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Chapter

Recent Advances in Stock Market 
Prediction Using Text Mining: A 
Survey
Faten Subhi Alzazah and Xiaochun Cheng

Abstract

Market prediction offers great profit avenues and is a fundamental stimulus for 
most researchers in this area. To predict the market, most researchers use either 
technical or fundamental analysis. Technical analysis focuses on analyzing the 
direction of prices to predict future prices, while fundamental analysis depends 
on analyzing unstructured textual information like financial news and earning 
reports. More and more valuable market information has now become publicly 
available online. This draws a picture of the significance of text mining strategies 
to extract significant information to analyze market behavior. While many papers 
reviewed the prediction techniques based on technical analysis methods, the papers 
that concentrate on the use of text mining methods were scarce. In contrast to the 
other current review articles that concentrate on discussing many methods used for 
forecasting the stock market, this study aims to compare many machine learning 
(ML) and deep learning (DL) methods used for sentiment analysis to find which 
method could be more effective in prediction and for which types and amount of 
data. The study also clarifies the recent research findings and its potential future 
directions by giving a detailed analysis of the textual data processing and future 
research opportunity for each reviewed study.

Keywords: machine learning, deep learning, natural language processing,  
sentiment analysis, stock market prediction

1. Introduction

Stock market prediction aims to determine the future movement of the stock 
value of a financial exchange. The accurate prediction of share price movement 
will lead to more profit investors can make. Predicting how the stock market will 
move is one of the most challenging issues due to many factors that involved in the 
stock prediction, such as interest rates, politics, and economic growth that make the 
stock market volatile and very hard to predict accurately. The prediction of shares 
offers huge chances for profit and is a major motivation for research in this area; 
knowledge of stock movements by a fraction of a second can lead to high profits [1]. 
Since stock investment is a major financial market activity, a lack of accurate knowl-
edge and detailed information would lead to an inevitable loss of investment. The 
prediction of the stock market is a difficult task as market movements are always 
subject to uncertainties [2]. Stock market prediction methods are divided into two 
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main categories: technical and fundamental analysis. Technical analysis focuses on 
analyzing historical stock prices to predict future stock values (i.e. it focuses on the 
direction of prices). On the other hand, fundamental analysis relies mostly on ana-
lyzing unstructured textual information like financial news and earning reports. 
Many researchers believe that technical analysis approaches can predict the stock 
market movement [3–5]. In general, these researches did not get high prediction 
results as they depend heavily on structured data neglecting an important source 
of information that is the online financial news and social media sentiments. These 
days more and more critical information about the stock market has become avail-
able on the Web. Examples include BBC, Bloomberg, and Yahoo Finance. It is hard 
to manually extract useful information out of these resources. This draws a picture 
of the significance of text mining techniques to automatically extract meaningful 
information for analyzing the stock market. In this research, the most crucial past 
literature was reviewed, and a major contribution was made to the subject of using 
text mining and NLP for market prediction.

We revealed the finding of the selected studies to show the significantly 
improved performance of stock market forecasting via many machine learning 
methods. This study also clarifies the recent innovation researches and its potential 
future contribution. Comparisons and analyses of different researches are made 
on the financial domain of market prediction that can help to establish potential 
opportunities for future work. In this research, we also focused on the promising 
results accomplished by machine learning methods for analyzing the stock market 
using text mining and natural language processing (NLP) techniques.

In contrast to the other current survey articles that concentrate on summarizing 
many methods used for forecasting the stock market, we aim to compare many 
machine learning (ML) and deep learning (DL) methods used for sentiment 
analysis task of social media and financial news articles to find which method could 
be more effective in prediction. Figure 1 represents the reviewed study framework. 
The rest of this work is organized as follows. Section 2 provides a review of back-
ground concepts that are needed to be known before the detailed analysis of the 
literature. Section 3 illustrates the relationship between stock market prediction 
and text mining. Section 4 includes a review of the machine learning main methods 
used for stock market prediction based on textual resources. Section 5 explained the 
least frequently used algorithm for stock prediction based on text mining. Section 6 
describes the reviewed work text sources and period and number of collected items. 
Section 7 contains the reviewed works finding, limitation, the measurement used, 
and future work. Finally, Section 8 concludes this paper.

Figure 1. 
The reviewed study framework.
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2. A review of background concepts

Our work defined the following concepts as important to understand this 
research topic.

2.1 Sentiment analysis

Sentiment analysis uses text mining, natural language processing, and compu-
tational techniques to automatically extract sentiments from a text [6]. It aims to 
classify the polarity of a given text at the sentence level or class level, whether it 
reflects a positive, negative, or neutral view [7]. In stock market prediction task, 
two important sources of the text are used either social media mainly using Twitter 
data or online financial news article.

2.1.1 Twitter sentiment

Twitter is a significant source of data, and many researchers have examined its 
relationship with stock market movements [8]. While each tweet is restricted to 140 
characters, it is believed that the information can accurately reflect public mood [9].

2.1.2 Online financial news sentiment

Financial news articles are perceived to be a more consistent and reliable source 
of information. Many researchers suggested that the financial news articles have a 
strong relationship with stock market fluctuation; therefore, analyzing financial 
news reports can help in predicting the stock market movements [10]. In [11], 
the author used a unified latent space model to examine the relationship between 
stock prices and news article releases. The result indicates a good return accuracy, 
which proves that news article analysis has an important impact on stock market 
movement.

2.2 Textual data preprocessing

Textual data need to be prepared before used by the machine learning algorithm 
for sentiment analysis task using these methods.

2.2.1 Feature extraction

Feature extraction or sometimes called attribute selection aim to select fea-
tures, attributes, or piece of text that is more relevant to the prediction task. Many 
methods have been used for feature selection. The commonly used feature selection 
procedure for document or sentence classification task is the bag-of-words (BOW) 
approach, which was recently used for market prediction by many authors [12–14]. 
In the mentioned model, each word in a text or document will be treated as a 
feature neglecting the grammar or word order and only preserving the abundance. 
The second most popular method used recently for the feature selection process is 
Word2vec [12]. In this technique, the aim is to learn word embedding using a two-
layer neural network. The input to that neural network is a text, and the output is a 
group of vectors (i.e. the input is a corpus and the output is a vector of words).

Another important feature selection method is the latent Dirichlet allocation 
(LDA) technique used recently for market prediction in [13]. In the LDA model, the 
text is viewed as probabilistic collections of terms or words, and the collections are 
then treated as selected features. Other researches [12, 14] used a Skip-Gram model 
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that aims to predict the context word (surrounding words) for a given target word. 
However, feature selection is a crucial step in the textual data preprocessing, and 
many other strategies may also be used for text analysis.

2.2.2 Feature representation

After feature selection, every feature must be illustrated by a numeric value so 
that it can be analyzed by machine learning techniques. The most common tech-
nique of feature representation is a binary representation (BR), which is a number 
system that uses two values such as 0 and 1 exclusively to represent the informa-
tion. This technique has been exploited for market prediction researches by many 
authors [15–17]. The second most popular method used in text mining for financial 
application is the term frequency-inverse document frequency (TF-IDF), which is 
a numeric value that represents the significance of a word for a document or corpus 
that is used recently by many authors [12, 18]. Other feature representation meth-
ods can also be used successfully in text preprocessing, and we will discuss those 
with more details in the following sections.

3. The relationship between stock market prediction and text mining

Many papers study the relationship between stock price movements and the 
market sentiments, and the most relevant studies will be discussed in this section.

Ref. [19] examined the ability to use sentiment polarity (positive and nega-
tive) and sentiment emotions selected from financial news or tweets to predict the 
market movements. For sentiment analysis, they have collected a large dataset of 
the top 25 historical financial news headlines in addition to a large set of financial 
tweets collected from Twitter. Furthermore, they collected stock historical price 
data for many S&P 500 companies and used the close price as an indicator of the 
stock movements. For evaluation, they used the Granger causality test [20] that is a 
statistical test technique commonly used to reveal causality in time series data and 
explore if one-time series data can predict the other. For sentiment analysis, the 
authors examined two machine learning methods SVM and LSTM. The experiment 
result illustrated that in some cases sentiment emotions contribute to Granger-cause 
stock price fluctuation, but the finding was not inclusive and must be examined for 
each case. Also, it has been revealed that for some stocks, adding sentiment emo-
tions to the machine learning market prediction model will increase the prediction 
accuracy. Comparing the two machine learning methods, SVM achieved better and 
more balanced results, and that’s because the size of the dataset is quite small to be 
sufficiently used with SVM.

Another paper [21] examined the efficiency of using sentiment analysis of 
microblogging sites to forecast the stock price returns, volatility, and trading 
volume. The extracted intraday data from the two sources of information, Twitter 
and StockTwits, were collected for 2 years. For the evaluation, the authors used five 
famous stocks, namely, Amazon, Apple, Goldman Sachs, Google, and IBM. Prices 
were represented every 2 min, and the sentiment data were collected for the same 
period span of each trading day. To find the links between stock price outcomes and 
tweet sentiment, they applied Granger causality analysis. The experiments indicate 
that there is a causal link between Twitter sentiments and stock market returns, 
volatility, and volume. Among all five stocks, market volatility and volume seem to 
be more predictable than market direction or return.

