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Chapter

Style-Based Unsupervised
Learning for Real-World Face
Image Super-Resolution
Ahmed Cheikh Sidiya and Xin Li

Abstract

Face image synthesis has advanced rapidly in recent years. However, similar
success has not been witnessed in related areas such as face single image super-
resolution (SISR). The performance of SISR on real-world low-quality face images
remains unsatisfactory. In this paper, we demonstrate how to advance the state-
of-the-art in face SISR by leveraging style-based generator in unsupervised settings.
For real-world low-resolution (LR) face images, we propose a novel unsupervised
learning approach by combining style-based generator with relativistic discrimina-
tor. With a carefully designed training strategy, we demonstrate our converges
faster and better suppresses artifacts than Bulat’s approach. When trained on an
ensemble of high-quality datasets (CelebA, AFLW, LS3D-W, and VGGFace2), we
report significant visual quality improvements over other competing methods
especially for real-world low-quality face images such as those in Widerface.
Additionally, we have verified that both our unsupervised approaches are capable
of improving the matching performance of widely used face recognition systems
such as OpenFace.

Keywords: single image super-resolution (SISR), unsupervised learning,
degradation modeling, real-world face images

1. Introduction

With recent advancements in deep learning algorithms [1], Single Image
Superresolution (SISR) has seen a significant advance in performance in terms of
objective metrics like peak signal-to-noise-ratio (PSNR). With generative adversar-
ial networks (GAN) such as improvements of objective quality metric have been
extended to the visual quality of super-resolved images [2]. However, most of the
existing deep learning algorithms for solving SISR problems are categorized as
supervised; in that they rely on paired high-resolution (HR) and low-resolution
(LR) images to optimize the neural network weights. The HR images are
downsampled using algorithms (like bicubic downsampling) to create the
corresponding LR ones. These artificially created LR data deviate significantly from
the complex real word degradation model and with that a rapid decrease in perfor-
mance is observed when neural networks trained on artificial LR that are tested on
real-world LR images [3].
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In this chapter, we will focus on solving the problem of image superresolution
for face images. Super-resolving low resolution face images can help solve crucial
tasks such as person identification and recognition in the real world. To make our
solution work for real-world LR face images, we borrow ideas from recent advances
in style transfer [4] and image synthesis [5]. Style transfer refers to the task of
transforming one image from one style to another (e.g., photo to painting, daytime
to nighttime, and summer to winter). An important motivation behind our
approach is to treat SISR as a style transfer problem which does not require pairing
the HR-LR training data. In our unsupervised learning approach, we only assume
two uncorrelated datasets: one is a collection of real-world LR images and the other
HR images.

In the next sections, we will first review some related works including
convolutional neural network (CNN), generative adversarial networks (GAN),
image synthesis, and style transfer. We will then present an unsupervised approach
that works for real-world LR face images. The key idea is to combine style-based
generator [5] with relativistic discriminator [6] within a recently developed cycle-
consistent GAN (CycleGAN) framework [4]. We will show that both our
approaches outperform previous state-of-the-art ones.

2. Related works

In this section, we will first present to the reader the convolution neural net-
works and go through the different types of functions used in such networks. Our
focus will be on the main convolution operation. We will talk about the first paper
that showed that convolution neural networks can outperform model-based
approaches in the task of image super-resolution [7]. We will talk about generative
adversarial networks (GAN) and show that adding a discriminator can significantly
improve the visual quality of the superresolved image [2]. We will define image
synthesis task and present the latest advancements in the field. Finally, we will talk
about the style transfer problem and different architectures used to solve it; our
focus will be on the most popular one: CycleGAN [4].

2.1 Convolutional neural networks

2.1.1 Definition

Neural networks are a class of machine learning algorithms that are modeled
loosely on the mechanism of human brain (e.g., neocognitron [8]). It consists
of thousands or even millions of simple processing units that are densely
interconnected. Most existing neural networks are organized into layers of nodes
(simple processing units). They usually feed-forward information from input data
to the output in one direction. An individual node might be connected to several
nodes in the layer beneath it from which it receives data and several nodes in the
layer above it for which it sends data. Figure 1 shows an example of feed-forward
neural network. To each of its incoming connections, some nodes will assign a
number called “weight,” multiply the input coming from the connection with its
corresponding weights; other nodes will sum the results and add a value called bias.
In other nodes, a non-linearity called activation function is included which models
the biological firing of neurons in human brains [9].

