can be analysed 
through cycles instead of siphons. Second, we introduce R-transformation which transforms 
an augmented marked graph into a marked graph. Its boundedness and conservativeness 
can be determined by checking the cycles of the transformed marked graph. Based on these 
characterisations, some pretty simple conditions and procedures are derived for checking 
the liveness, reversibility, boundedness and conservativeness of an augmented marked 
graph. These will be illustrated using the dining philosophers problem. We then show the 
application to manufacturing system design. 
The rest of this paper is organised as follows. Following this introduction, Section 2 provides 
the preliminaries to be used in this paper. Section 3 describes augmented marked graphs 
and their known properties. Section 4 shows characterisations for liveness and reversibility 
while Section 5 shows characterisations for boundedness and conservativeness. Section 6 
then illustrates these characterisations using the dining philosophers example. Section 7 
describes the application to manufacturing system design. Finally, Section 8 concludes this 
paper with a brief discussion. 

2. Preliminaries 

This section provides the preliminaries to be used in this paper for those readers who are 
not familiar with Petri nets (Peterson, 1981; Reisig, 1985; Murata, 1989; Desel & Reisig, 1998). 

Definition 2.1. A place-transition net (PT-net) is a 4-tuple N = 〈 P, T, F, W 〉, where P is a set 

of places, T is a set of transitions, F ⊆ ((P × T) ∪ (T × P)) is a flow relation, and W : F → { 1, 2, 
... } is a weight function. N is said to be ordinary if and only if the range of W is { 1 }. 

An ordinary PT-net is usually written as 〈 P, T, F 〉. In the rest of this paper, unless specified 
otherwise, all PT-nets refer to ordinary PT-nets. 

Definition 2.2. Let N = 〈 P, T, F, W 〉 be a PT-net. For any x ∈ (P ∪ T), •x = { y | (y, x) ∈ F } 

and x• = { y | (x, y) ∈ F } are called the pre-set and post-set of x, respectively. 
For clarity in presentation, the pre-set and post-set of a set of places or transitions X = { x1, x2, 

..., xn } can be written as •X and X• respectively, where •X = •x1 ∪ •x2 ∪ ... ∪ •xn and X• = x1
• ∪ 

x2
• ∪ ... ∪ xn

•. 

Definition 2.3. For a PT-net N = 〈 P, T, F, W 〉, a path is a sequence of places and transitions 

ρ = 〈 x1, x2, ..., xn 〉, such that (xi, xi+1) ∈ F for i = 1, 2, ..., n-1. ρ is said to be elementary if and 
only if it contains no duplicate places or transitions. 

Definition 2.4. For a PT-net N = 〈 P, T, F, W 〉, a sequence of places 〈 p1, p2, ..., pn 〉 is called a 

cycle if and only if there exists a set of transitions { t1, t2, ..., tn }, such that 〈 p1, t1, p2, t2, ..., pn, 

tn 〉 forms an elementary path and (tn, p1) ∈ F. 

Definition 2.5. For a PT-net N = 〈 P, T, F, W 〉, a marking is a function M : P → { 0, 1, 2, ...}, 
where M(p) is the number of tokens in p. (N, M0) represents N with an initial marking M0. 
Definition 2.6. For a PT-net (N, M0), a transition t is said to be enabled at a marking M if and 

only if ∀ p ∈ •t : M(p) ≥ W(p,t). On firing t, M is changed to M' such that ∀ p ∈ P : M'(p) = 

M(p) - W(p,t) + W(t,p). In notation, M [N,t〉 M' or M [t〉 M'. 

Definition 2.7. For a PT-net (N, M0), a sequence of transitions σ = 〈 t1, t2, ..., tn 〉 is called a 

firing sequence if and only if M0 [t1〉 ... [tn〉 Mn. In notation, M0 [N,σ〉 Mn or M0 [σ〉 Mn. 
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Definition 2.8. For a PT-net (N, M0), a marking M is said to be reachable if and only if there 

exists a firing sequence σ such that M0 [σ〉 M. In notation, M0 [N,∗〉 M or M0 [∗〉 M. [N, M0〉 or 

[M0〉 represents the set of all reachable markings of (N, M0). 

Definition 2.9. Let N = 〈 P, T, F, W 〉 be a PT-net, where P = { p1, p2, ..., pm } and T = { t1, t2, ..., 

tn }. The incidence matrix of N is an m × n matrix V whose typical entry vij = W(pi,tj) - W(tj,pi) 
represents the change in number of tokens in pi after firing tj once, for i = 1, 2, ..., m and j = 1, 
2, ..., n. 

Definition 2.10. For a PT-net (N, M0), a transition t is said to be live if and only if ∀ M ∈ 

[M0〉, ∃ M' : M [∗〉 M' [t〉. (N, M0) is said to be live if and only if every transition is live. 

Definition 2.11. For a PT-net (N, M0), a place p is said to be k-bounded if and only if ∀ M ∈ 

[M0〉 : M(p) ≤ k, where k is a positive integer. (N, M0) is said to be bounded if and only if 
every place is k-bounded, and safe if and only if every place is 1-bounded. 

Definition 2.12. A PT-net (N, M0) is said to be reversible if and only if ∀ M ∈ [M0〉 : M [∗〉 
M0. 

Definition 2.13. A PT-net N = 〈 P, T, F, W 〉 is said to be conservative if and only if there 

exists a |P|-vector α > 0 such that αV = 0, where V is the incidence matrix of N. 
Property 2.1. A PT-net is bounded if it is conservative (Murata, 1989; Desel & Reisig, 1998). 

Definition 2.14. For a PT-net N = 〈 P, T, F, W 〉, a place invariant is a |P|-vector α ≥ 0 such 

that αV = 0, where V is the incidence matrix of N. 

Definition 2.15. For a PT-net N, a set of places S is called a siphon if and only if •S ⊆ S•. S is 

said to be minimal if and only if there does not exist another siphon S' in N such that S' ⊂ S. 

Definition 2.16. For a PT-net, a set of places T is called a trap if and only if T• ⊆ •T. 
Definition 2.17. A PT-net (N, M0) is said to satisfy the siphon-trap property if and only if 
every siphon contains a marked trap (or every minimal siphon contains a marked trap). 

Definition 2.18. A marked graph is an ordinary PT-net N = 〈 P, T, F, W 〉 such that ∀ p ∈ P : 

|•p| = |p•| = 1. 
Property 2.2. A marked graph (N, M0) is live if and only if every cycle is marked by M0 
(Reisig, 1985; Murata, 1989). 
Property 2.3. A live marked graph (N, M0) is bounded if and only if every place belongs to a 
cycle marked by M0 (Reisig, 1985; Murata, 1989). 
Property 2.4. A live and bounded marked graph is reversible (Reisig, 1985; Murata, 1989). 
Property 2.5. For a marked graph, the corresponding place vector of a cycle is a place 
invariant (Reisig, 1985; Murata, 1989). 