In [22], the author exploited a multiplex network approach to study the cor-
relation between market movements and social media sentiments. The proposed 
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model merges information from two sources of data: Twitter posts and market price 
data. The authors selected 100 of the biggest capitalized companies of the S&P 
500 index for a 5-year period from May 2012 to August 2017. In their model, they 
suggested that financial network correlation was established by the integration of 
the two techniques. The first one suggests that two stocks tend to be associated if 
they share joint neighbors. The other techniques suggest that two connected stocks 
usually remain connected in the future. The findings demonstrated that a multiplex 
network approach incorporating information from both social media and financial 
data can be used to forecast a causal relationship framework with high accuracy.

The authors in [23] investigated the ability of economic news to predict Taiwan 
stock market returns. The proposed model used text mining techniques through-
out many steps. Firstly, they converted the textual news into numerical values. 
Secondly, they append the resulting numerical variable to regression models with 
macroeconomic attributes to examine the role of news articles in predicting stock 
price returns. The model also defines specific keywords and calculates the number 
of positive, negative, and neutral words in each news text and then converts them 
into three news attributes, which are then fed to the regression model. The experi-
ments find that adding news articles was able to reduce the root mean square error 
(RMSE) that proves that the economic news has crucial impacts on market returns. 
The experiments also indicate that negative news has more influence on the stock 
market returns than positive news articles.

The study proposed in [24] aims to analyze whether tweet messages could be 
used to predict future trends of stocks for particular companies listed on the Dow 
Jones stock market, focusing on 12 companies related to 3 distinct and crucial 
economic branches in technology, services, and health care. The authors gathered 
the company’s market data and Twitter posts for a 70-day period for analysis. The 
companies of each category were chosen based on the volume of messages that 
mention the company names on the StockTwits website. The study illustrates that 
some of the proposed ad hoc forecasting models well predict the next day direction 
of the stock movements for some companies with 82% of success and there is no 
unified method to be used with all cases. The results also indicate that more volume 
of a tweet will yield better prediction results. Moreover, the study proved the robust 
correlation between tweet’s posts and the trend movements for some companies.

Overall, past studies indicate that there is a strong relationship between market 
movements and information published in news and social media. The information 
on social media contributes to enhancing the prediction models with all of the 
discussed papers. The evaluation of event sentiment may affect the market returns 
further and boost the outcome of forecasting.

4. Machine learning for market prediction

Recently, many research studies used machine learning via text mining inno-
vation methods to successfully predict the stock market changes, and the most 
significant ones are going to be discussed in this section.

4.1 Support vector machines

Support vector machines (SVMs) are a supervised machine learning model used 
extensively in classification and regression tasks. SVM is a hyperplane that divides a 
collection of documents into two or more classes with a maximum margin [25].

SVM was first applied to the text classification task by Joachims [26]. In his 
approach, the author used a limited vocabulary as the feature collection by using 
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a list of the most occurred words and discard of uncommon words from the 
feature set. Utilizing 12,902 documents from the Reuters-21578 document group 
and 20,000 medical summaries, the author compared the effectiveness of many 
machine learning techniques such as SVM and Naive Bayes (NB). For both docu-
ment groups, the experiments demonstrated that the SVM achieve better classifica-
tion result compared to NB classifier.

For stock market prediction, many research papers used the SVM for text 
classification and sentiment analysis. Combining both textual information and 
historical stock prices for stock market prediction [27] research applied the SVM to 
forecast the Chinese stock direction and stock prices between the years 2008 and 
2015. For text mining, the authors formed a stop word and sentiment dictionary 
based on a specific domain. In the study, there were two kinds of input. The first 
one includes 2,302,692 news items, whereas the other contains only stock data of the 
largest 20 Chinese stocks based on trading volume. Support vector regression (SVR) 
is used to predict stock price, and support vector classification (SVC) is exploited to 
predict stock direction. The result indicates that both audience numbers and news 
quality have a crucial impact on the stock market. Moreover, for SVC, the direction 
accuracy was 59.1734%, which illustrates better progress than other works. The 
result also indicates that news articles have an important effect on the stock market 
fluctuations.

Another research [28] introduced a stock market prediction framework. For sen-
timent analysis, the researchers used two financial sentiment dictionary, namely, 
the Harvard IV-4 sentiment dictionary (HVD) and Loughran and McDonald 
(LMD) [29] financial dictionary. The dataset consists of 5 years of historical Hong 
Kong Stock Exchange prices and financial news collected from January 2003 to 
March 2008. For text classification SVM was used for training. Experiments indi-
cate that the techniques with sentiment analysis perform better than a bag-of-words 
model in accuracy measures. It also revealed the small difference between the two 
models LMD and HVD. For LMD the accuracy was 0.5527, whereas HVD accuracy 
was 0.5460, which indicates that the two dictionaries can be used effectively for the 
market prediction task.

Another paper [30] developed a model to predict three stock price directions 
with 1-day, 2-day and 3-day lag. The dataset contains financial news of SZ002424 
stock from September of 2012 to March of 2017. In order to analyze the structure 
of news and get the hiding information inside the contents, the authors proposed 
a semantic and structural kernel (S&S kernel). The kernel was based on SVM and 
uses medical industry news for evaluation. Experiments find that the proposed 
kernel can reach up to 73% accuracy when predicting the price trend with 2-day lag, 
which proves that content structure hidden in daily financial news can predict the 
stock market movements. The result also reveals that financial news has an impor-
tant influence on stock movements that typically last for 2–3 days.

In the work of [31], the authors used a lexicon-based approach to predict the 
stock market based on Twitter user feelings. The authors used historical stock data 
in addition to Twitter messages to predict DJIA and S&P 500 indices movements. 
Twitter data were obtained to train support vector machine and neural networks 
(NN) for 7 days. The dataset was created by adding a normalized set of tweets that 
contains 8 categories of emotions in about 755 million tweets. The collected tweets 
were downloaded from the period of February 13, 2013, to September 29, 2013. For 
sentiment analysis, a dictionary approach has been created manually by an expert 
in the field. The best average accuracy was obtained by using the SVM algorithm to 
forecast the DJIA indicator with an accuracy equal to 64.10%. However, using NN 
to predict S&P 500 achieves only a 62.03% in accuracy measure, which proves that 
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SVM performs better than the NN algorithm for market prediction. Moreover, the 
results achieved by the model indicate that it is possible to increase the prediction 
accuracy using human sentiment analysis and a lexicon-based approach.

In the paper of [15], the authors proposed a model with the user interface to 
predict the market movement for 1 day ahead. The proposed model consists of 
historical stock prices, technical indicators, Wikipedia company pages, and Google 
news. The model employs three machine learning methods to compare and select 
from, namely, ANN, SVM and decision tree (DT). The model concentrates on 
forecasting the AAPL (Apple NASDAQ ) stock movement for a period from May 
1, 2012, to June 1, 2015. For the APPL prediction case study, the authors used SVM 
recursive feature elimination (RFE) to choose the most important features. RFE is 
applied via backward choosing of predictors relying on feature importance ranking. 
Combining many data sources, the financial expert system achieves 85% accuracy 
in prediction. The result indicates that incorporating data from multiple sources 
will improve the efficiency of market prediction.

In [32], the author introduced a method to predict the stock movement for 
1 day ahead. The proposed technique used a manually labeled corpus. The dataset 
contains 16 randomly selected stocks that are commonly discussed by StockTwits 
users collected from the period of March 13, 2012, to May 25, 2012. The collected 
tweets were about 100,000 posts. For text analysis, the model used SVM to analyze 
sentiment in StockTwits. The results prove the outstanding performance of SVM 
for sentiment classification tasks with accuracy that can reach up to 74.3%, whereas 
the overall accuracy for predicting the market up and down change based on the 
suggested model was 58.9%.

From the findings recorded in Table 1, it can be noted that SVM efficiency 
surpasses the effectiveness of approaches that used neural network models as we 
discussed earlier.

4.2 Deep learning

A deep learning concept is derived from machine learning methods that utilize 
many layers of data processing for the extraction of features, patterns, and classifi-
cation. Recently, deep learning techniques are launched to sentiment analysis tasks, 
and they are considered effective in most cases [33].

In [34] the authors investigated whether deep learning methods can be modified 
to improve the accuracy of StockTwits sentiment analysis. Several neural network 
variants such as LSTM, doc2vec, and CNN were examined to discover stock market 
sentiments posted on StockTwits. The results prove that the convolutional neural 
network is one of the best deep learning methods for predicting authors’ sentiment 
in the StockTwits dataset. Many other types of research discussed the successful use 
of deep learning for sentiment analysis and natural language processing tasks. On 
the survey research in [35], some of the different methods used in sentiment analy-
sis tasks are compared. The main result showed the excellent performance of deep 
learning methods for sentiment analysis, in particular, CNN and LSTM methods.

