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Chapter

Formation of Aromatic and 
Flavor Compounds in Wine: 
A Perspective of Positive and 
Negative Contributions of  
Non-Saccharomyces Yeasts
Liliana Godoy, Andrea Acuña-Fontecilla and Daniela Catrileo

Abstract

Wine is a complex matrix that involves compounds of different chemical nature, 
with volatile compounds being primarily responsible for the aromatic quality of the 
wine. The formation of these volatile compounds is mainly due to yeasts’ metabo-
lism during alcoholic fermentation. Several studies in the microbiology field have 
reported that Saccharomyces cerevisiae is responsible for alcoholic fermentation, influ-
encing the sensory quality of the wine and affecting the metabolic activity of other 
genera and species of yeasts, called non-Saccharomyces, which would positively affect 
sensory quality. Non-Saccharomyces yeasts, considered until recently as undesirable 
or spoilage yeasts, can improve the chemical composition and aroma profile of the 
wine. The activity of these yeasts is considered essential for the final wine aroma 
profile. Thus, the metabolism of these microorganisms could be a decisive factor that 
strongly influences the aroma of the wine, impacting on its quality. However, there 
are few studies that explain the impact of non-Saccharomyces yeasts on the final wine 
aroma profile. This chapter summarizes relevant aspects and pathways involved in 
the synthesis of aromatic compounds by non-Saccharomyces yeasts as well as studies 
at the genetic and transcriptional level associated with their formation.

Keywords: wine, non-Saccharomyces yeasts, fermentation, aroma, flavor

1. Introduction

The study of the yeasts involved in the wine fermentation process has 
shown that the main yeasts genera are Saccharomyces, Candida, Debaryomyces, 
Hanseniaspora, Kloeckera, Pichia and Torulaspora [1]. Despite this large number of 
genera involved in this process, it has been identified that the species responsible for 
alcoholic fermentation is Saccharomyces cerevisiae.

Starter cultures of S. cerevisiae are currently used by winemakers in order to 
homogenize the microbiota and to prevent unwanted yeast species from prevailing 
in the fermentation process. These cultures quickly position themselves against 
the rest of the yeasts, thus ensuring the quality of the final product without being 
conditioned by the other microorganism species present in the fermentation.
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Due to the importance of the aromatic products obtained during the fermenta-
tion process, numerous works have been carried out correlating the strain of S. 
cerevisiae used versus the aroma of the wine obtained [2]. Thereby, several studies 
carried out in the field of wine microbiology have reported that not only S. cerevi-
siae has an effect on the sensory quality of the wine, but also the metabolic activity 
of other genera and species of yeast, called non-Saccharomyces, would positively 
affect sensory quality.

In this way, the sequential action of these different genera and yeast species 
contributes to the wine aroma and flavor, determining the final sensory quality. The 
wine aroma and flavor are mainly obtained by many volatile compounds formed 
during the alcoholic fermentation, including alcohols, esters, organic acids, phe-
nols, thiols, monoterpenes and norisoprenoids.

In this context, Candida stellata and Kloeckera apiculata stand out for their high 
glycerol production. This compound provides sweetness and fullness in wines, 
but the perception of these sensations depends on the concentration and on the 
wine [3].

Candida colliculosa stands out for its production of acetaldehyde and n-propanol, 
which can have a positive influence on the quality of the wine. Likewise, other non-
Saccharomyces species possess ß-glucosidase activity, an enzyme that can hydrolyze 
aromatic precursors [2, 4]. In this way, the initial activity of these yeasts in the must 
is considered essential for the final wine aroma profile, because they are responsible 
for different reactions in the development of a wide range of volatile and nonvolatile 
products. As mentioned before, partially, it has been reported that the use of non-
Saccharomyces yeasts in wine fermentation improves several parameters associated 
with the final wine quality, such as the increase in glycerol content [5], aromatic 
complexity [6], acidity [7] and anthocyanin content [8].

However, despite the aromatic potential of non-Saccharomyces yeasts, most of 
them have a low fermentative capacity, due to their low tolerance to alcohol, being 
unable to finish the fermentation. These characteristics have limited their use in the 
industry, despite their potential.