3. Augmented marked graphs 

This section describes augmented marked graphs and their known properties on liveness 
and reversibility. 
Definition 3.1. An augmented marked graph (N, M0; R) is a PT-net (N, M0) with a specific 
subset of places R, satisfying the following conditions : (a) Every place in R is marked by M0. 
(b) The net (N', M0') obtained from (N, M0; R) by removing the places in R and their 

associated arcs is a marked graph. (c) For each r ∈ R, there exist kr ≥ 1 pair of transitions Dr = 

{ 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 }, such that r• = { ts1, ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ 

T and that, for each 〈tsi, thi〉 ∈ Dr, there exists in N' an elementary path ρri connecting tsi to thi. 

(d) In (N', M0'), every cycle is marked and no ρri is marked. 
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Figure 1 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. For r1, Dr1 = { 〈t1, 

t11〉, 〈t3, t9〉 }. For r2, Dr2 = { 〈t2, t11〉, 〈t4, t10〉 }. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A typical augmented marked graph. 

Property 3.1. An augmented marked graph is live if and only if it does not contain any 
potential deadlock - a siphon which would eventually become empty (Chu & Xie, 1997). 
Property 3.2. An augmented marked graph is reversible if it is live (Chu & Xie, 1997). 
Property 3.3. An augmented marked graph is live and reversible if and only if every 
minimal siphon would never become empty. 

Proof. (⇐) It follows from Properties 3.1 and 3.2 that an augmented marked graph is live 

and reversible if every minimal siphon would never become empty. (⇒) It follows from 
Property 3.1 that every minimal siphon would never become empty.  
Property 3.4. An augmented marked graph (N, M0; R) is live and reversible if every minimal 
siphon, which contains at least one place of R, contains a marked trap (Chu & Xie, 1997). 
For the augmented marked graph (N, M0; R) in Figure 1, the minimal siphons include : { p1, 
p5, p8}, { r1, p2, p4, p6, p7, p9 }, { r1, p2, p4, p6, p7, p10 }, { r2, p3, p5, p6, p8, p9 } and { r2, p3, p5, p6, 
p8, p10 }. Each of these minimal siphons contains a marked trap, and would never become 
empty. (N, M0; R) is live and reversible. 

4. Liveness and reversibility 

This section provides characterisations for live and reversible augmented marked graphs, 
based on siphons and cycles. Strategies for checking liveness and reversibility are then 
presented. 

Definition 4.1. For a PT-net N, ΩN is defined as the set of all cycles in N. 

Definition 4.2. Let N be a PT-net. For a subset of cycles Y ⊆ ΩN, P[Y] is defined as the set of 

places in Y, and T[Y] = •P[Y] ∩ P[Y]• is defined as the set of transitions generated by Y. 
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For clarity in presentation, P[{γ}] and T[{γ}] can be written as P[γ] and T[γ], to denote the set 

of places in a cycle γ and the set of transitions generated by γ, respectively. 

Definition 4.3. For a PT-net N, an elementary path ρ = 〈 x1, x2, ..., xn 〉 is said to be conflict-

free if and only if, for any transition xi in ρ, j ≠ (i -1) ⇒ xj ∉ •xi (Barkaoui, 1995). 

Lemma 4.1. Let S be a minimal siphon of a PT-net. For any p, p' ∈ S, there exists in S a 
conflict-free path from p to p' (Barkaoui, 1995). 
Property 4.1. For a minimal siphon S of an augmented marked graph (N, M0; R), there exists 

a set of cycles Y ⊆ ΩN such that P[Y] = S. 
Proof. Let S = { p1, p2, ..., pn }. For each pi, it follows from the definition of augmented 

marked graphs that •pi ≠ ∅. Then, there exists pj ∈ S, where pj ≠ pi, such that (pj
• ∩ •pi) ≠ ∅. 

According to Lemma 4.1, pi connects to pj via a conflict-free path in S. Since pj connects to pi, 

this forms a cycle γi in S, where pi ∈ P[γi] ⊆ S. Let Y = { γ1, γ2, ..., γn }. We have P[Y] = P[γ1] ∪ 

P[γ2] ∪ ... ∪ P[γn] ⊆ S. On the other hand, S ⊆ (P[γ1] ∪ P[γ2] ∪ ... ∪ P[γn]) = P[Y] since S = { p1, 
p2, ..., pn }. Hence, P[Y] = S.  
Property 4.2. Every cycle in an augmented marked graph is marked. 
Proof. (by contradiction) Let (N, M0; R) be an augmented marked graph. Suppose there 

exists a cycle γ in (N, M0; R), such that γ is not marked. Then, γ does not contain any place in 

R. Hence, γ also exists in the net (N', M0') obtained from (N, M0; R) after removing the places 
in R and their associated arcs. However, by definition of augmented marked graphs, every 
cycle in (N', M0') is marked.  
Property 4.3. Every siphon in an augmented marked graph is marked. 
Proof. For an augmented marked graph, according to Properties 4.1 and 4.2, every minimal 
siphon contains cycles and is marked. Hence, every siphon, which contains at least one 
minimal siphon, is marked.  

Property 4.4. Let (N, M0; R) be an augmented marked graph. For every r ∈ R, there exists a 
minimal siphon which contains only one marked place r. 

Proof. Let Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tsn, thn〉 }, where r• = { ts1, ts2, ..., tsn } and •r = { th1, th2, ..., 

thn }. By definition of augmented marked graphs, for each 〈tsi, thi〉 ∈ Dr, tsi connects to thi via 

an elementary path ρi which is not marked. Let S = P1 ∪ P2 ∪ ... ∪ Pn ∪ { r }, where Pi is the 

set of places in ρi. We have •Pi ⊆ (Pi
• ∪ r•) because, for each p ∈ Pi, | •p | = | p• | = 1. Then, 

(•P1 ∪ •P2 ∪ ... ∪ •Pn) ⊆ (P1
• ∪ P2

• ∪ ... ∪ Pn
• ∪ r•). Besides, •r = { th1, th2, ..., thn } ⊆ (P1

• ∪ P2
• ∪ 

... ∪ Pn
•). Hence, •S = (•P1 ∪ •P2 ∪ ... ∪ •Pn ∪ •r) ⊆ (P1

• ∪ P2
• ∪ ... ∪ Pn

• ∪ r•) = S•. Therefore, S 
is a siphon, in which r is the only one marked place. Let S' be a minimal siphon in S. 
According to Property 4.3, S' is marked. Since r is the only one marked place in S, r is also 
the only one marked place in S'.  
Consider the augmented marked graph (N, M0; R) shown in Figure 1. Every minimal siphon 
is covered by cycles. For example, for a minimal siphon S1 = { r1, p2, p4, p6, p7, p9 }, there 

exists a set of cycles Y1 = { γ11, γ12 }, where γ11 = 〈 r1, p4, p7 〉 and γ12 = 〈 r1, p2, p6, p9 〉, such that 
S1 = P[Y1]. For another minimal siphon S2 = { r2, p3, p5, p6, p8, p10 }, there exists a set of cycles 