The Convolutional Neural Network (CNN) are a type of neural networks that
are often designed to work on two-dimensional data such as image signals. In CNN,
the most basic operation is called “convolution” implementing a linear filter and

2

Recent Advances in Image Restoration with Applications to Real World Problems



modeling simple cells in human brains [10]. In the context of convolutional neural
networks, a convolution is a linear filtering operation that involves multiplying the
input with the weights similar to the traditional neural network. Given the nature of
2D inputs, the multiplication is done between an array of data and 2D array of
weights (often called filter or kernel).

The filter is smaller than the data and the multiplication operation between the
filter and the data is the dot product. The dot product is the element-wise multipli-
cation and summation resulting in one value. Having a filter or a kernel smaller than
the input data enables the sliding of the kernel over the whole input, therefore
giving the trained weights of the filter the ability to detect features anywhere in the
image. Convolutional neural networks might also consist of max-pooling opera-
tions, used to down-sample the input (modeling complex cells in human brain
[10]). Figure 2 shows a graphical representation of neural network.

2.1.2 Image super-resolution using convolutional neural networks

In [7], the authors present the first convolutional neural network called SRCNN
that outperforms traditional model-based approaches for the task of single image
super-resolution (SISR). The key idea underlying SRCNN is to learn a nonlinear
mapping from the space of LR images to that of HR ones. The work of SRCNN is
under the framework of supervised learning with the assumption of paired training
data (artificial LR images are generated by down-sampling of HR images). Their

Figure 1.
Graphical representation of feed-forward neural network.

Figure 2.
Example of convolution neural network.
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convolution neural network as shown in Figure 3 consists of two layers. Figure 4
shows the comparison between [7] and traditional model-based SR methods such as
sparse coding [11].

With advancements in deep neural networks, deeper architectures powered by
residual learning [12] has led to FSRCNN [13], DRCN [14], VDSR [15], EDSR [16]
and LapSRN [17], RDN [18], and RCAN [19]. With deeper and densely connected
networks, the performance of SISR has increased steadily at the price of higher
computational complexity. With millions of parameters, EDSR and RCAN have
advanced the state-of-the-art in supervised learning-based SISR. For face images,
SISR has also been studied in recent works (e.g., Super-FAN [20] and FSRNet [21]).

2.2 Generative adversarial networks (GAN)

2.2.1 Definition

In [22], Ian Goodfellow presented a novel system for the task of data generation.
This system is called generative adversarial network (GAN) consists of two
interacting subnetworks (generator and discriminator) as shown in Figure 5. A
generator subnetwork is responsible for generating synthetic data capturing the

Figure 3.
Convolution neural network architecture for [7].

Figure 4.
Comparisons between [7] and state-of-the-art model based methods.
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data distribution and a discriminator subnetwork for estimating the probability that
a sample comes from the real training data rather than synthetic. Through the
interplay between two subnetworks, the generator and discriminator networks can
be trained together by a minimax two-player game. The invention of GAN opens
the door to construct a whole new class of powerful generative models which have
found numerous applications in low-level vision including SISR, face image
synthesis, and style transfer.

2.2.2 Single image super-resolution using generative adversarial networks

In SRGAN [2], the authors showed that using a GAN-based architecture for the
task of single image super-resolution leads to noticeable improvements in terms of
subjective visual quality despite the sacrifice on traditional objective quality metric
such as PSNR. In the construction of SRGAN, residue network for SR-called
SRResnet is used as the generator; a separated discriminator inspired by Deep
Convolutional GAN (DCGAN) [23] is constructed to tell apart real SR from fake SR.
Figure 6 shows the visual quality improvement when using a GAN-based
architecture compared to using a generator without a discriminator.

2.3 Face image synthesis

Another successful application of GAN [2] is to generate high-fidelity face
images that do not even exist in the real world. Radford et al. designed a variation of
GAN architecture called Deep Convolutional GAN (DCGAN) [23] to generate face
images; however, their results suffered from noticeable artifacts in synthesized

Figure 5.
Architecture of GANs.

Figure 6.
Comparison between SRGAN and SRResnet.
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images. More recently, self-attention (SAGAN) [24] used an attention mechanism
to help minimize undesirable artifacts in generated images. Cleverly, designing loss
functions for both discriminator and generator has shown impressive improve-
ments in terms of convergence and artifacts suppression for the GAN networks.