Currently, one of the strategies is the use of mixed cultures of non-Saccharomy-
ces species with S. cerevisiae strains. This represents a useful tool that allows taking 
advantage of the sensory qualities of non-Saccharomyces species and the fermenta-
tive fitness of S. cerevisiae, favoring the sensory complexity and, therefore, the 
quality of the wine obtained [9]. Studies of mixed cultures of Candida cantarelli 
and S. cerevisiae reported that the use of sequential inoculation of these yeasts 
contributes to the improvement of the sensory characteristics of Syrah variety 
wine [10]. Likewise, Jolly et al. [4] observed that the aromatic profile of Chenin 
Blanc wines was improved with mixtures of Candida pulcherrima and S. cerevisiae. 
García et al. [11] reported similar observations for Chardonnay wines. Regarding 
fermentation of musts with a high concentration of sugar, it has been reported that 
the use of T. delbrueckii and S. cerevisiae reduced the volatile acidity and improved 
the analytical profile of the wine [12]. Also, the combined use of Debaryomyces 
vanriji and S. cerevisiae increased the concentration of geraniol [13]. An increase in 
varietal thiols was observed in cofermentation with Pichia kluyveri and S. cerevisiae 
[14]. Clemente-Jimenez et al. [15], using sequential inoculum of Pichia fermentans 
and S. cerevisiae, observed an increase in the concentration of specific aromatic 
components.

These results show that there is a huge potential for the application of non-
Saccharomyces yeasts in oenology and strong evidence that their use contributes to 
the production of specific volatile compounds improving the aromatic composition 
of wines (Table 1).
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Species Metabolites References

Increase Decrease

Saccharomyces cerevisiae Acetaldehyde
Ethyl esters (caprylate)

[16, 17]

Torulaspora delbrueckii Fruity esters
Ethyl propanoate
Ethyl isobutanoate
Ethyl dihydrocinnamate
Thiols
Terpenes
Glycerol
3-methylthio-1-propanol
4-MSP

Acetic acid
Acetaldehyde
Ethanol
Higher alcohols

[5, 6, 18–30]

Kluyveromyces spp Lactic acid
Esters
Monoterpenic alcohols
2-phenylethanol
Carboxylic acids
Ketones
Furans
Isoamyl acetate

Acetic acid [31, 32]

K. marxianus Polygalacturonases
2-phenylethanol
Phenethyl acetate
Ethyl acetate

[33–35]

K. lactis Monoterpenoids [36–40]

Hanseniaspora spp Acetic acid
Acetate ester
Ethyl acetate
Sulfur compounds 
Hydrogen sulfide

[16, 41]

H. uvarum Acetic acid [42]

H. guilliermondii Acetate ester [43]

H. vineae Acetate and ethyl ester
2-phenylethyl acetate
β-damascenone
Isoamyl acetate
Phenylacetaldehyde

2-phenylethanol [44–48]

Metschnikowia 

pulcherrima

Free terpenes
Linalool
Geraniol
Nerol
Citronerol
Alpha-terpineol
Biogenic amines (histamine, 
tyramine and putrescine)
Acetate esters β-damascenone
Higher alcohols (isobutanol and 
phenylethanol)

C6 alcohols [48–54]

Brettanomyces bruxellensis Volatile phenols (4-ethylphenol)
2‐acetyl‐3,4,5,6‐

tetrahydropyridine
2‐acetyl‐1,2,5,6‐

tetrahydropyridine 
2‐ethyl‐3,4,5,6‐tetrahydropyridine
Isoamyl alcohol
Isoamyl acetate
Esters

[55–60]
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2. Wine aromas produced by non-Saccharomyces yeasts

The formation of aromatic compounds has been extensively studied in S. 
cerevisiae. In this regard, higher alcohols are synthesized from amino acids by 
transamination and decarboxylation reactions (Figure 1). Permeases of amino acids 
participate in these reactions, which are encoded by the GAP1, BAP2 and MEP2 
genes. Subsequently, the transamination reactions are carried out by enzymes 
encoded by the BAT1 and BAT2 genes, which code for branched-chain amino acid 
transaminases, and the ARO8 and ARO9 genes that code for aromatic amino acid 
aminotransferases, which catalyze the transfer of amines between amino acids and 
their respective α-keto acid. Subsequently, the decarboxylation reactions of the 
α-keto acid occur to form the respective aldehydes, where the PDC1, PDC5, PDC6, 
THI3 and ARO10 genes are responsible for coding for enzymes with decarboxylase 
activity and, finally, dehydrogenases act, which reduce aldehydes to alcohols, a 
reaction that is carried out by alcohol dehydrogenases, encoded by the ADH1–7 and 
SFA1 genes, and aryl alcohol dehydrogenases, encoded by AAD genes [71–73].