Y2 = { γ21, γ22 }, where γ21 = 〈 r2, p5, p8 〉 and γ22 = 〈 r2, p3, p6, p10 〉, such that S2 = P[Y2]. S1 is a 

minimal siphon, in which r1 ∈ R is the only one marked place. Also, S2 is a minimal siphon, 

in which r2 ∈ R is the only one marked place. 
Definition 4.4. For an augmented marked graph (N, M0; R), a minimal siphon is called a R-
siphon if and only if it contains at least one place in R. 
Definition 4.5. For an augmented marked graph (N, M0; R), a minimal siphon is called a 
NR-siphon if and only if it does not contain any place in R. 

www.intechopen.com



Petri Net: Theory and Applications 

 

382 

Definition 4.6. Let N be a PT-net. For a set of places Q in N, ΩN[Q] is defined as the set of 
cycles that contains at least one place in Q. 

For clarity in presentation, ΩN[{p}] can be written as ΩN[p] to denote the set of cycles that 
contains a place p. 
Figure 2 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. There are five 
minimal siphons, namely, S1 = { r1, p3, p4, p7, p8 }, S2 = { r1, p3, p5, p7, p8 }, S3 = { r2, p2, p4, p6, 
p8, p9, p10 }, S4 = { r2, p2, p5, p6, p8, p9, p10 } and S5 = { p1, p3, p7 }. S1, S2, S3 and S4 are R-siphons 
while S5 is a NR-siphon. 
Property 4.5. For an augmented marked graph (N, M0; R), a R-siphon is covered by a set of 

cycles Y ⊆ ΩN[R]. 
Proof. (By contradiction) Let S be a R-siphon. By Property 4.1, S is covered by cycles. 

Suppose there exists a cycle γ in S, such that γ ∉ ΩN[R]. According to the definition of 

augmented marked graphs, for any p ∈ P[γ], | •p | = | p• | = 1. Hence, •P[γ] = P[γ]•, and P[γ] 
is also a siphon. Since there exists a place r ∈ R such that r ∈ S but r ∉ P[γ], we have P[γ] ⊂ S. 

However, by definition of minimal siphons, there does not exists any siphon S' = P[γ] in S, 

such that S' = P[γ] ⊂ S.  
For the augmented marked graph (N, M0; R) shown in Figure 2. every R-siphon is covered 

by a set of cycles in ΩN[R]. For example, a R-siphon S1 = { r1, p3, p4, p7, p8 } is covered by a set 

of cycles Y1 = { γ11, γ12 } ⊆ ΩN[R], where γ11 = 〈 r1, p3, p7 〉 and γ12 = 〈 r1, p4, p8 〉. Another R-

siphon S2 = { r1, p3, p5, p7, p8 } is covered by a set of cycles Y2 = { γ21, γ22 } ⊆ ΩN[R], where γ21 = 

〈 r1, p3, p7 〉 and γ22 = 〈 r1, p5, p8 〉. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An augmented marked graph for illustration of R-siphons. 
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Property 4.6. Let S be a R-siphon of an augmented marked graph (N, M0; R). For every t ∈ 

(S• \ •S), there does not exist any s ∈ (S \ R) such that t ∈ s•. 

Proof. (by contradiction) Suppose s exists. By definition of augmented marked graphs, | •s | 

= | s• | = 1. S is covered by cycles in accordance with Property 4.5. Hence, t is the one and 

only one transition in s•, where t ∈ T[Y] = (S• ∩ •S). This however contradicts t ∈ (S• \ •S). ฀ 
Property 4.7. For an augmented marked graph (N, M0; R), a NR-siphon contains itself as a 
marked trap and would never become empty. 
Proof. Let S be a NR-siphon. According to Property 4.3, S is marked. It follows from the 

definition of augmented marked graphs that, for any s ∈ S, | •s | = | s• | = 1. Then, •S = S• 
and S is also a trap. Hence, S contains itself as a marked trap and would never become 
empty.  
Property 4.8. An augmented marked graph (N, M0; R) is live and reversible if and only if no 
R-siphons eventually become empty. 

Proof. (⇐) According to Property 4.7, a NR-siphon would never become empty. Given that 
no R-siphons eventually become empty, every minimal siphon would never become empty. 

According to Property 3.3, (N, M0; R) is live and reversible. (⇒) It follows from Property 3.1 
that no R-siphons eventually become empty.  
Property 4.9. An augmented marked graph (N, M0; R) satisfies the siphon-trap property if 
and only if every R-siphon contains a marked trap. 

Proof. (⇐) According to Property 4.7, a NR-siphon contains a marked trap. Given that every 

R-siphon contains a marked trap, every minimal siphon contains a marked trap. (⇒) Every 

minimal siphon contains marked trap implies that every R-siphon contains a marked trap. ฀ 
Consider the augmented marked graph (N, M0; R) shown in Figure 2. Every R-siphon 
contains marked trap. Each of the R-siphons S1 = { r1, p3, p4, p7, p8 }, S2 = { r1, p3, p5, p7, p8 }, S3 
= { r2, p2, p4, p6, p8, p9, p10 } and S4 = { r2, p2, p5, p6, p8, p9, p10 } contains a marked trap and 
would never become empty. Also, the NR-siphon S5 = { p1, p3, p7 } contains itself as a 
marked trap and would never become empty. (N, M0; R) is live and reversible. 
Property 4.10. (characterisation of Property 3.4) An augmented marked graph (N, M0; R) is 
live and reversible if every R-siphon contains a marked trap. 
Proof. For (N, M0; R), if every R-siphon contains a marked trap, according to Property 4.9, 
the siphon-trap property is satisfied. Hence, every minimal siphon would never become 
empty. It then follows from Property 3.3 that (N, M0; R) is live and reversible.  
Property 4.8 provides a simpler necessary and sufficient condition for live and reversible 
augmented marked graphs, as compared to Properties 3.1 and 3.2. According to Property 
4.8, only R-siphons are considered. Typically, for an augmented marked graph (N, M0; R), 
the set R is small, so only a small number of siphons need to be considered. Properties 3.4 
and 4.10 also refers to the same set of siphons but only a sufficient condition is provided. 
With Properties 4.8 and 4.10, we can determine if an augmented marked graph is live and 
reversible based on R-siphons. On the other hand, Property 4.5 provides a characterisation 

for R-siphons so that R-siphons can be easily identified by finding cycles in ΩN[R]. 
We may now derive the following strategy for checking the liveness and reversibility of an 
augmented marked graph (N, M0; R) : 

1. Find all R-siphons based on ΩN[R]. 
2. Check if every R-siphon contains a marked trap. If yes, report (N, M0; R) is live and 

reversible. Otherwise, go to (c). 
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3. For each R-siphon which does not contain any marked trap, check if it would never 
become empty. If yes, (N, M0; R) is live and reversible. Otherwise, (N, M0; R) is neither 
live nor reversible. 