Before 2017, most generated faces were still of low resolution, with the highest
resolution equal to 128� 128. In [5, 25], it was shown that progressively training the
generator network helped generate face images up to 1024� 1024 resolution.
Figure 7 shows an example of visual quality improvements in face image synthesis
in the past 5 years, for example, from Progressive GAN [25] to StyleGAN [5] and its
enhancement version StyleGAN2 [26].

Figure 7.
Example of the progression made in GAN-based face synthesis from 2014 to 2017 (cited from [27]).

Figure 8.
Results from pix2pix [28].
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2.4 Style transfer (CycleGAN)

Recently, GAN-based architectures were used for the task of style transfer, that
is, translating one image from one style to another style (e.g., from sketch to real
image). In [28], another GAN-based architecture called pix2pix was developed to
transfer images from one style into another. Figure 8 shows the example of trans-
lating sketch images of hand bags into real images. These works are based on an
architecture called conditional GAN (cGAN) [30] in which the data instead of
random noise are fed to (provided as the condition) both the generator and dis-
criminator. However, pix2pix [28] is a supervised learning technique, and it
requires the existence of groundtruth data.

To extend the style transfer to the domain where groundtruth is unavailable, an
unsupervised architecture called cycle-consistent GAN (CycleGAN) was proposed
in [29]. In CycleGAN [29], two parallel GAN architectures are trained concurrently:
the first one to map from source domain to target domain and the second one to
map from target domain back to source domain. The new insight brought by
CycleGAN [29] is the enforcement of cycle-consistency, that is, when an image X is
translated from source domain to target domain via forward mapping f and then
translated back to the original domain via background mapping g, the result should
approach the original image (x≈g f xð Þð Þ). Figure 9 shows an example of the
CycleGAN [29] architecture with two generators and two discriminators.

3. Unsupervised approach

3.1 Overview of the method

We are interested in solving the problem of image face super-resolution for real
world LR data. Unlike artificial LR data, the ground-truth is unavailable for real-
world LR data. For such blind SR problem, we propose to tackle it as style transfer,
that is, the transfer between LR and HR image data. We mainly focus on an
asymmetrical formulation of style transfer problem in one direction: from LR to HR.

Figure 9.
CycleGAN [29] architecture.
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Based on this observation, we do not need to enforce the cycle consistency for the
direction of low-to-high transfer. Our overall network architecture is shown in
Figure 10, consisting of two generative adversarial networks called high-to-low and
low-to-high, respectively. The high-to-low GAN takes a HR face as the input and
project it into the style of the real world LR faces. The low-to-high GAN takes the
output of high-to-low generator as the input and try to reconstruct the original HR
faces.

3.2 Dataset collection

High Resolution (HR) data:We have created our HR dataset by combining
several publicly available HR face datasets: CelebA [31], AFLW [32], LS3D-W [33],

and VGGFace2 [34]. For the reason of consistency, we have used S3fd [35] to crop
the face region in each image. We ended up with a total of 229,041 training images
and 8892 testing images. All images are resized to 128� 128. Real Low Resolution
Data (RLR):We created our real LR dataset from Widerface [36] and we crop the
face region using [35]. We have ended up with a total of 156,557 LR training images
and 8241 LR testing images. All images have been resized to 16� 16 (i.e., a scaling
factor of 8).

Artificial Low Resolution (ALR) data: To create this dataset, we downsample
our HR images by a factor of 8 using the “bilinear” method provided by Matlab.
Note that the use of ALR is only for supervised learning experiences which require
paired HR-LR training data.

3.3 Details of network architecture

In this section, we go through the detailed of the convolution neural networks
that form our unsupervised architecture in Figure 10. We have two generators and
two discriminators.

3.3.1 Building blocks

Our generators are made up of a number of blocks that we call residual +
attention [37] (Figure 11). We use self attention layers as defined in [38] as part of

Figure 10.
Architecture of our unsupervised approach for real-world face superresolution.
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both low-to-high and high-to-low discriminators. The details of self-attention layer
are shown in Figure 12.

3.3.2 High-to-low generator

High-to-low generator has an encoder-decoder type architecture [39]: with the
encoder consisting of five residual + attention blocks each followed by average

Figure 11.
Residual + attention block.

Figure 12.
Self-attention layer.
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pooling layer and the decoder consisting of four residual + attention blocks where
the first two are followed by bilinear upsampling layer. Therefore, the input is
downsampled by a factor of 32 and upsampled by a factor of 4, which produces a
down-sampled image by a factor of 8 but with more flexibility of modeling degra-
dation (e.g., unknown blur [40]). We also concatenate a noise vector to the input
image of the network using a fully connected layer, which contributes to the
robustness of the proposed degradation modeling. The details of the high-to-low
generator architecture is shown in Figure 13.