Another paper [36] proposed a method to predict the French stock market based 
on sentiment and subjectivity analysis of Twitter data. The author applied a simple 
feedforward neural network to analyze tweets and predict CAC40 index move-
ments for the next day. The Twitter collected data for the period of February 27, 
2013, to June 16, 2013, was about 25,930 tweets. In addition to Twitter data, Martin 
also used historical stock market prices for the CAC40 index and other stocks. 
The results yield a direction accuracy of 80%, which indicates that using a neural 
network can be used successfully to predict the stock market movements.
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Reference Data type Methods Feature selection of 

textual data

Feature representation Measure 

used

Results

Porshnev et al. [31] Twitter, historical 

stock data of DJIA 

and S&P 500

SVM, NN, and 

sentiment dictionary

Emotion lexicon Sentiment score of 8 scales Accuracy SVM ACC = 64.10%.

NN ACC = 62.03%

Li et al. [28] Five years 

historical Hong 

Kong Stock 

Exchange prices 

and financial news

SVM and two financial 

sentiment dictionary 

HVD and LMD

Polarity asymmetry of 

the news

Sentiment score Accuracy LMD ACC = 0.5527, HVD 

ACC = 0.5460

Xu and Keelj [32] StockTwits Manually labeled 

corpus and SVM

Unigram, bigram, 

line length, and 

punctuation

Sentiment score Accuracy ACC 58.9%

Weng et al. [15] Historical stock 

prices, technical 

indicator, 

Wikipedia 

company pages, 

and Google news

Apple NASDAQ 

stock

ANN, SVM, and DT RFE Binary Accuracy 

for 

including 

all data 

sources

Approximately 85%

Xie and Jiang [27] Financial news, 

20 Chinese stock 

prices

SVM and specific 

sentiment dictionary

BOW Sentiment score from −5 to +5, 

where −5 represents the most 

negative impact, +5 represents 

the most positive impact, and 0 

represents for stop word

Accuracy ACC 59.1734%

Long et al. [30] Financial news of 

SZ002424 stock

SVM and S&S kernel BOW Keyword frequency Accuracy ACC = 73% with 2-day lag

Table 1. 
Support vector machine for stock market prediction based on text mining studies.
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4.2.1 Artificial neural networks

Artificial neural networks are a subset of deep learning technology that falls 
within the large artificial intelligence domain, and it mimics the human brain and 
its nervous system work. The simplest form of artificial neural networks is a feed-
forward neural network where the data go through the different input nodes until 
they reach the output node using only one direction, which is obtained by using a 
categorizing activation function.

In [37], the authors proposed a market investment recommendation system 
to predict intraday stock returns. The authors tested many prediction methods 
to find the best resulting algorithm. The dataset includes 72 S&P 500 companies 
for evaluation. Using both historical market data with financial news, the authors 
implemented the modeling technique many times to select the best model. For 
the first time, they have applied a feedforward neural network algorithm. For the 
second time, they used a stepwise logistic regression (SLR). For the third time, they 
implemented the decision trees with a genetic algorithm (GA) proposed by [38]. 
The best result was obtained by using the neural network prediction technique, 
which indicates that the NN algorithm is profitable for any initial investment. The 
result also confirms that combining market data with financial news can predict the 
market movement with better accuracy.

In [39] the producers predicted the stock market movements based on senti-
ment analysis of comments and tweets extracted from Twitter and StockTwits 
famous social media sites. User comments are classified into four different cat-
egories, which are up, down, happy, and rejected. The market data of the popular 
companies like Apple, Microsoft, Oracle, Google, and Facebook was collected 
from the period of January 1, 2015, to February 22, 2016. Both market data and 
polarity data were fed to an artificial neural network to predict the movements of 
the stock. The best prediction result was obtained for Apple Company with MSE 
equal to 0.14.

In [40], the proposal adopted a two-layer RNN-GRU technique to forecast 
the Chinese stock market movements. The model exploited sentiment analysis 
of Sina Weibo (a very popular Chinese social network) news and posts. The 
authors constructed their sentiment dictionary using user posts on the website. 
The authors also collected stock prices of the Shanghai Shenzhen 300 Stock Index 
(HS300) to use as an input to the recurrent neural network (RNN) model with 
gated recurrent units (GRU). The experiments revealed that the news and posts 
on Sina Weibo can predict the market movements with MAE equal 0.625 and with 
MAPE equal to 9.38.

In [13] the authors proposed a multi-source multiple instance (M-MI) model 
to predict the stock market index movements. In the proposed frameworks, the 
authors collected data from multiple resources, namely, quantitative data of 
Shanghai Composite Index historical prices for each trading day, financial news 
data to extract events, and social media data taken from Xueqiu (a famous trader 
social network in China to explore user sentiments user posts). Then, the analyzed 
sentiments, events, and the stock historical data are given as input to the M-MI 
model to make the prediction. For event extraction, the authors used HanLP (the 
popular method used for text parsing to grab the syntax of a sentence). Event 
extracted is used to feed the Restricted Boltzmann Machines (RBMs), which is a 
creative theoretical artificial neural network. In the model, the authors also exam-
ined the importance of specific sources to the index movements by giving them 
specific weights. The proposed framework prediction accuracy was about 60%, 
which reveals many findings. Firstly, the integration of features from multiple 
resources can make a more effective prediction. Secondly, both news events and 
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market historical data have a more important effect on stock movements than social 
media sentiments. Thirdly, both news events and quantitative data have larger 
impacts on stock fluctuations than using sentiments alone.

Recently [41] applied a technique to forecast the stock directions. The authors 
used sentiment analysis of news headlines in addition to historical market data of 
Apple stock to predict the market trend. Hive ecosystem was used to preprocess the 
data, and the naive Bayes classifier was utilized to calculate the sentiment scores. 
With two inputs from news headlines sentiment score and historical numeric 
market data, the multilevel perception artificial neural network (ANN) is applied to 
forecast the stock movements. In the training procedure, the authors used back-
propagation, and in the output layer, they used the identity function. Moreover, the 
model tested two different periods for training the data; in the first method, they 
trained a 3-year data period, and the second method trained a year data period. The 
result represents an accuracy of 91% in the first methods, while 98% accuracy was 
achieved in the second method, which indicates that stock price forecasting is more 
efficient for a shorter time.

More recently [42] predicted future market trends by using both market histori-
cal prices and financial news article sentiments as input to the neural network. 
The authors collected historical prices of the 20 biggest companies listed in the 
NASDAQ100 index to predict the fluctuations of the stock for the portfolio that 
consists of 20 firms historical stock prices, with a periodicity of 15 min, obtained 
from Google Finance API. For new article analysis, two approaches of feature 
selection have adopted the dictionary of Loughran and McDonald (2011) (L&Mc) 
and affective space [43]. The Loughran and McDonald dictionary is commonly 
used for market prediction and consists of many critical words for the classification 
task that represents negative, positive, and uncertain sentiments that can be found 
commonly in financial news, whereas affective space (AS) dictionary is a vector 
space dictionary that depends on the similarity and relationships between words as 
natural language processing methods. For dimensionality reduction, the affective 
space mapped each term to a 100-dimensional vector that allows concepts to be 
grouped based on their semantics and relations.

The proposed model with Loughran and McDonald’s dictionary confirms to be 
more effective, resulting in an annualized return of 85.2%, while the use of affective 
space feature dictionary as an input to the neural network model proved to be more 
effective in obtaining high accuracy results. Table 2 summarizes the studies that 
used NN extensively for market prediction techniques.

4.2.2 Recurrent neural network

Recurrent neural network is an important variant of artificial neural network 
that starts as normal with front direction but preserves the relevant data that may 
need to be utilized later. In other words, every node will act as a memory cell that 
remembers some information it had in the earlier step.

A well-known variant of RNN model is long short-term memory (LSTM), 
which was proposed by Hochreiter and Schmidhuber in 1997 [44]; it is a standard 
recurring neural network that solves the exploding gradient problem. LSTM can 
depict the long dependencies in a sequence by adopting a memory unit and a gate 
mechanism to determine how information stored in the memory cell can be used 
and updated [45]. Each LSTM is a set of cells or system modules that catch and store 
streams of data. The cells represent a transport line that carries data from the past 
and collects them for the present module from one module to another. Through the 
use of certain gates in each cell, data can be disposed of, filtered, or added for the 
next cells [46].
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Reference Data type Methods Feature selection of textual data Feature representation Measure 

used

Results

Martin [36] CAC40 index data,

Twitter

NN Tokens Average sentiment score Direction 

accuracy

80%.