In the following, a property called R-inclusion is introduced for characterising the liveness 
and reversibility of augmented marked graphs. 

Definition 4.7. For a PT-net N, a set of cycles Y ⊆ ΩN is said to be conflict-free if and only if, 

for any q, q' ∈ P[Y], there exists in P[Y] a conflict-free path from q to q'. 

For the PT-net N shown in Figure 3, consider three cycles γ1, γ2, γ3 ∈ ΩN[p3], where γ1 = 〈 p3, 

p2, p7 〉, γ2 = 〈 p3, p4 〉 and γ3 = 〈 p3, p1, p6, p10, p8 〉. Y1 = { γ1, γ2 } is conflict-free because for any 

q, q' ∈ P[Y1], there exists in P[Y1] a conflict-free path from q to q'. Y2 = { γ2, γ3 } is not conflict-

free. Consider Y2. We have p4, p8 ∈ P[Y2]. p4 is connected to p8 via only one path ρ = 〈 p4, t5, 

p3, t1, p1, t3, p6, t6, p10, t9, p8 〉 in Y2, and ρ is not conflict-free because p4, p8 ∈ •t5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A PT-net N for illustration of conflict-free cycles. 

Property 4.11. Let S be a minimal siphon of an augmented marked graph (N, M0; R), and Y 

⊆ ΩN be a set of cycles such that S = P[Y]. Then, Y is conflict-free. 

Proof. It follows from Lemma 4.1 that, for any q, q' ∈ S = P[Y], there exists in S = P[Y] a 
conflict-free path from q to q'. Hence, Y is conflict free.  
For the augmented marked graph shown in Figure 1, { r1, p2, p4, p6, p7, p9 } is a minimal 

siphon covered by a set of cycles { 〈 r1, p4, p7 〉, 〈 r1, p2, p6, p9 〉 } which is conflict free. { r2, p3, 

p5, p6, p8, p10 } is another minimal siphon covered by a set of cycles { 〈 r2, p5, p8 〉, 〈 r2, p3, p6, 

p10 〉 } which is conflict-free. For the augmented marked graph shown in Figure 2, { r1, p3, p4, 

p7, p8 } is a minimal siphon covered by a set of cycles { 〈 r1, p3, p7 〉, 〈 r1, p4, p8 〉 } which is 

conflict free. { r1, p3, p5, p7, p8 } is another minimal siphon covered by a set of cycles { 〈 r1, p3, 

p7 〉, 〈 r1, p5, p8 〉 } which is conflict free. 
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Definition 4.8. Let (N, M0; R) be an augmented marked graph. A place r ∈ R is said to 

satisfy the R-inclusion if and only if, for any set of cycles Y ⊆ ΩN[R] such that Y is conflict-

free, •r ⊆ T[Y] ⇒ r• ⊆ T[Y]. 
Figure 4 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. Consider r1. For 

any set of cycles Y1 ⊆ ΩN[R] such that Y1 is conflict-free, •r1 ⊆ T[Y1] ⇒ r1
• ⊆ T[Y1]. Next, 

consider r2. For any set of cycles Y2 ⊆ ΩN[R] such that Y2 is conflict-free, •r2 ⊆ T[Y2] ⇒ r2
• ⊆ 

T[Y]. Both r1 and r2 satisfy the R-inclusion. 
Figure 5 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. For r1, there 

exists a set of cycles Y1 = { γ11, γ12 } ⊆ ΩN[R], where γ11 = 〈 r1, p5 〉 and γ12 = 〈 r1, p5, r2, p6 〉. •r1 = 

{ t5, t6 } ⊆ T[Y1] = { t3, t4, t5, t6 }, but r1
• = { t2, t3 } ⊄ T[Y1]. For r2, there exists a set of cycles Y2 = 

{ γ21, γ22 } ⊆ ΩN[R], where γ21 = 〈 r2, p6 〉 and γ22 = 〈 r2, p6, r1, p5 〉. •r2 = { t5, t6 } ⊆ T[Y2] = { t3, t4, 

t5, t6 }, but r2
• = { t1, t4 } ⊄ T[Y2]. Hence, r1 and r2 do not satisfy the R-inclusion property. 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4. An augmented marked graph for illustration of R-inclusion. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 5. Another augmented marked graph for illustration of R-inclusion. 
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Property 4.12. For an augmented marked graph (N, M0; R), a R-siphon S contains itself as a 

marked trap if every place r ∈ R in S satisfies the R-inclusion property. 
Proof. Let S = { p1, p2, ..., pn }. According to Property 4.3, S is marked. It follows from 

Properties 4.5 and 4.11 that there exists a set of cycles Y ⊆ ΩN[R], such that Y is conflict-free 

and P[Y] = S. Since S is a siphon, for each pi ∈ S, •pi ⊆ (•S ∩ S•) = (•P[Y] ∩ P[Y]•) = T[Y]. In 

case pi ∉ R, pi
• ⊆ T[Y] because | •pi | = | pi

• | = 1. In case pi ∈ R, given that pi satisfies the R-

inclusion property, pi
• ⊆ T[Y]. Every pi

• ⊆ T[Y] = (•P[Y] ∩ P[Y]•) and pi
• ⊆ •P[Y] = •S. Since S• 

= (p1
• ∪ p2

• ∪ ... ∪ pn
•) ⊆ •S, S is also a trap. S contains itself as a marked trap. ฀ 

Consider the augmented marked graph (N, M0; R), where R = { r1, r2 }, shown in Figure 4. 
Both r1 and r2 satisfy the R-inclusion property. { r1, p3, p4 } is a minimal siphon which 
contains itself as a marked trap. { r2, p5, p6 } is another minimal siphon which contains itself 
as a marked trap. 
Property 4.13. An augmented marked graph (N, M0; R) satisfies the siphon-trap property if 

and only if every place r ∈ R satisfies the R-inclusion property. 