Other important compounds are acetate esters, and their synthesis occurs by 
condensation between higher alcohols and acetyl-CoA (Figure 2). This reaction is 
carried out by acetyltransferases, encoded by the ATF1 and ATF2 genes. The ethyl 
esters are produced by condensation between ethanol and acyl-CoA, a reaction 
mediated by acyltransferases encoded by the genes EHT1, EEB1 and YMR210W, 
encoding for a monoacylglycerol lipase [74].

Likewise, it has been reported that S. cerevisiae participates in the primary 
release of aromas through the activity of glucosidase enzymes [76].

2.1 Torulaspora delbrueckii

Among the non-Saccharomyces yeasts, T. delbrueckii has gained interest in the 
vitiviniculture industry because it modifies the aromatic properties of final wines 
in a very positive way, producing higher levels of fruity esters, thiols and terpenes 
and lower amounts of higher alcohols, thus respecting the initial character of the 
grape [6, 18, 19]. Also, T. delbrueckii typically produces low concentrations of acetic 
acid [12], one of the main quality parameters in wine production. It has also been 
reported that T. delbrueckii produces wines with higher levels of glycerol [5] and, 
consequently, with lower concentrations of ethanol [20]. This is currently a relevant 
feature because as a consequence of climate change, an increase in sugar concentra-
tion in the must has been observed, resulting in wines with higher alcohol content.

During alcoholic fermentation, the ethanol production is usually higher than 
12% (v/v), so the associated microorganisms must have resistance mechanisms for 
this compound. In practice, the phenotype of ethanol resistance among wine yeasts 

Species Metabolites References

Increase Decrease

Schizosaccharomyces spp H2S
Acetaldehyde
Pyruvic acid
2, 3-butanediol
Acetoin
Acetic acid

Esters
Higher alcohols
Gluconic acid

[61–70]

Table 1. 
Metabolites produced in wine by non-Saccharomyces yeasts in mixed fermentations compared to 
fermentations with S. cerevisiae.
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is heterogeneous, S. cerevisiae being the one with the highest level of resistance and 
the one in charge of leading the alcoholic fermentation. However, non-Saccharomyces 
yeast species play an important role during the early stages of spontaneous alcoholic 
fermentation, when the ethanol concentration is not very high [77].

Figure 1. 
Ehrlich pathway for higher alcohol production (adapted from [71]).

Figure 2. 
Acetate ester and ethyl ester biosynthesis (adapted from [75]).
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Therefore, currently, the strategy of mixed and/or sequential fermentations is 
used, which combines non-Saccharomyces yeasts with a yeast with a higher fermen-
tative profile such as S. cerevisiae, which in most of the cases is necessary to properly 
end the industrial process of alcoholic fermentation.

T. delbrueckii has been described as capable of fermenting and tolerating up to 
an ethanol concentration slightly higher than 9% (v/v) [21]. On the other hand, 
Bely et al. [12] have reported that this value is lower, reaching only 7.4% (v/v). 
Nevertheless, Belda et al. [5, 6], through studies of population kinetics in sequential 
fermentation, observed that T. delbrueckii suffered a significant decrease in the cel-
lular viability when ethanol levels exceed 8% (v/v). This suggests that the ethanol 
resistance of T. delbrueckii is limited and much lower than that of S. cerevisiae, which 
complicates its use in industrial fermentations. Nevertheless, to improve the fer-
mentation rate of the selected nonconventional yeasts, sequential cultures are used, 
but this is to the detriment of the diversity of aromas that could be present in the 
final product. Given this context, ethanol resistance is an important factor in the 
selection of industrial non-Saccharomyces strains and particularly of T. delbrueckii.