Geva and 

Zahavi [37]

72 companies in the S&P 500 index 

data, financial news

NN, SLR, and DT with 

GA

BOW Calibrated sentiment scores 

and binary indicator

Return over 

the initial 

investment

200 k

NN: 8.57%

SLR: −0.20%

GA: 0.16%

Khatri and 

Srivastava 

[39]

Twitter and StockTwits,

index data of Apple (APPL), 

Microsoft (MSFT), Oracle (ORCL), 

Google (GOOG), and Facebook 

(FB)

ANN Predefined words Sentiment score between 

0 and 1

MSE AAPL: 0.14

MSFT: 0.18

ORCL: 0.22

FB: 0.28

GOOG: 0.27

Zhang  

et al. [13]

Shanghai Composite Index, 

financial news data, and social 

media from Xueqiu

(RBMs) and ANN For event extraction: HanLP, 

Sentence2vec

For sentiments:

latent Dirichlet allocation

Two polarities:

positive or negative

Prediction 

accuracy

60%

Zhang  

et al. [13]

HS300 Index and Sina Weibo news 

and posts

Own sentiment 

dictionary and two-

layer RNN-GRU

Positive and negative keywords Probability value for fall 

or rise

MAE,

MAPE, and

RMSE

0.625,

9.381, and

0.803

Picasso 

et al. [42]

20 companies in NASDAQ-100 

index and financial news articles

NN with L&MC and

NN with affective space

L&Mc dictionary and AS 

dictionary

Counts of negative, positive, 

uncertainty, superfluous, 

and other words of the 

dictionary found in news 

and

number of news

in the slot

Accuracy NN AS 68%

NN L&MC 

60%

Shastri 

et al. [41]

Apple stock and

news headlines

Hive ecosystem, NB

, and multilevel 

perception artificial 

neural network (ANN)

Unique

positive and negative words

Sentiment score MAPE,

trend 

prediction 

accuracy 

of 1-year 

period

8.21

98%

Table 2. 
The main study that used NN extensively for market prediction based on text mining.
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In the paper of [47], the proposal adopted a method to predict the stock market 
movements based on the bidirectional gated recurrent unit (BGRU), which is con-
sidered a variant of LSTM. The model used financial news that comes from Reuters 
and Bloomberg websites and historical stock prices to predict the market fluctua-
tion with a better result. The S&P stock prices and news data were collected in the 
period of 2006–2013. Also, the model examined the method performance on the 
individual stock that comes from different sectors, namely, Google Inc., Walmart, 
and Boeing. In the proposed method, the authors used the word embedding model 
introduced by [48] to select the most efficient features from the collected financial 
news. In word embedding model, the words were encoded as vectors in a high-
dimensional space, and then the analogy between words in meaning is interpreted 
to closeness in the vector space. The proposed model achieved accuracy equal to 
59.98% in the S&P 500, whereas individual stock prediction accuracy was more 
than 65%. The authors also examined the performance of many LSTM variants like 
standard LSTM, GRU, and BGRU. The finding shows that BGRU obtained the best 
results compared to other LSTM variants.

However, conventional LSTM is unable to detect what is the most crucial part 
of the sentence for the sentiment categorization task. Therefore, [49] proposed a 
design mechanism capable of detecting the crucial part of the sentence related to a 
specific aspect and explained the architecture of attention-based LSTM in detail.

To predict the stock market directional movements, [50] proposed an Attention-
based LSTM model (AT-LSTM) to predict the movements of Standard & Poor’s 500 
index and individual companies’ stock price using financial news titles. The atten-
tion techniques were divided into two classes. The first class of attention assigns 
there weight to the news that contains positive sentiments to the stock market such 
as “raise,” “growth,” etc. While the second class of attention assigns there weight to 
the news that mentions the major companies in the S&P 500 such as “Microsoft” 
and “Google.” Therefore, the attention model is trained continuously to assign more 
attention to the relevant news based on its content. The proposed method achieved 
more than 66% accuracy, and the company WALMART obtained a max accuracy of 
72.06%. The results prove that attention mechanisms can achieve good results for 
market prediction in specific cases.

In [51] proposal support decision system based on deep neural networks and 
transfer learning was applied. To enhance the prediction accuracy, the authors 
pretrain the networks on a different corpus. The main aim of the study was to 
recommend the best deep learning techniques in terms of market prediction. The 
system provides its corpus with a length of 139.1 million words. The authors trained 
the deep neural networks by using the Adaptive Moment Estimation Algorithm 
(Adam), which can effectively solve sparse gradient problems. Then the use of 
transfer learning aims to initialize the weights of parameters with values that might 
be close to the optimized ones. In order to account for unbalanced classes in their 
dataset, they have used classification balanced accuracy that can be defined as the 
arithmetic mean of sensitivity and specificity. They also predicted the direction 
of nominal returns. The result proves that LSTM models surpass all traditional 
machine learning models based on the bag-of-words technique, specifically when 
they used transfer learning to pretrain word embeddings.

Recently [12] examined the effect of financial news articles on stock trend fluc-
tuation either rise or fall. The financial new articles related to the Taiwan 50 Index 
were collected from Google. For textual data analysis and NLP tasks, the authors 
used their lexicon and then exploited the LSTM to make the final prediction. The 
use of LSTM features was joint with historical data and adjusted in each step. The 
results prove that individual stock prediction using the study polarity lexicon 
was better than the benchmark model. Moreover, the proposed model reaches an 
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accuracy of 76.32, 80.00, and 77.42% for each of the following stocks TSMC, Hon 
Hai, and Formosa Petrochemical, respectively, which reveals the effectiveness of 
the LSTM model in market prediction based on text analysis.

Another study proposed in [52] examined the effectiveness of using the LSTM 
technique to predict market movements, using market data and textual resources as 
input to the model. The authors analyzed user sentiments from forum texts about 
the CSI300 index using the naive Bayes algorithm and then using LSTM, which 
contains a merged layer, a ReLU layer, and a softmax layer to combine the investor 
sentiment taken from forum posts with the historical market. The fall or rise trend 
prediction accuracy achieved was 87.86%, outperforming other commonly used 
machine learning methods such as SVM algorithm by at least 6%, which highly 
indicates that LSTM can achieve a better result in prediction when using larger 
datasets. Table 3 summarizes the recent studies that used RNN networks for stock 
market prediction based on text analysis.

4.2.3 Convolutional neural network (CNN)

Convolutional neural network used for natural language processing was first 
explained by Collobert and Weston in [53]. A typical convolutional neural net-
work is composed of multiple convolutional layers at the bottom of a classifier. 
Conventional inputs for text processing are characters, phrases, paragraphs, or 
documents that are converted into a matrix representation. Each row of the matrix 
represents a token, which is typically a word or character [54].

In [16], framework proposal for stock market prediction based on long-term 
events and short-term events extracted from financial news articles about the S&P 
500 index was applied. The collected financial news articles come from October 

Reference Data type Methods Feature 

selection 

of textual 

data

Feature 

representation 

of textual data

Measure 

used

Results

Li  

et al. [52]

CSI300 index 

data, investors 

forum posts

LSTM, 

NB

Manually 

labeled 

sentiments 

by experts

Pos, neg, and 

neutral

Direction 

accuracy

87.86%

Huynh 

et al. [47]

S&P 500 index,

financial news

BGRU Word 

embedding

Real valued 

vectors

Prediction 

accuracy

59.98%

Kraus and 

Feuerriegel 

[51]

German ad hoc

announcements

Transfer 

learning 

with 

RNN and 

LSTM

Word 

embedding 

(em)

Polarity score Direction 

accuracy 

of nominal 

return

RNN 0.552

LSTM

0.576

LSTM-em

0.578

Liu [50] S&P 500 index,

financial news 

titles

AT-LSTM Own word 

embedding 

trained 

with 

Skip-Gram

Word 

embedding

and character-

composition 

vector

Direction 

accuracy

More than 

66% for 

each stock

Chen  

et al. [12]

Financial news 

articles, Taiwan 

50 Index

LSTM 

and 

polarity 

lexicon

Word2vec 

and 

Skip-Gram

TF-IDF and 

polarity score

Accuracy Up to 80%

for Hon 

Hai stock

Table 3. 
Recent studies that concentrate on RNN variants for market prediction based on text analysis.
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2006 to November 2013, which was released initially by Ding et al. [55]. The 
long-term events represent events over the past month, while the short-term events 
represent events on the last day of the stock price fluctuate. The proposed frame-
works train the extracted events using a neural tensor network and then a convolu-
tional neural network to predict both the short-term and the long-term impact of 
extracted events on stock price fluctuations. The proposed framework examined 
two different ways for representing the input to CNN. The first method (WB-CNN) 
used word embedding as input and convolutional neural networks for prediction. 
The second method (EB-CNN) used event embedding as input and convolutional 
neural networks for prediction. The experiments achieve accuracy of 61.73% for 
WB-CNN, while the EB-CNN method achieved an accuracy equal to 65.08%, which 
illustrates that the proposed model is more effective in stock market prediction than 
other models that predicted the S&P 500 index based only on stock historical data 
analysis. The model also proves that CNN can extract the longer-term influence of 
financial news events than traditional feedforward neural networks.