Proof. (⇐) It follows from Properties 4.12 and 4.9. (⇒ by contradiction) Suppose there exists 

r ∈ R, such that r does not satisfy the R-inclusion property. According to Property 4.4, there 
exists a R-siphon S, in which r is the only marked place. It follows from Properties 4.5 and 

4.11 that there exists Y ⊆ ΩN[R], such that Y is conflict-free and S = P[Y]. According to 

Property 4.9, S contains a marked trap Q. Then, r ∈ Q and r• ⊆ (•Q ∩ Q•). Since S is a siphon, 

we have •r ⊆ (•S ∩ S•) = (•P[Y] ∩ P[Y]•) = T[Y]. However, as r does not satisfy the R-inclusion 

property, r• ⊄ T[Y] = (•P[Y] ∩ P[Y]•) = (•S ∩ S•), implying r• ⊄ (•Q ∩ Q•). ฀ 
Property 4.14. An augmented marked graph (N, M0; R) is live and reversible if every place r 

∈ R satisfies the R-inclusion property. 
Proof. According to Property 4.13, (N, M0; R) satisfies the siphon-trap property. It follows 
from Property 4.10 that (N, M0; R) is live and reversible.  
Consider the augmented marked graph (N, M0; R), where R = { r1, r2 }, shown in Figure 4. 
Both r1 and r2 satisfy the R-inclusion property. (N, M0; R) satisfies the siphon-trap property, 
and is live and reversible. 
Property 4.14 provides a cycle-based sufficient condition for live and reversible augmented 
marked graphs. Without finding siphons and checking if each of these siphons contains a 
marked trap, we need to check the R-inclusion property which involves finding cycles and 
checking their pre-sets and post-sets. This provides an alternative characterisation for live 
and reversible augmented marked graphs, apart from the existing siphon-based ones. 
Based on Properties 4.5, 4.8, 4.10, 4.12 and 4.14, we may revise the strategy for checking the 
liveness and reversibility of an augmented marked graph (N, M0; R) with the use of the R-
inclusion property, as follows. 

1. Check if every r ∈ R satisfies the R-inclusion property. If yes, report (N, M0; R) is live 
and reversible. Otherwise go to (b). 

2. Let R' ⊆ R be the set of places which do not satisfy the R-inclusion property. Based on 

ΩN[R'], find all R-siphons which contain at least one place in R'. 
3. For each R-siphon identified in (b), check if it contains a marked trap. If yes, (N, M0; R) 

is live and reversible. Otherwise, go to (d). 
4. For each R-siphon identified in (b) that does not contain any marked trap, check if it 

would never become empty. If yes, (N, M0; R) is live and reversible. Otherwise, (N, M0; 
R) is neither live nor reversible.HHHHHH 
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5. Boundedness and conservativeness 

This section first introduces a transformation, called R-transform, for augmented marked 
graphs. Based on R-transform, a number of characterisations for bounded and conservative 
augmented marked graphs are then derived. Strategies for checking boundedness and 
conservativeness are then presented. 
Property 5.1. Let (N, M0; R) be an augmented marked graph to be transformed into (N', M0') 

as follows. For each place r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 }, replace r with a 

set of places { p1, p2, ..., pkr }, such that M0'[pi] = M0[r] and pi
• = { tsi } and •pi = { thi } for i = 1, 

2, ..., kr. Then, (N', M0') is a marked graph. 

Proof. According to the definition of augmented marked graphs, for each place p ∉ R in N, 

M0; R), | •p | = | p• | = 1. Each place r ∈ R is replaced by a set of places { p1, p2, ..., pkr }, 

where | •pi | = | pi
• | = 1 for i = 1, 2, ..., kr. Hence, for every place q in N', | •q | = | q• | = 1. 

(N', M0') is a marked graph.  
Definition 5.1. Let (N, M0; R) be an augmented marked graph. The marked graph (N', M0') 
obtained from (N, M0; R) after the transformation as stated in Property 5.1 is called the R-
transform of (N, M0; R). 
Property 5.2. The R-transform of an augmented marked graph is live. 
Proof. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). Since the 
transformation process does not create new cycles, cycles in (N', M0') also exist in (N, M0; R). 
According to Property 4.1, every cycle in (N, M0; R) is marked, and hence, every cycle in (N', 
M0') is marked. Since (N', M0') is a marked graph, it follows from Property 2.2 that (N', M0') 
is live.  
Figure 6 shows an augmented marked graph (N, M0; R). Figure 7 shows the R-transform of 
(N, M0; R), where r is replaced by { q1, q2 }. It is a live marked graph. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. An augmented marked graph for illustration of R-transform. 

Property 5.3. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R), 

where r ∈ R is replaced by a set of places Q = { q1, q2, ..., qk }, and P0 be the set of marked 
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places in N'. Then, for each qi in N', there exists a place invariant αi of N' such that αi[qi] = 1 

and αi[s] = 0 for any place s ∈ P0 \ {qi}. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The R-transform of the augmented marked graph shown in figure 6. 

Proof. Let Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 }. According to the definition of augmented 

marked graphs, for each 〈tsi, thi〉, there exists an unmarked path ρ = 〈ts1, ..., th1〉 in (N, M0; R). 

Obviously, ρ also exists as an unmarked path in (N', M0'), and ρ together with qi forms a 

cycle γi which is marked at qi only. As (N', M0') is a marked graph, according to Property 2.5, 

the corresponding vector of γi is a place invariant αi of N'. Since qi is the only one marked 

place in γi, αi[qi] = 1 and αi[s] = 0 for any place s ∈ P0 \ {qi}.  

Property 5.4. Let (N, M0; R) be an augmented marked graph, where R = { r1, r2, ..., rn }. Let 

(N', M0') be the R-transform of (N, M0; R), where each ri is replaced by a set of places Qi, for i 

= 1, 2, ..., n. If every place in (N', M0') belongs to a cycle, then there exists a place invariant α 

of N' such that α > 0 and α[q1] = α[q2] = ... = α[qk] for each Qi = { q1, q2, ..., qk }. 

Proof. Let P = { p1, p2, ..., pn } be the set of places in N', and P0 be those marked places. Since 

each pi belongs to a cycle γi and (N', M0') is a marked graph, according to Property 2.5, the 

corresponding vector of γi is a place invariant αi' of N'. Then, α' = α1' + α2' + ... + αn' > 0 is a 

place invariant of N'. Consider Qi = { q1, q2, ..., qk }. Let qm ∈ Qi such that α'[qm] ≥ α'[qj] for 

any qj ∈ Qi. For each qj, according to Property 5.3, there exists an invariant αj' > 0 such that 

αj'[qj] = 1 and αj'[s] = 0 for any place s ∈ P0 \ {qj}. There also exists a place invariant α" = α' + 

hαj', where h ≥ 1, such that α"[qj] = α"[qm] and α"[s] = α'[s] for any s ∈ P0 \ {qj}. Hence, there 

eventually exists a place invariant α of N' such that α[q1] = α[q2] = ... = α[qk].  