3.3.3 Low-to-high generator

Low to high generator subnetwork consists of four sections of 6, 3, 2, and 1
successive residual attention blocks separated by bilinear upsampling of 2 (similar
to the strategy of progressive growing GAN [25]); overall the input 16� 16 patch is
up-sampled by a factor of 8. The details of the architecture are shown in Figure 14.

3.3.4 High-to-low discriminator

High-to-low discriminator subnetwork consists of three convolution layers
followed by a leaky relu layer and a last convolutional layer. We have added two
self-attention layers at the end of the network (refer to Figure 15).

3.3.5 Low-to-high discriminator

Low-to-high discriminator consists of four convolution layers followed by a
leaky relu layer and a last convolution layer. Similarly, we have also added two self-
attention layers. The details of the architecture are in Figure 16.

Figure 13.
Architecture of the high to low generator.

Figure 14.
Architecture of the low to high generator.
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3.4 Loss functions

The generator loss, in both high-to-low and low-to-high GANs, is the
weighted sum of the content loss and the GAN loss, as shown in Eq. (1) where α ¼ 1
and β ¼ 0:001.

LG ¼ αLpixel þ βLG
GAN (1)

The GAN losses and the pixel loss function follow the formula in Eqs. (2)
and (3).

f u, vð Þ ¼
1

2

�


u�Pu

max 0, 1� D uð Þ � 
v�Pv

D vð Þ½ �

� �� �� �

þ


v�Pv
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D uð Þ½ �
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g u, vð Þ ¼
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WH

X

W

i¼1

X

H

j¼1

ui,j � vi,j
� 	2

(3)

3.4.1 High-to-low GAN loss functions

Generator loss: As mentioned above, the generator loss is the weighted sum of

the content loss and the GAN loss, Eq. (1), where LG
GAN ¼ f IRLR, IFLRð Þ and Lpixel ¼

g IALR, IFLRð Þ.

Discriminator loss: The discriminator is defined as follows: LD
GAN ¼ f IFLR, IRLRð Þ.

IALR is the artificial low resolution image, IFLR the fake low resolution image

Figure 15.
Architecture of the high to low discriminator.

Figure 16.
Architecture of the low-to-high discriminator.
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generated by the high to low generator, and IRLR the real world low resolution images.
Functions f and g are defined, respectively, in Eqs. (2) and (3).

3.4.2 Low-to-high GAN loss functions

Generator Loss: Similarly, the generator loss is the weighted sum of the content

loss and the GAN loss in Eq. (1), where LG
GAN ¼ f IHR, IFHRð Þ and Lpixel ¼ g IHR, IFHRð Þ.

Discriminator loss: The discriminator is defined as follows: LD
GAN ¼ f IFHR, IHRð Þ.

IFHR is the fake high resolution image generated by the low to high generator and
IHR the real world high resolution image. Functions f and g are defined, respec-
tively, in Eqs. (2) and (3).

3.5 Training strategy

It is worth mentioning that we have not augmented the data during training
by standard techniques such as image flipping, scaling, and rotation. Our experi-
ence suggests that for unsupervised learning, data augmentation does not help
improve the accuracy of face SR reconstruction but increase the computational
burden as well as the risk of introducing artifacts (due to unpaired LR-HR train-
ing data). We have also found that the popular normalization tricks (e.g., batch
normalization [41] and spectral normalization [42]) do not help in the
unsupervised scenario but have the tendency of introducing artifacts to super-
resolved images.

We have used a batch of size 32, and the total training requires about 20 epochs
or �143,000 generators and discriminators updates. The learning rate is kept at
0:001 throughout the training process, and the overall architecture is trained in an
end-to-end manner. We also use Adam optimizer [43] with β1 ¼ 0 and β2 ¼ 0:9 and
adopt a PyTorch-based implementation [44].

4. Experimental results

In this section, we present a comparison between our style-based approaches
toward SISR of face images and state-of-the-art supervised (FSRNET [21]) and
unsupervised ones (Bulat’s [3]). First, we use extensive ablation studies to show the
effect of removing the low-to-high discriminator (Figure 16) from the architecture
and demonstrate the output of our degradation model. As an extension of our
ablation study, we also present a supervised approach for ALR face images based on
using GAN composed of our low-to-high generator (Figure 14) and low-to-high
discriminator (Figure 16) but without any cycle involved. Finally, we will report
our unsupervised learning results on real-world LR face images and compare them
against other competing approaches.