In [17], writers proposed a model to predict the intraday stock market direc-
tional movements of the S&P index using financial news title and financial time 
series market data as input. The paper compared two commonly used deep learning 
methods, which are RNN and CNN algorithms using many text representation 
methods. The RNN method used in the paper was the LSTM model. The proposed 
model examined many types of text representation as an input to the CNN predic-
tion model. The (W-CNN) represents a word embedding as input and a CNN as 
a forecast model. The (S-CNN) represents sentence embedding input and CNN 
forecast model. The (W-RCNN) word embedding input and RCNN forecast 
model. The (S-RCNN) represents sentence embedding input and RCNN forecast 
model. The (WI-RCNN) shows word embedding and historical time series input 
and RCNN prediction model. The (SI-RCNN) illustrates sentence embedding and 
historical time series data input and RCNN prediction model. Experiments on each 
of the previous models revealed that CNN is more effective than RNN on capturing 

Reference Data type Methods Feature 

selection 

of textual 

data

Feature 

representation 

of textual data

Measure 

used

Results

Ding  

et al. [16]

Financial 

news 

articles

The train uses 

a neural tensor 

network,

WB-CNN, 

EB-CNN

Word 

embedding 

WB,

event 

embedding 

EB

Binary Accuracy WB-CNN 

61.73

EB-CNN

65.08%

Vargas 

et al. [17]

Financial 

News 

articles, 

S&P 

index 

market 

data

Many text 

representation

Word 

embedding,

sentence 

embedding

Binary Accuracy W-CNN 

57.22%

S-CNN 

60.96%

W-RCNN 

60.22%

S-RCNN 

61.49%

WI-RCNN 

61.29%

S1-RCNN 

62.03%

Table 4. 
CNN use for stock market prediction based on text mining results.
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semantic from new financial, and RNN is more efficient in capturing the context 
information for the stock market prediction. Moreover, the results prove that the 
sentence embedding for text representation is more effective than the word embed-
ding. Table 4 summarizes the studies that used CNN for stock market prediction 
based on sentiment analysis and NLP.

5. Other machine learning methods

Many other machine learning methods were used successfully and less fre-
quently for market predation applications based on text mining. Summaries of 
these studies are illustrated in Table 5. In the study of [18], a method was proposed 
to predict the stock trend movements of three NASDAQ companies, namely, Yahoo 
Inc., Microsoft Company, and Facebook Inc. (FB Inc). The model used financial 
news sentiment analysis with historical stock data to predict the market with higher 
accuracy. The task is accomplished with two steps: Firstly, they used naive Bayes 
classifier to classify news sentiment into two classes, positive or negative. Secondly, 
to forecast the stock trend fall or raise, they used k-Nearest Neighbor algorithm 
(K-NN) (a clear algorithm that saves all possible instances of data and categorizes 
the new data based on a scale of closeness and is often used to classify a new data 
based on the current classification of its neighbors). The results show that the 
accuracies of sentiment analysis of news only can go up to 63%, while combining 
news sentiments with historical stock prices can achieve trend prediction accuracy 
up to 89.80%, which proves that adding historical stock prices to the classification 
model will be able to improve the prediction performance.

In the work of [56], the authors suggest a method to predict the daily up and 
down price fluctuation of four tech companies of NASDAQ stock, which are Apple 
(AAPL), Google (GOOG), Microsoft (MSFT), and Amazon (AMZN). The model 
analyze Twitter user messages in addition to three previous days of the stock price 
movement. The model constructs a named-entity recognition (NER) approach to 
identify and remove the noise of Twitter data. A decision tree approach was used to 
build the classification model. The proposed model achieved the highest accuracy 
of 82.93% in predicting the daily up and down changes of Apple Company, which 
indicates that using named-entity recognition method for noise removal of Twitter 
data can improve the accuracy results.

The research in [8] proposed a method to predict the stock market movements 
based on two feature extraction methods, using a novel aspect-based sentiment 
model to improve the prediction performance. The first methods tempt to excerpt 
hidden topics and sentiments together and use them for the prediction, while the 
aspect-based sentiment methods treat every message as a list of topics and correla-
tive sentiment values. To build the prediction model, the authors used SVM with 
the linear kernel and collected data of 18 stocks for a period of 1 year from July 
2012 to July 2013. Exploiting the aspect-based sentiment feature method obtained 
the best result with 54.41% average accuracy. The proposed model also proves to be 
3.03% more effective than using the human sentiment method for stock movement 
prediction.

In [61] proposal a method to forecast the Indonesian stock movements based 
on Twitter sentiment analysis was introduced. Naive Bayes and random forest 
algorithm was used to find the user sentiments of the 13 most popular companies in 
Indonesia. The linear regression technique was used to build the prediction model. 
The highest accuracy was achieved by the categorization model using the random 
forest algorithm with 60.39% accuracy, whereas naive Bayes classifier was able to 
classify tweet data with 56.50% accuracy. For the price movement’s prediction, the 
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Reference Data type Methods Feature selection of 

textual data

Feature representation of 

textual data

Measure used Results

Vu et al. [56] Twitter user 

messages, AAPL, 

GOOG, MSFT, and

AMZN indices data

Decision tree approach, 

NER

Predefined

bullish-bearish anchor 

words

The real number for daily

Neg_Pos and

Bullish_Bearish

Daily prediction 

accuracy

AAPL 82.93%

GOOG 80.49%

MSFT 75.61%

AMZN 75.00%

Moniz and de 

Jong [57]

News stories for 598 

global companies

Ensemble tree, LDA LDA Binary F1- measure 0.508

Bing  

et al. [58]

30 NASDAQ and 

New York stock 

indices and Twitter

Association rule Sentiment word list TF-IDF, vector space 

model, which is an 

arithmetic model to 

represent text as vectors

Average accuracy 76.12%

Li et al. [59] HSI 23 stocks indices 

and financial news

Multiple kernel learning Word list

extreme positive,

positive, neutral, 

negative, and extreme 

negative

TF-IDF, vector space 

model

RMSE 0.139 for 30 m

Shynkevich 

et al. [60]

Five stock from the 

S&P 500 index, SS, 

and SIS news items

Multiple kernel learning BOW TF-IDF Highest accuracy 81.63%

for WLP stock with six

kernels

Nguyen  

et al. [8]

Social media message 

board and 18 stocks 

index data

SVM POS tagging Stanford 

CoreNLP for aspect-

based sentiment

Average sentiment score 

or values

Prediction Accuracy Aspect-based model

54.41%

Cakra and 

Trisedya [61]

Twitter data and 

many

companies in 

Indonesia indices 

data

NB and RF and linear 

regression

Sentiment lexicon and 

sentiment shifters

Positive, negative, and 

neutral

Prediction accuracy NB 67.37%

RF 66.34%
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Reference Data type Methods Feature selection of 

textual data

Feature representation of 

textual data

Measure used Results

Ghanavati 

et al. [62]

Hong Kong market 

index and financial 

news

articles and 

summaries

Loughran and McDonald 

dictionary, ML, and metric 

learning-based methods

Tokenization using 

OpenNLP tools

Sentiment value vectors The average error rate The average error rate of 

ML for large cape stock 

0.15

The average error rate of 

ML for small cape stock 

0.20

Khedr and 

Yaseen [18]

Financial news, index 

data of 3 NASDAQ 

companies

K-NN and NB TF-IDF and N-gram Values for pos, neg, and 

equal

Trend prediction

accuracy

89.80%

Gálvez and 

Gravano [63]

Twelve stocks of 

the MERVAL Index 

and online message 

boards

Combining LSA with ridge 

regression

Latent semantic 

analysis (LSA)

Numbers for each special 

token

Maximum accuracy 

when using technical 

indicators and topics 

from the online 

message board

Up to 0.750

Liu and 

Wang [15]

China Security Index 

300 (CSI300) and the 

Standard & Poor’s 

500 (S&P500).

News reports and 

numerical data

LSTM and many textual 

representations

News embedding Numerical Vectors Accuracy NBAd raises the accuracy 

of 2.32% and 1.35% higher 

than the best baseline 

models of the dataset

Maqsood 

et al. [64]

Many USA, Hong 

Kong, Turkey, and 

Pakistan company 

indices. Twitter

Event sentiment, linear 

regression (LG), support 

vector regression (SVR), 

and deep learning

A comprehensive 

dictionary with their 

own generated word 

list

Sentiment value that is 

calculated for each day 

separately

Average root mean 

square error (RMSE)

For each country using 

LG, SVR, and DL, 

respectively.

US 4.35, 1.33, and 1.65

Hong Kong

0.90, 0.31, and 0.35

Turkey

0.27, 0.11, and 0.11

Pakistan

0.70, 0.34, and 0.33

Table 5. 
Summaries of machine learning methods that were used successfully and less frequently for market prediction based on text mining.
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proposed models can predict the upcoming price fluctuation of either rise or fall 
with the accuracy of 67.37% achieved by the naive Bayes algorithm and 66.34% 
obtained by using Random Forest classifier.

Other research [62] introduced a stock market prediction service framework 
that allows users to choose different data sources and machine learning techniques. 
The authors gathered all news summaries and historical prices of all the stocks for a 
1-year period. Using the Hong Kong market stock dataset for evaluation, they found 
that metric learning-based methods can improve the prediction results. The study 
also shows that adding news to the historical prices for stock market prediction will 
be more useful on large and popular stocks.