Consider the R-transform (N', M0') of an augmented marked graph, as shown in Figure 7. 

For q1, there exists a place invariant α1, such that α1[q1] = 1 and α1[q2] = α1[p1] = α1[p2] = 0. 

For q2, there also exists a place invariant α2, such that α2[q2] = 1 and α2[q1] = α2[p1] = α2[p2] = 

0. In (N', M0'), every place belongs to a cycle. There also exists a place invariant α > 0, where 

α[q1] = α[q2]. 
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Lemma 5.1. Let N = 〈 P, T, F 〉 be a PT-net and N' = 〈 P', T', F' 〉 be the PT-net obtained from N 

after fusing a set of places Q = { q1, q2, ..., qn } ⊂ P into a single place r ∈ P'. If there exists a 

place invariant α of N such that α[q1] = α[q2] = ... = α[qn] = k ≥ 0, then there also exists a 

place invariant α' of N' such that α'[r] = k and α'[s] = α[s] for any s ∈ P'\{r} = P\Q. 

Proof. Since N' is obtained from N by fusing Q = { q1, q2, ..., qn } into r, we have P' = (P\Q) ∪ 

{ r }. Let V be the incidence matrix of N. Then, the incidence matrix V' of N' satisfies that 

V'[r] = Σi=1,2,...,nV[qi] and V'[s] = V[s] for any s ∈ P'\{r} = P\Q. Since α is a place invariant of 

N, αV = 0. Let α' be a place vector of N' such that α'[r] = α[q1] = α[q2] = ... = α[qn] = k and 

α'[s] = α[s] for every s ∈ P'\{r} = P\Q. Then, α'V' = α'[r]V'[r] + Σp∈(P'\{r})α'[p]V'[p] = 

Σi=1,2,...,nα[qi]V[qi] + Σp∈(P\Q)α[p]V[p] = αV = 0. Hence, α' is a place invariant of N'.  

Lemma 5.2. Let N = 〈 P, T, F 〉 be a PT-net and N' = 〈 P', T', F' 〉 be the PT-net obtained from N 

after fusing a set of places Q = { q1, q2, ..., qn } ⊂ P into a single place r ∈ P'. If there exists a 

place invariant α' of N' such that α'[r] = k ≥ 0, then there also exists a place invariant α of N 

such that α[q1] = α[q2] = ... = α[qn] = k and α[s] = α'[s] for any s ∈ P\Q = P'\{r}. 

Proof. Since N' is obtained from N by fusing Q = { q1, q2, ..., qn } into r, we have P' = (P\Q) ∪ 

{ r }. Let V be the incidence matrix of N. Then, the incidence matrix V' of N' satisfies that 

V'[r] = Σi=1,2,...,nV[qi] and V'[s] = V[s] for any s ∈ P'\{r} = P\Q. Since α' is a place invariant of 

N', α'V' = 0. Let α be a place vector of N such that α[q1] = α[q2] = ... = α[qn] = k and α[s] = 

α'[s] for every s ∈ P\Q = P'\{r}. Then, αV = Σi=1,2,...,nα[qi]V[qi] + Σp∈(P\Q)α[p]V[p] = α'[r]V'[r] + 

Σp∈(P'\{r})α'[p]V'[p] = α'V'. Hence, α is a place invariant of N.  

Property 5.5. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). (N, 

M0; R) is bounded and conservative if and only if every place in (N', M0') belongs to a cycle. 

Proof. (⇐) Let R = { r1, r2, ..., rn }. (N', M0') is the R-transform of (N, M0; R), where each ri is 

replaced by a set of places Qi, for i = 1, 2, ..., n. Since every place in (N', M0') belongs to a 

cycle, according to Property 5.4, there exists a place invariant α' of N' such that α' > 0 and 

α'[q1] = α'[q2] = ... = α'[qk] for each Qi = { q1, q2, ..., qk }. It follows from Lemma 5.1 that there 

also exists a place invariants α of N such that α > 0 and α[ri] = α'[q1] = α'[q2] = ... = α'[qk] for 

each Qi. Hence, (N, M0; R) is conservative. According to Property 2.1, (N, M0; R) is bounded. 

(⇒) Since (N, M0; R) is conservative, there exists a place invariant α of N such that α > 0. 

Consider each ri ∈ R which is replaced by Qi = { q1, q2, ..., qk }. According to Lemma 5.2, 

there also exists a place invariant α' of N' such that α' > 0 and α'[q1] = α'[q2] = ... = α'[qk] = 

α[ri] and α'[s] = α[s] for any s ∈ P'\Qi. Hence, (N', M0') is conservative. It follows from 

Property 2.1 that (N', M0') is bounded. Since (N', M0') is a marked graph, according to 

Property 2.3, every place in (N', M0') belongs to a cycle.  

Property 5.6. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). (N, 

M0; R) is bounded and conservative if and only if (N', M0') is bounded. 

Proof. It follows from Properties 2.3 and 5.5.  
Consider the augmented marked graph (N, M0; R) shown in Figure 6, and the R-transform 

(N', M0') of (N, M0; R). Every place in (N', M0') belongs to a cycle. (N, M0; R) is bounded and 

conservative. (N', M0') is also bounded and conservative. 

Figure 8 shows another augmented marked graph (N, M0; R). Figure 9 shows the R-

transform (N', M0') of (N, M0; R), where r is replaced by { q1, q2 }. For (N', M0'), places p3 and 

p10 do not belong to any cycle. (N, M0; R) is neither bounded nor conservative. 
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Fig. 8. Another augmented marked graph for illustration of R-transform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The R-transform of the augmented marked graph shown in figure 8. 

Based on Properties 5.5, the following strategy is derived for checking the boundedness and 

conservativeness of an augmented marked graph (N, M0; R) : 

1. Create the R-transform of (N, M0; R). 
2. Let (N', M0') be the R-transform. For each place p in N', check if there exists a cycle that 

contains p. If yes, (N, M0; R) is bounded and conservative. Otherwise, (N, M0; R) is 
neither bounded nor conservative. 

t2

r1

t1

p1  

 

p4 p5
  

 

 

 

 

t8
 

t5
 

p6

p9

t3

t4
 p2  

 

p3 

p10 

p7 p8
  

t7t6
  

t2

q1 

t1

p1  

 

p4 p5
  

 

 

 

 

t8
 

t5
 

p6

p9

t3

t4
 p2  

 

p3 

p10 

p7 p8
  

t7t6
  

q2
 

www.intechopen.com



Augmented Marked Graphs and the Analysis of Shared Resource Systems 

 

391 

6. The Dining philosophers problem 

This section illustrates the properties of augmented marked graphs obtained in the previous 

two sections using the dining philosophers problem. By modelling the dining philosophers 

problem by an augmented marked graph, the system is analysed on its liveness, 

reversibility, boundedness and conservativeness based on the properties of augmented 

marked graphs. 