4.1 Ablation study

4.1.1 Importance of the discriminator

We have compared the outputs of our unsupervised architecture with and with-
out the high-to-low discriminator. The image comparison results are shown in
Figure 17. It is obvious that discriminator plays a significant role in improving the
visual quality of super-resolved images.
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4.1.2 Degradation modeling

We next show the capability of high-to-low network on learning real-world
degradation models. Figure 18 includes several typical examples of learned LR
images from HR inputs. It is important to note that our high-to-low network has
managed to learn a variety of degradation models including varyimg poses and
severe blurs.

4.1.3 Deep features visualization

We also visualize the feature maps of the low-to-high generator in Figure 14. In
this visualization experiment, we have plotted the output from Sections 2, 3, and 4
as shown in Figure 19. It can be observed that as section/layer number increases,
the learned feature representations have a larger field of view as well as more
sophisticated semantic information related to faces.

4.2 Supervised approach

We have experimented with a GAN-based supervised approach toward SISR as
an extension of our ablation study. Such experiment is included to demonstrate a
degeneration of network architecture from unsupervised (Figure 10) to supervised
(Figure 20) setting. We have used the same architecture for the low-to-high

Figure 18.
Effectiveness of degradation model learning: exemplar synthetic LR images from the high-to-low network (note
the rich variability and similarity to the real-world Widerface dataset [36]).

Figure 17.
Comparison between our unsupervised method with and without the discriminator on Widerface dataset [36].
First row without discriminator; second row with discriminator. Please zoom in for better visualization.
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generator and discriminator as in Figures 14 and 16. To get paired LR and HR
images; we downsample the original high resolution faces by a scaling factor of 8 to
create artificial low resolution (ALR) images as explained in Section 3.2. The overall
architecture of this reduced supervised approach is detailed in Figure 20.

4.2.1 Loss functions

Similar to Section 3.4, the loss functions for our supervised approach are defined
as follows:

Generator loss: the generator loss is the weighted sum of the content loss and

the GAN loss, Eq. (1) where LG
GAN ¼ f IFHR, IHRð Þ and Lpixel ¼ g IHR, IFHRð Þ.

Discriminator loss: LD
GAN ¼ f IHR, IFHRð Þ where IHR denotes the high resolution

image and IFHR is the reconstructed high resolution one generated by our network.
Functions f and g are defined, respectively, in Eqs. (2) and (3).

4.2.2 Training strategy

We have used a batch of size 32 and trained for 20 epochs or �143,000 updates
of generator and discriminator. The learning rate is kept at 1e� 4 throughout the

Figure 19.
Feature maps for low-to-high generator. From left to right: �2-upsampling, �4-upsampling, �8-upsampling,
and the output image.

Figure 20.
Architecture of the supervised approach.
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training process. We have used Adam optimizer [43] with β1 ¼ 0 and β2 ¼ 0:9 and
implemented our supervised learning SR using Pytorch [44].

4.3 Comparison with other supervised approaches

We compare our unsupervised face super-resolution approach with two super-
vised approaches; FSRNET [21] and our own approach outlined in Section 4.2.
FSRNET [21] uses geometric priors to estimate (e.g., facial landmark heat maps and
parsing maps) to facilitate the procedure of supervised learning.

4.3.1 Performance on artificial low resolution test data

We report our experimental results for ALR data and compare them against the
current state-of-the-art FSRNet/FSRGAN [22]. Despite being synthetic, ALR
images are still useful because they have ground-truth (HR) available and appro-
priate for gauging the performance of supervised learning (with paired HR-LR
training data).

Subjective quality comparisons: Figure 21 shows the qualitative comparisons
between our supervised/unsupervised approaches and state-of-the-art supervised
method FSRGAN [21]. It can be easily verified that ours can produce visually more
convincing and pleasant HR results than FSRGAN (e.g., sharper contrast, more
natural hair, and fewer artifacts around earrings).

Figure 21.
Visual quality comparisons among competing methods on artificial low resolution face images. Rows top-down:
bicubic, FSRGAN [21], ours (supervised), ours (unsupervised) and groundtruth. Please zoom in for better
visualization.

Method PSNR

FSRGAN [21] 22.840

Ours (Supervised) 23.65

Ours (Unsupervised) 21.97

Table 1.
Objective quality results of different methods on ALR images in terms of PSNR (dB) (highest PSNR is
highlighted by bold-face).
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Objective quality comparisons:We report the comparison results in terms of
peak signal-to-noise ratio (PSNR) in Table 1. Our supervised learning outperforms
FSRGAN [21] by as much as 0:8dB.