Recently [14] applied a numerical-based attention (NBA) method for multiple 
sources of stock market prediction. News headlines and numerical data combined 
to predict the stock prices. For evaluation, the authors collected news headlines and 
numerical data from two sources: the China Security Index 300 (CSI300) and the 
Standard & Poor’s 500 (S&P500). They used NBAa-NBAd to denote different varia-
tions of the models with different textual representations. In these three datasets, 
the proposed structure accomplishes the best outcomes. Especially, NBAd raises 
the accuracy of 2.32 and 1.35% higher than the best baseline models on S&P500 
and CSI300.

More recently, [64] investigated the effect of the most important event from 
2012 to 2016 into the stock exchange prediction of four selected countries, which 
are the USA, Hong Kong, Turkey, and Pakistan. The events are then categorized 
into local and global events for each country according to their economic effects on 
the country stocks. Twitter data were gathered to find the sentiment for each one of 
these events. The model used a total of eight events for all countries. For classifica-
tion, the authors investigated linear regression, support vector regression, and deep 
learning model for market prediction. The results revealed that linear regression 
achieves the worst prediction results compared to the other two methods used in 
their analysis, while the support vector regression achieves the best results. Event 
sentiment illustrates noted development in the forecasting results. For example, the 
US election 2012 event achieves the best prediction results in all methods, which 
indicates that a local event that appears in the USA has a very great effect on stock 
market future forecasting.

In [63], the authors predicted the Argentinian stock market by using online mes-
sage boards with topic discovery methods in addition to daily historical stock prices. 
The authors exploited Latent Semantic Analysis (LSA) approach that finds the 
latent topics in the text. The experiments are trained with multiple combinations 
of features selected from online texts. The results show that the most predictive 
features are derived from the texts that contain the most relevant semantic content. 
Moreover, the experiments illustrate that combining LSA with ridge regression was 
able to identify the structure of the texts that later improves the prediction perfor-
mance of the model.

In [57], the authors proposed a model that aims to find the influence of negative 
terms represented by the financial media on investor behavior. The proposed model 
relays on the counting of negative words from the dictionary and word counting 
methods to extract contextual information. The model also used a Latent Dirichlet 
allocation model to derive the financial media statements of negative influence. 
The model combines the two inputs in an ensemble tree to categorize the effect of 
financial media news on stock market fluctuation. The results indicate that there 
is a strong relationship between negative effect derived from financial media news 
and a company stock market fluctuation.

In the same year, authors in [58] suggested algorithm predicts 30 NASDAQ 
and New York stock exchange companies’ movements. The algorithm used NLP 
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methods to categorize Twitter messages. Then the authors applied association rules 
to find interesting rules and associations between the stock movements and the 
Twitter messages. The collected tweets were about 15 million Twitter messages. The 
big data then stored it in MongoDB, which is an open-source database used to save 
and process the huge data. The suggested method has explained the relationships 
hidden in social media as a graph with several layers, with the top layer, interme-
diate layer, and the bottom layer attributes to show the relations. The proposed 
method has increased the dimensionality of whole variables that would measure 
the hidden and embedded data among the Twitter messages. The results indicate 
the outstanding performance of using tweet message sentiment to predict the stock 
market movements 3 days later.

In [60], the researchers exploited the multiple kernel learning method to 
integrate data from the stock special (SS) and subindustry special (SIS) news 
items effectively to predict future market movements. Multiple kernel learning 
(MKL) applies many different kernels to learn from various sections of data. Pairs 
of Gaussian, linear, and polynomial kernels were used to compare each model 
performance. For evaluation, the authors used five stocks from the S&P 500 index 
that belongs to managed healthcare subindustry. The results indicate that using 
Gaussian, linear, and polynomial kernels jointly in MKL achieves higher prediction 
results. The results also indicate that exploiting two types of news increases predic-
tion accuracy in comparison with models that used only a single news source.

The study in [59] combined information on historical stock prices with financial 
market news to enhance the market forecasting accuracy of intraday trading status. 
For evaluation the model used the Hong Kong Stock Exchange (HKEx) tick prices; 
more specifically the authors used 23 stocks in Hang Seng Index10 (HSI) intraday 
prices in the year 2001. Multi-kernel support vector regression (MKSVR) was used 
with two subkernels: one for the news items and the other kernel for the stock 
historical prices. The results indicate that MKSVR outperforms other benchmark 
models that exploited only one source of information.

The evaluation measurements vary in all of the reviewed works; some of the 
researches calculate accuracy, F-measure, or recall and precision with accuracy 
being the most commonly used. However, other researchers calculated the error in 
prediction using mean absolute percent error (MAPE), mean squared error (MSE), 
or root mean square error (RMSE).The variances in using different evaluation 
measurements and exploratory data make an accurate comparison between differ-
ent models difficult to achieve.

6.  The reviewed work text source and period and number of collected 
items

The textual data input comes from different several sources, and the period and 
the numbers of collected data are varied, and all are illustrated in Table 6.

The majority of writers have analyzed primary news websites like the Reuters 
and Bloomberg [16, 17, 37, 47, 50], Dow Jones [57], and Yahoo Finance [8, 18]. Most 
authors use financial news because it is associated with less noise compared to 
the general news. They either select the news text or the news headline as input to 
their machine learning model. Recently news titles and headlines are specifically 
extracted and are regarded to be more clear, concise, and associated with less noise 
[14, 16, 17, 50]. Other authors have examined less formal sources of news informa-
tion such as Google News [12, 15]. Other researchers collect their textual informa-
tion merely from social media websites especially Twitter to analyze the public user 
sentiments to predict the market more effectively [39, 56, 61, 64].
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Reference Text type and source Period Number of collected 

items

Vu et al. [56] Twitter user messages April 1, 2011 

to May 31, 

2011

5,001,460 daily 

tweets

Porshnev 

et al. [31]

Twitter April 

132,013, to 

September 

29, 2013

About 755 million 

tweets

Martin [36] Twitter data. February 27, 

2013, to June 

16, 2013

About 25,930 tweets

Li et al. [28] 23 stocks in Hang Seng Index10 (HSI) 

intraday prices and financial news from the 

website Caihua, http://www.finet.hk/

Intraday 

prices of the 

year 2001

28,885 pieces of news

Xu and  

Keelj [32]

StockTwits March 13, 

2012, to May 

25, 2012

100,000 tweets

Bing  

et al. [58]

Twitter messages October 2011 

to March 

2012

15 million Twitter 

messages

Li et al. [28] Financial news articles from FINET (a main 

financial news seller in Hong Kong)

January 2003 

to March 

2008

Not mentioned

Geva and 

Zahavi [37]

Financial news from Reuters 3000 Extra 

Service

September 

15, 2006, to 

August 31, 

2007

51,263 news items

Moniz and de 

Jong [57]

News source is a corpus extracted from Dow 

Jones Newswires (DJNW).

News articles are collected from financial 

blogs, online newspapers, financial 

magazines, and many online websites

January 1, 

2009, to 

December 

31, 2013

The corpus consists 

of 35,678 daily news 

stories

Ding  

et al. [16]

Financial news titles from Reuters and 

Bloomberg

October 

2006 to 

November 

2013

442,933 for training

110,733 for 

development

110,733 for testing

Cakra and 

Trisedya [61]

Twitter data April 14, 

2015 to April 

30, 2015

Not mentioned

Nguyen  

et al. [8]

Texts in a message board from Yahoo 

Finance Message Board

July 2012 to 

July 2013

The different 

numbers of messages 

for each stock that 

follows between 

89 and 11,220 in 

maximum

Shynkevich 

et al. [60]

News of 5 stock from the S&P 500 index that 

belongs to managed healthcare sub from 

LexisNexis database

September 

1, 2009, to 

September 1, 

2014

More than 400 news 

articles

Ghanavati 

et al. [62]

News summaries(source not mentioned) June 1, 2014, 

and June 1, 

2015

Not mentioned
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Reference Text type and source Period Number of collected 

items

Khatri and 

Srivastava 

[39]

Twitter and StockTwits January 1, 

2015, to 

February 22, 

2016

Not mentioned

Gálvez and 

Gravano [63]

Message board texts from the webpage 

http://foro.ravaonline.com.