Example 1 : The Dining Philosophers Problem (Version 1) 

Six philosophers (H1, H2, H3, H4, H5 and H6) are sitting around a circular table for dinner. 

They are either meditating or eating the food placed at the centre of the table. There are six 

pieces of chopsticks (C1, C2, C3, C4, C5 and C6) shared by them for getting the food to eat, as 

shown in Figure 10. For one to get the food to eat, both the chopstick at the right hand side 

and the chopstick at the left hand side must be available. The philosopher then grasps both 

chopsticks simultaneously and then takes the food to eat. Afterwards, the chopsticks are 

released and returned to their original positions simultaneously. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The dinning philosophers problem. 

Figure 11 shows an augmented marked graph (N, M0; R), representing the dining 
philosophers problem (version 1). Table 1 shows the semantic meanings of the places and 
transitions. There are 24 R-siphons, namely, {r1, p61, p11}, {r1, p61, p12}, {r1, p62, p11}, {r1, p62, 
p12}, {r2, p11, p21}, {r2, p11, p22}, {r2, p12, p21}, {r2, p12, p22}, {r3, p21, p31}, {r3, p21, p32}, {r3, p22, p31}, 
{r3, p22, p32}, {r4, p31, p41}, {r4, p31, p42}, {r4, p32, p41}, {r4, p32, p42}, {r5, p41, p51}, {r5, p41, p52}, {r5, 
p42, p51}, {r5, p42, p52}, {r6, p51, p61}, {r6, p51, p62}, {r6, p52, p61} and {r6, p52, p62}. Each of these R-
siphons contains a marked trap and would never become empty. Based on the results 
obtained in Section 4, (N, M0; R) is live and reversible. On the other hand, for the R-
transform of (N, M0; R), every place belongs to a cycle. Based on the results obtained in 
Section 5, (N, M0; R) is bounded and conservative. 
Example 2 : The Dining Philosophers Problem (Version 2) 
The Dining Philosophers Problem is now modified as follows. For one to get the food to eat, 
he or she first grasps the chopstick at the right hand side if available, then grasps the 
chopstick at the left hand side if available, and then takes the food to eat. Afterwards, the 
chopsticks are released and returned to their original positions simultaneously. 
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Fig. 11. Augmented marked graph (Example 1). 

Semantic meaning for places Semantic meaning for transitions 

p11 H1 is meditating. t11 H1 takes the action to grasp C1 and C2. 

p12 H1 has got C1 and C2 and takes the food. t12 H1 takes the action to return C1 and C2. 

p21 H2 is meditating. t21 H1 takes the action to grasp C2 and C3. 

p22 H2 has got C2 and C3 and takes the food. t22 H1 takes the action to return C2 and C3. 

p31 H3 is meditating. t31 H1 takes the action to grasp C3 and C4. 

p32 H3 has got C3 and C4 and takes the food. t32 H1 takes the action to return C3 and C4. 

p41 H4 is meditating. t41 H1 takes the action to grasp C4 and C5. 

p42 H4 has got C4 and C5 and takes the food. t42 H1 takes the action to return C4 and C5. 

p51 H5 is meditating. t51 H1 takes the action to grasp C5 and C6. 

p52 H5 has got C5 and C6 and takes the food. t52 H1 takes the action to return C5 and C6. 

p61 H6 is meditating. t61 H1 takes the action to grasp C6 and C1. 

p62 H6 has got C6 and C1 and takes the food. t62 H1 takes the action to return C6 and C1. 

r1 C1 is available for pick. 

r2 C2 is available for pick. 

r3 C3 is available for pick. 

r4 C4 is available for pick. 

r5 C5 is available for pick. 

r6 C6 is available for pick. 

 

Table 1. Semantic meaning for the places and transitions in Fig. 11. 
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Figure 12 shows an augmented marked graph (N, M0; R), representing the dining 
philosophers problem (version 2). Table 2 shows the semantic meanings of the places and 
transitions. The set of places {r1, p13, r2, p23, r3, p33, r4, p43, r5, p53, r6, p63} is a R-siphon which 

would become empty after firing the sequence of transitions 〈t11, t12, t13, t14, t15, t16〉. Based on 
the results obtained in Section 4, (N, M0; R) is neither live nor reversible. Deadlocks would 

occur, for example, after firing 〈t11, t12, t13, t14, t15, t16〉. On the other hand, for the R-transform 
of (N, M0; R), every place belongs to a cycle. Based on the results obtained in Section 5, (N, 
M0; R) is bounded and conservative. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Augmented marked graph (Example 2). 

7. Application to manufacturing system 

Manufacturing systems are typically shared resource systems, wherein the resources used to 

be maximally shared among different asynchronous processes. Moreover, every resource 

has a pre-defined capacity limit that can never be exceeded. Therefore, in manufacturing 

system design, a major design objective is to achieve a live, bounded and reversible system - 

liveness implies freeness of deadlock, boundedness implies absence of capacity overflow, 

and reversibility allows system recovery. Verification of the system liveness, boundedness 

and reversibility is essentially required, though very time-consuming. 
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Possessing a specific structure for representing shared resources, augmented marked graphs 

are often used for modelling manufacturing systems. By modelling a manufacturing system 

as an augmented marked graph, this section shows how the system liveness, boundedness 

and reversibility can be analysed, based on the properties of augmented marked graphs. 
 

Semantic meaning for places Semantic meaning for transitions 

p11 H1 is meditating. t11 H1 takes the action to grasp C1. 

p12 H1 has got C1 and prepares to pick C2. t12 H1 takes the action to grasp C2. 

p13 H1 has got C1 and C2 and takes the food. t13 
H1 takes the action to return C1 and 

C2. 

p21 H2 is meditating. t21 H2 takes the action to grasp C2. 

p22 H2 has got C2 and prepares to pick C3. t22 H2 takes the action to grasp C3. 

p23 H2 has got C2 and C3 and takes the food. t23 
H2 takes the action to return C2 and 

C3. 

p31 H3 is meditating. t31 H3 takes the action to grasp C3. 

p32 H3 has got C3 and prepares to pick C4. t32 H3 takes the action to grasp C4. 

p33 H3 has got C3 and C4 and takes the food. t33 
H3 takes the action to return C3 and 

C4. 

p41 H4 is meditating. t41 H4 takes the action to grasp C4. 

p42 H4 has got C4 and prepares to pick C5. t42 H4 takes the action to grasp C5. 

p43 H4 has got C4 and C5 and takes the food. t43 
H4 takes the action to return C4 and 

C5. 

p51 H5 is meditating. t51 H5 takes the action to grasp C5. 

p52 H5 has got C5 and prepares to pick C6. t52 H5 takes the action to grasp C6. 

p53 H5 has got C5 and C6 and takes the food. t53 
H5 takes the action to return C5 and 

C6. 

p61 H6 is meditating. t61 H6 takes the action to grasp C6. 

p62 H6 has got C6 and prepares to pick C1. t62 H6 takes the action to grasp C1. 

p63 H6 has got C6 and C1 and takes the food. t63 
H6 takes the action to return C6 and 

C1. 

r1 C1 is available for pick. 

r2 C2 is available for pick. 

r3 C3 is available for pick. 

r4 C4 is available for pick. 

r5 C5 is available for pick. 

r6 C6 is available for pick. 