4.3.2 Performance on real world wider test data

We tested both our supervised and unsupervised methods on the popular real-
world LR dataset Widerface [36]. This dataset is particularly challenging for face
detection and SR because its 393,703 faces contain a high degree of variability in
scale, pose, and occlusion. Due to lack of groundtruth images (HR counterparts) for
this dataset, we have to count on visual quality comparison alone for performance
evaluation (without PSNR comparisons). We report our visual quality comparison
between our methods and current state-of-the-art supervised (FSRGAN [22]).
Figure 22 shows the results; we can see that the unsupervised approach outper-
forms supervised ones in case of real world low resolution images.

4.4 Comparison with state-of-the-art unsupervised approach

We compare our unsupervised method with Bulat’s [45]. We show that our
methods are able to better preserve facial features Figure 23.

One can observe that the SR image produced by Bulat’s [45] method has the
following problems: age variation (third), gender swapping (fourth and seventh),
and artifacts (second and seventh).

4.5 Performance in term of receiver operating curve (ROC)

Using Openface [46] matching algorithm, we plot the ROC curve for three types
of degradation models: artificial degradation (or ALR), jpeg compression, and our
high-to-low degradation model. We show that our proposed supervised approach
outperform all previous ones in case of artificial degradation and our unsupervised
approach performs the best when it comes to the other two degradation models.

Figure 22.
Qualitative comparisons with FSRGAN on Widerface test data. Rows are respectively: Bicubic, FSRGAN, ours
(supervised), and ours (unsupervised). Please zoom in for better visualization.

Figure 23.
Qualitative comparisons with Bulat’s method [3] on Widerface test data. Rows are respectively: Bicubic, Bulat’s
method, and ours (unsupervised). Please zoom in for better visualization.
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4.5.1 Performance on artificial low resolution data

We have compared our supervised and unsupervised approach with FSRNET
[21] and Bulat’s [45] in terms of ROC curve results. We use our Artificial Low
Resolution (ALR) test data. Figure 24 shows that our supervised method outper-
forms all other methods. On the other hand, our unsupervised method performs
worse than FSRNET [21] but still performs significantly better than previous
unsupervised state-of-the-art approach Bulat’s [45].

Figure 24.
ROC curve for ALR test data.

Figure 25.
ROC curve for compressed test data.
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4.5.2 Performance on compressed data

We compressed our Artificial Low Resolution (ALR) test data using JPEG lossy
compression. We used this compressed data to plot the ROC curve for our super-
vised and unsupervised approach as well as Bulat’s [3]. Our unsupervised approach
outperforms better than the other ones, as shown in Figure 25.

4.5.3 Performance on generated low resolution data

We also plotted the ROC curve using the data generated by passing high resolu-
tion test data to our trained high-to-low generator. We show here that our
unsupervised approach performs better than our supervised one; Figure 26.

Figure 26.
ROC curve for our high-to-low degradation model.

Figure 27.
Exemplar failure cases of our unsupervised method on Widerface test data. Top-row: Input LR; bottom-row:
our SR result (unsupervised).
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4.6 Failure cases

As mentioned above, our approach intentionally skips the step of data augmen-
tation. It turns out that our method is still sensitive to extreme variations of face
pose such as as those shown in Figure 27. Due to severe occlusions and large pose
variations, those LR examples are often rare even among Widerface dataset. This is
within our expectation because high-to-low network simply does not have suffi-
cient training data to learn the challenging degradation model. Note that similar
findings have been reported for Bulat’s method in [3] (refer to Figure 9 in that
paper).

5. Conclusions

We have studied the problem of SISR for real-world face images in this chapter
and presented an unsupervised learning approach toward such blind reconstruction
of SR images. The challenging scenario of real-world LR low-quality images defies
conventional approaches based on paired HR-LR training data because groundtruth
HR images are generally unavailable for real-world LR images. By pairing style-
based generator with relativistic discriminator, we demonstrate an unsupervised
learning approach with GAN-based end-to-end optimization that is capable of
advancing the state-of-the-art in blind SR reconstruction of real-world LR face
images. We have compared our degradation modeling against previous Bulat’s
method as well as their ROC performance on artificial LR dataset. Extensive exper-
imental results have shown favorable performance for the proposed method over
Bulat’s method.
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