June 1, 2010, 

and July 31, 

2015

More than 20,000 

posts

Weng  

et al. [15]

Wikipedia company pages and Google news May 1, 2012, 

to June 1, 

2015

Not mentioned

Chen  

et al. [40]

Sina Weibo news and posts January 1, 

2015, to 

March 8, 

2017

Not mentioned

Li et al. [52] Forum posts from guba.eastmoney.com January 1, 

2009, to 

October 31, 

2014

More than 18 million 

posts

Kraus and 

Feuerriegel 

[51]

German ad hoc announcements from www.

dgap.de

2010–2013 10,895 observations

Huynh  

et al. [47]

Financial news from Reuters and Bloomberg 

websites

2006–2013 5816 news for 

training

2904 news for testing

Khedr and 

Yaseen [18]

News data from different resources, Google 

finance, Reuters, wall street journal, 

marketwatch.com, zacks.com, Yahoo 

Finance, and ecomomics.com, nasdaq.com

Not 

mentioned

Not mentioned

Vargas  

et al. [17]

Financial news title from Reuters and 

Bloomberg

October 

2006 to 

November 

2013

13,149 for training

1976 for development

2046 for testing

Liu [50] Financial news titles collected from Reuters 

and Bloomberg

2006–2013 445,262 for training

55,658 for 

development

55,658 for testing

Zhang  

et al. [13]

Financial news articles from financial news 

websites in China and Xueqiu social media 

posts

2015–2016 38,727 news in 2015

and 39,465 news in 

2016

6,163,056 posts for 

2015 and 2016

Xie and  

Jiang [27]

Financial news of Wallstreetcn, Stockstar, 

China news, and many other resources

2008 and 

2015

2,302,692 news items

Long  

et al. [30]

Financial news from ifeng.com financial 

channel in China

September 

2012 to 

March 2017

18 news per day at 

maximum

Shastri  

et al. [41]

News headlines from http://www.nasdaq.

com/

2013–2016 Not mentioned

Picasso  

et al. [42]

News articles from intrinio.com API July 3, 2017 

to June 14, 

2018

Not mentioned
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Also, as Table 6 illustrated, the data were collected in a variety of periods; some 
few papers collected data in several months, while others extracted data within 
a maximum of 7-year period, which resulted in more sufficient data and better 
results in prediction.

However, it can be noted that the insufficiency of highly structured datasets 
containing text data of markets prevents researchers from accumulating their 
analysis and assessment efforts with others. Another problem is the imbalanced 
dataset that has been used by many researchers, which is discriminating the accu-
racy of prediction. In future, potential researchers are encouraged to locate new 
datasets for market forecasting based on text mining analysis.

Market predictive text mining could become much more advanced by concentrat-
ing on a particular source of text, such as a specific social media website or the new 
news source from specialized financial news websites. As mentioned in Section 3 of 
this research, there is a strong relationship between the behavioral economics and the 
market fluctuations; due to this fact focusing on behavioral economics studies and its 
impact on market movements will be of great research opportunity in the future.

7. The reviewed work findings, limitations, and future work

Developments in sentiment analysis approaches and deep learning have enabled 
the development of stock market prediction systems to turn future web content, 
tweets and financial, and news contents into investment decision systems. Online 
text mining processes are evolving and have been intensively investigated using 
machine learning advancements, and this trend will continue to achieve progression 
especially for market prediction.

Many researchers believe that analyzing only the historical prices of the stock 
market will be able to predict the stock market movement [3–5]. However, other 
researchers combine both textual information with historical prices of stock to 
predict the stock market movements [8, 13, 15, 47, 62]. The previous studies’ major 
limitation is that they depend heavily on either structured data (historical stock 
prices) or unstructured data (news articles or social media). However, for the 
researchers that used both structured and unstructured data, the major limitation 
for most of them is that they combined either news articles or social media with 
past stock prices to predict the stock movements and they neglect the critical impact 
of combining social media and financial news information’s with time series market 
data to improve the forecasting results.

Reference Text type and source Period Number of collected 

items

Chen  

et al. [12]

News articles from Google January 4, 

2016, to 

December 

29, 2017

130,000 articles

Liu and  

Wang [14]

News headlines from five famous financial 

news websites in china

January 1, 

2016, to

December 

31, 2016

780,920 financial 

news headlines

Maqsood 

et al. [64]

Twitter data 2000–2018 11.42 million tweets

Table 6. 
Summaries of the reviewed work text source, period, and number of collected items.
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Reference Finding Limitation and future work Year

Vu et al. [56] Using the named-entity 

recognition method for noise 

removal of Twitter data improves 

the accuracy results.

Increase the collected tweet 

data and the collection 

period and expand the 

number of companies.

2012

Porshnev et al. [31] It is possible to increase the 

prediction accuracy using human 

sentiment analysis and a lexicon-

based approach.

They need to expand the 

training period to achieve 

better outcomes.

Use more effective sentiment 

analysis method to increase 

the prediction accuracy.

2013

Martin [36] Twitter sentiment analysis using 

the neural network can be used 

to predict the stock market 

movements.

Adding a different source of 

information such as financial 

news articles will be able 

to improve the prediction 

performance more.

2013

Li et al. [28] The sentiment analysis model 

performs better than a bag-of-

words model inaccuracy measures. 

There was a small difference 

between using the two models, 

LMD and HVD.

We need to automatically 

expand the HVD and 

LMD dictionaries without 

affecting the accuracy of the 

dictionary.

2014

Xu and Keelj [32] The result shows the outstanding 

performance of SVM for the 

sentiment classification task.

Expand the data analysis 

period.

Use a more effective 

expanded lexicon.

Exploit the user profile 

features.

2014

Geva and  

Zahavi [37]

NN algorithm is profitable for any 

initial investment.

Combining market data with 

financial news can predict the 

market movement with better 

accuracy.

Study the effect of using 

other prediction models, 

and investigate the impact of 

using different textual data 

processing.

2014

Moniz and  

de Jong [57]

There is a strong relationship 

between negative affect derived 

from financial media news and a 

company stock market fluctuation.

Adding social media data to 

the dataset to improve the 

prediction performance.

2014

Bing et al. [58] The study algorithm has an 

outstanding performance in using 

tweet message sentiment to predict 

the stock market movements 3 days 

later.

Needs to add other textual 

sources for social media data 

such as Facebook.

Adding news items to the 

dataset.

2014

Li et al. [59] The results indicate that MKSVR 

outperforms other benchmark 

models that used only one source 

of information.

Adding more sources of 

textual data.

Apply more subkernel using 

the same textual data.

Positive and negative news 

could be classified by using 

the use of sentiment analysis 

to categorize positive and 

negative news.

The use of multiple 

subkernels for each news in 

different sentiment classes.

2014
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Reference Finding Limitation and future work Year

Ding et al. [16] CNN can extract the longer-term 

influence of financial news events 

than traditional feedforward 

neural networks.

Adding different textual data 

sources and improvement in 

classification algorithm will 

yield a better result.

2015

Nguyen et al. [8] The proposed model proves to 

be more effective than using the 

human sentiment method for stock 

movement prediction.

They have to define the 

number of topics and 

sentiment beforehand.

The model can predict the 

stock movements either 

up or down only and can 

be improved to predict the 

degree of the movements.

Adding different text data 

sources like financial news.

2015

Cakra and  

Trisedya [61]

The highest classification accuracy 

was achieved by using the random 

forest classification model.

Have to expand the data 

collection period.

Needs to improve the 

sentiment classification 

model by adding different 

features.

2015

Shynkevich  

et al. [60]

Using of Gaussian, linear, and 

polynomial kernels jointly in MKL 

achieves higher prediction results. 

Exploiting two types of news 

increases the prediction accuracy in 

comparison with models that used 

only a single news item.

Add historical stock prices 

to the dataset with the news 

articles to enhance the 

prediction results.

2015

Khatri and 

Srivastava [39]

It is better to invest in a company 

whose sentimental score is high 

and positive rather than choosing a 

close price as an indicator of stock 

movements.

The datasets should be taken 

for a longer time to achieve 

better results.

2016

Ghanavati  

et al. [62]

The metric learning methods can 

improve the results. Adding news 

to the historical prices for stock 

market prediction will be more 

useful on large and popular stocks.

Needs to add the different 

sources of textual 

information like social 

media.

2016

Weng et al. [15] Incorporating data from multiple 

sources will improve the efficiency 

of market prediction.

The use of different rank 

values selected from a 

different data source. 

Expand the work to include 

the certainty level of the 

prediction, which can be 

achieved by using Bayesian 

Belief Networks (BBN) or 

ensemble methods.

Try to forecast the actual 

price instead of the 

movement. Adding other 

data sources also will 

increase the prediction 

performance.

2017

Chen et al. [12] News and posts on Sina Weibo can 

predict the market movements.

The use of more improved 

machine learning techniques 

for sentiment analysis such 

as interdependent Latent 

Dirichlet allocation (ILDA) 

will improve the prediction 

performance.

2017
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Reference Finding Limitation and future work Year

Li et al. [52] There is a strong relationship 

between investor sentiments and 

CSI300 prices.

Utilized only naive Bayes 

algorithm for classification 

and did not test other 

classification methods that 

may achieve better results.

2017

Huynh et al. [47] BGRU obtained the best results in 

predicting the market compared to 

other LSTM variant.

Adding another textual 

source of information such 

as social media may enhance 

the model performance.

2017

Kraus and 

Feuerriegel [51]

LSTM models surpass all 

traditional machine learning 

models based on the bag-of-words 

technique, specifically when using 

transfer learning to pretrain word 

embeddings.

Increasing the number of 

collected news for a longer 

time and applying the deep 

learning model will improve 

the predictive performance.

2017

Vargas et al. [17] CNN is more effective than RNN 

on capturing semantic from 

financial news. RNN is more 

effective in capturing the context 

information for the stock market 

prediction. Sentence embedding 

for text representation is more 

effective than the word embedding.

Exploiting the reinforcement 

learning models to train 

the proposed methods on 

trading simulation may yield 

better results.

2017

Khedr and  

Yaseen [18]

Adding historical stock prices to 

the classification model will be 

able to improve the prediction 

performance.