 

Table 2. Semantic meaning for the places and transitions in Fig. 12. 

Example 3. It is a FWS-200 Flexible Workstation System, extracted from the literature (Zhou 
& Venkatesh, 1999, pp. 121-124). The system consists of two robots R1 and R2, one feeder 
area and one PCB area, as shown in Figure 13. There are two asynchronous processes. 
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Production process 1 : R1 picks components from the feeder area, and moves into the PCB 
area for inserting components. The finished product is then moved out from the PCB area. 
Production process 2 : R2 picks components from the feeder area, and moves into the PCB 
area for inserting components. The finished product is then moved out from the PCB area. 
Figure 14 shows an augmented marked graph (N, M0; R), representing the FWS-200 flexible 
workstation system. Table 3 shows the semantic meanings of the places and transitions. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The FWS-200 flexible workstation system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Augmented marked graph (Example 3). 

For the augmented marked graph (N, M0; R) shown in Figure 14, every R-siphon would 
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reversible. For the R-transform of (N, M0; R), every place belongs to a cycle. Based on the 
results obtained in Section 5, (N, M0; R) is bounded and conservative. It is then concluded 
that the FWS-200 flexible workstation system is live, bounded, reversible and conservative. 
 

Semantic meaning for places Semantic meaning for transitions 

p11 R1 is ready t11 R1 starts picking components 

p12 Components for R1 are available t12 R1 starts inserting components 

p13 R1 is picking components from feeder t13 R1 starts moving out the product 

p14 
R1 is inserting components in PCB 

area 
t21 R2 starts picking components 

p21 R2 is ready t22 R2 starts inserting components 

p22 Components for R2 are available t23 R2 starts moving out the finished product 

p23 R2 is picking components from feeder

p24 
R2 is inserting components in PCB 

area 

r1 Feeder area is available 

r2 PCB area is available 

 

Table 3. Semantic meaning for the places and transitions in Fig. 14. 

Example 4. It is a flexible assembly system, extracted from the literature (Proth & Xie, 1996, 
pp. 58-61). The system consists of three conveyors C1, C2 and C3 and three robots R1, R2 and 
R3, as shown in Figure 15. There are three asynchronous processes. 
Assembly process 1 : C1 requests R1. After acquiring R1, it requests R2. After acquiring R2, it 
performs assembling and then releases both R1 and R2 simultaneously. 
Assembly process 2 : C2 requests R2. After acquiring R2, it requests R3. After acquiring R3, it 
perform assembling and then releases both R2 and R3 simultaneously. 
Assembly process 3 : C3 requests R3. After acquiring R3, it requests R1. After acquiring R1, it 
perform assembling and then releases both R3 and R1 simultaneously. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The flexible assembly system. 
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Figure 16 shows an augmented marked graph (N, M0; R), representing the flexible assembly 
system. Table 4 shows the semantic meanings of the places and transitions. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Augmented marked graph (Example 4). 

 

Semantic meaning for places Semantic meaning for transitions 

p12 C1 is occupying R1 t11 C1 starts acquiring R1 

p13 C1 is occupying R1 and R2 t12 C1 starts acquiring R2 

p21 C2 is ready t13 
C1 finishes assembling and release R1 and 

R2 

p22 C2 is occupying R2 t21 C2 starts acquiring R2 

p23 C2 is occupying R2 and R3 t22 C2 starts acquiring R3 

p21 C3 is ready t23 
C2 finishes assembling and release R2 and 

R3 

p22 C3 is occupying R3 t31 C3 starts acquiring R3 

p23 C3 is occupying R3 and R1 t32 C3 starts acquiring R1 

r1 R1 is available t33 
C3 finishes assembling and release R3 and 

R1 

r2 R2 is available 

r3 R3 is available 
 

Table 4. Semantic meaning for the places and transitions in Fig. 16. 
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For the augmented marked graph (N, M0; R) shown in Figure 16, there exists a R-siphon S = 

{ p13, p23, p33, r1, r2, r3 } which becomes empty after firing the sequence of transitions 〈 t11, t21, 

t31 〉. Based on the results obtained in Section 4, (N, M0; R) is neither live nor reversible. A 

deadlock would occur after firing 〈 t11, t21, t31 〉. For the R-transform of (N, M0; R), every place 

belongs to a cycle. Based on the results obtained in Section 5, (N, M0; R) is bounded and 

conservative. It is then concluded that the flexible assembly system is non-live, non-

reversible but bounded and conservative. 

8. Conclusion 

In the past decade, augmented marked graphs have evolved into a sub-class of Petri nets. 

They are often used for modelling shared resource systems, such as manufacturing systems. 

One major reason is that augmented marked graphs possess a special structure which is 

desirable for modelling shared resources. However, the properties of augmented marked 

graphs are not extensively studied. In the literature, there are a few published works on 

augmented marked graphs. 

This paper consolidates our earlier works on augmented marked graphs with a special focus 

on liveness, boundedness, reversibility and conservativeness. We provide a number of 

characterisations for live and reversible augmented marked graphs. In particulars, some of 

these characterisations are based on cycles, instead of siphons. Besides, we introduce the R-

transformation, on which characterisations for bounded and conservative augmented 

marked graphs are obtained. With these characterisations, some pretty simple conditions 

and procedures for checking the liveness, reversibility, boundedness and conservativeness 

of an augmented marked graph are derived. These have been illustrated using the dining 

philosophers problem. 

Typically, in designing shared resource systems, one need to achieve design objectives on 

two folds. On one hand, the resources are scarce and should be maximally shared. On the 

other hand, the system should be carefully designed so that erroneous situations due to the 

sharing of resources, such as deadlock and capacity overflow, can be avoided. Yet, the 

verification of liveness, boundedness and reversibility is very difficult and time-consuming. 

This paper contributes to provide an effective means to analysing these essential properties. 

By modelling a shared resource system as an augmented marked graph, its liveness, 

boundedness, reversibility and conservativeness can be effectively analysed, based on the 

characterisations and properties of augmented marked graphs. We specifically show the 

application to the analysis of manufacturing systems which are typically shared resource 

systems. Promising results are obtained. 
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