Adding technical analysis 

and social media sentiment 

analysis will improve the 

prediction results.

2017

Gálvez and 

Gravano [63]

The results indicate that the 

most predictive features derived 

from the texts that contain the 

most relevant semantic content. 

Moreover, the results prove 

that combining LSA with ridge 

regression was able to identify 

the structure of the texts, 

which improves the prediction 

performance of the model.

Adding even sentiment and 

more text resources such 

as social media data will 

improve the results.

2017

Checkley et al. [21] There is a causal link between 

Twitter sentiments to stock market 

returns, volatility, and volume. 

Among all five stocks, market 

volatility and volume seem to be 

more predictable than market 

direction or return.

The consideration of event 

sentiment may affect the 

market return more and 

improve the forecasting 

result.

2017

Bujari et al. [24] Some of the proposed ad hoc 

forecasting models well predict 

the next day direction of the stock 

movements for some particular 

companies with 82% of success, 

and there is no unified method to 

be used with all cases.

The more volume of a tweet will 

yield better prediction results.

There is a strong correlation 

between tweet posts and the trend 

movements for some companies.

Investigate another source of 

textual information such as 

online financial news.

2017
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Reference Finding Limitation and future work Year

Zhang et al. [13] Both news events and market 

historical data have a more 

important effect on stock 

movements than social media 

sentiments.

Both news events and quantitative 

data have larger impacts to drive 

stock fluctuations than sentiments.

Increasing the dataset 

collection period may 

improve prediction 

performance.

2018

Liu [50] Adding news articles was able to 

predict the individual stock prices 

with better accuracy compared to 

predicting the market using time 

series prices alone.

Predicting price changes at 

a different time horizon in 

the future to achieve better 

performance.

The study used the full 

corpus as input for the 

prediction model, which may 

add noise to the data and 

affect prediction accuracy.

2018

Xie and Jiang [27] Both audience numbers and news 

quality have a crucial impact on the 

stock market.

Have to develop a better 

sentiment evaluation system.

2019

Long et al. [30] Content structure hidden in daily 

financial news can successfully 

predict the stock market 

movements. Financial news 

influence on stock movements lasts 

for 2–3 days.

Adding the structural 

information to the prediction 

model will be able to improve 

the prediction performance.

The use of different models 

to process news texts may 

also improve the results.

2019

Shastri et al. [41] Stock price forecasting is more 

efficient for a shorter time.

Upgrade the sentiment 

analysis task by increasing 

the words that may affect the 

stock movements more.

2019

Picasso et al. [42] The model with the LMD 

dictionary is more effective in 

annualized return measure, while 

the use of AS dictionary proved to 

be more effective in obtaining high 

accuracy results.

The model could not achieve 

overwhelming results 

compared to using news set 

alone.

The use of advanced feature 

fusion methods will improve 

the results. Collect more 

news data for a longer period.

2019

Chen et al. [12] Individual stock prediction using 

the study polarity lexicon was 

better than the benchmark model.

The research did not analyze 

detailed data; it only has the 

data that can be achieved by 

any public users.

2019

Liu and Wang [14] NBAd structure accomplishes the 

best outcomes.

Market predictions of the stock 

price at the minute time frame 

obtain better outcomes than those 

at day level.

Apply the NBA model in an 

index or industry-level data.

2019

Mudinas et al. [19] In some cases, sentiment emotions 

contribute to Granger-cause stock 

price fluctuates, but the finding 

was not inclusive and must be 

examined for each case.

For some stocks, adding sentiment 

emotions to the machine learning 

market prediction model will 

increase the prediction accuracy. 

SVM achieved better and more 

balanced results.

Enhancing the sentiment 

classification model and 

increasing the number of 

collected items will yield a 

better result.

2019
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Moreover, as Tables 2–5 indicate, the main trends in recent studies are to utilize 
deep learning methods instead of conventional machine learning to analyze the 
stock market textual information in the news or social media due to the advantages 
of DL that offer overconventional machine learning. DL promises enough amount 
of data and training time that conventional machine learning methods are unable to 
handle effectively.

Many recent studies only exploit sentiment analysis of textual data, and they 
neglect the important influence of historical stock prices, which affect their predic-
tion accuracy results; this suggests that the incorporation of data from multiple 
sources will improve market prediction effectiveness. The more data fed into the 
prediction model, the better accuracy can be achieved.

Machine learning models described previously have been discussed to show how 
SVM and LSTM are highly preferred by investigators because of their high accuracy 
result in text classification and market prediction, whereas many other machine 
learning methods like K-nearest neighbors (k-NN), random forest (RF), linear 
regression, decision tree, artificial neural networks (ANN), etc. illustrate promising 
results for text mining and sentiment analysis task for market analysis but are least 
frequently used and need to be further investigated.

However, the reviewed work has some limitations; one of the main limitations is 
the insufficiency of highly structured datasets containing text data on markets for 
certain periods that researchers can use to integrate their analysis and assessment 
efforts; another problem is the imbalanced dataset that has been used by many 
researchers, which make discriminating result in prediction.

Future work should focus on predicting the movement of the stock market 
using structured data (past stock prices) along with textual data from different 
resources like financial news and social media. Moreover, to achieve better results 

Reference Finding Limitation and future work Year

Souza and  

Aste [22]

Multiplex network approach 

incorporating information from 

both social media and financial 

data can be used to forecast the 

causal relationship framework with 

high accuracy.

Investigate the impact of 

financial crises by expanding 

the historical data period.

Use different techniques 

of the financial correlation 

establishment and apply it 

to portfolio management 

mechanisms.

2019

Wu et al. [23] Adding news articles was able to 

reduce the RMSE that proves that 

the economic news has crucial 

impacts on market returns.

The negative news has more 

influence on the stock market 

returns than positive news articles.

The research only tested the 

news texts published in the 

Knowledge Management 

Winner newspaper. Future 

study may include other 

online news datasets.

Apply the proposed model to 

examine the stocks of smaller 

companies.

2019

Maqsood et al. [64] Not all the main events have a 

crucial impact on stock market 

movements.

More crucial local events affect 

the performance of the prediction 

model.

Support vector regression gives the 

best prediction performance

Needs to exploit more than 

one social media website to 

produce sentiment analysis 

for a specific event.

The use of financial news 

may improve the prediction 

result.

2020

Table 7. 
Summaries of the reviewed work findings, limitations, and future work.
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in predicting the stock market, the text mining procedure should improve feature 
selection, feature representation, and dimensionality reduction methods.

In general, many techniques will be able to improve the prediction methods 
such as adding the structural information to the prediction model, expanding the 
training period, using more effective expanded lexicons, adding different sources 
of information such as financial news articles, increasing the number of collected 
news for longer period, applying the deep learning models, upgrading the senti-
ment analysis task by increasing the words that may affect the stock movements 
more, using of more improved machine learning techniques for sentiment analysis 
such as Interdependent Latent Dirichlet allocation (ILDA), adding historical stock 
prices to the dataset with the news and social media information, and considering 
of event sentiments analysis as illustrated in Table 7.

8. Conclusion

Knowledge of stock movements by a fraction of a second can lead to high 
profits investors can make which makes stock market studies a major motivation 
for a researcher. The great advances and success of natural language process and 
sentiment analysis of online news based on machine learning and deep learn-
ing have gained huge popularity recently in the financial domain especially in 
market prediction models. This survey has discussed the recent current studies 
on market prediction systems based on text mining techniques with comprehen-
sive clarifying of the model’s main limitations and future improvement methods. 
The survey was undertaken on many major portions such as text preprocessing, 
machine learning algorithms, evaluation mechanisms, findings, and limitations 
associated with detailed discussion and explanation of the most successful used 
techniques. Moreover, this review provides a serious attempt to address the 
problem of market prediction based on the most recent text mining methods and 
provide a clear view of the future research direction. Recently, more extensive 
observations into the financial markets are required in the current dynamic 
world, since the absence of it can have a detrimental effect on the investments 
around the globe. It is therefore essential to undertake prediction models based 
on text mining research as a practical solution that can lead to a much greater 
degree of confidence in the understanding of market movements and make valu-
able investments. With the considerable amount of textual data available online, 
the need to build specialized text mining systems gradually evolves for each field 
of market analysis.

This study is intended to support other researchers to place the different 
theories in this research area more easily into practice and become able to make 
key decisions in the development of future models. The researches mentioned in 
this paper proved the effectiveness of text mining and sentiment analysis meth-
ods in predicting market movements. By comparing many ML methods such as 
SVM or decision tree and deep learning models like LSTM or CNN, we discussed 
some of these model’s limitations and future work and debated the best result 
obtained by each one of these models. After all, the proposed survey displayed 
the need of improving the prediction methods such as adding the structural 
information, considering of event sentiments analysis, using more effective 
expanded lexicons, increasing the number of collected news, expanding the 
training period, applying the deep learning models, adding different sources of 
information, upgrading the sentiment analysis task by increasing the words that 
may affect the stock movements more, and using unified benchmark dataset and 
evaluation measures.
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