Non-Saccharomyces yeast species can produce the aromatic volatiles that are 
known to be important for industrial beer and wine fermentations and that are 
produced by Saccharomyces species [78]. For the case of T. delbrueckii, several studies 
have indicated how beneficial its, from the aromatic point of view, incorporation 
into fermentations is [79–81]. Belda et al. [6], evaluating a sequential fermentation 
using Verdejo variety must, observed a higher aroma quality, intensity and fruity 
character. Chromatographic analysis indicated that this effect was due to an increase 
in the levels of the main ones, mainly 4-methyl-4-sulfanyl-pentan-2-one (4-MSP), 
which is represented in this grape variety. Likewise, Renault et al. [22] reported that 
mixed inoculations of T. delbrueckii and S. cerevisiae allowed the increase of some 
esters specifically produced by T. delbrueckii, which correlated with the maximum 
population reached by it in mixed cultures. Among the reported compounds were 
ethyl propanoate, ethyl isobutanoate and ethyl dihydrocinnamate, which are 
considered activity markers for this yeast.

The signaling pathways involved in the formation of aroma and flavor com-
pounds, such as the Ehrlich pathway, or the specific enzymes responsible for the 
synthesis of ester, are also present in nonconventional yeast. This route has been 
studied extensively in S. cerevisiae [71, 82, 83]. This pathway consists of a step of 
transamination of amino acids to α-keto acids, followed by decarboxylation to 
“fusel aldehydes.” These fusel aldehydes can be reduced or oxidized in fusel alcohols 
or fusel acids, respectively [71, 84]. Subsequently, aromatic esters can be formed 
from alcohols and fusel acids [23], and these compounds are responsible for the 
characteristic aroma and flavor of the final fermented product [72]. In addition, 
these aromatic esters have a low detection threshold, which is why minimum 
amounts of these compounds are required for the perception of the human olfac-
tory senses [23].

It has been reported that the concentration of assimilable nitrogen has a signifi-
cant effect on the production of fermentation aromas [85, 86]. A higher concentra-
tion of higher alcohols at the end of fermentation has been observed in media with 
low nitrogen content [24–26]. Likewise, there is a directly proportional relationship 
between the concentration of nitrogen and the synthesis of the ethyl esters, in 
which the initial content of nitrogen is associated with an increase in the produc-
tion of esters [27, 28]. In this sense, Bloem et al. [87] observed that the nitrogen 
composition of the medium could influence the redox balance in the yeast cells 
during alcoholic fermentation and that variations in this balance could change the 
final concentrations of certain volatile compounds. Changes in the levels of these 
compounds were closely related to the effects of redox status on the availability of 
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acetyl-CoA, an intermediate of central carbon metabolism and precursor of α-keto 
acids. Similar results were reported by Rollero et al. [88] who observed that a small 
change in the acetyl-CoA pool would affect the bioconversion of acetate esters from 
higher alcohols. These results suggest that it is possible to increase the aromatic 
potential of T. delbrueckii by modulating the availability of nitrogen in the medium, 
which would influence the redox balance of the cells directly affecting the final 
concentrations of certain volatile compounds.

Through next-generation sequencing, Tondini et al. [89] characterized the tran-
scriptome of T. delbrueckii COFT1 observing differences in glucose fermentation 
pathways and the formation of aromatic and flavoring compounds, such as glycerol, 
esters and acetic acid with respect to S. cerevisiae. These differences are partly 
explained by the absence of paralogous genes in glycolysis and glycerol biosynthesis 
in T. delbrueckii. It has been reported that T. delbrueckii produces less acetic acid 
[29], and this phenomenon depends on increased expression of genes related to 
alcoholic fermentation, while acetate ester levels were influenced by the absence of 
esterases, ATF1–2. Likewise, a lower production of ethyl esters was observed in T. 
delbrueckii COFT1, which suggests a negative regulation in the fatty acid pathway 
biosynthesis.

2.2 Kluyveromyces spp.

Kluyveromyces species do not usually intervene in spontaneous fermentation pro-
cesses because they have a low fermentation capacity and slow multiplication [31]. 
However, they are capable of producing considerable amounts of lactic acid (1.5–
1.8 g/L) and low amounts of acetic acid. It has been reported that Kluyveromyces spe-
cies produce aromatic compounds such as esters, monoterpenic alcohols, carboxylic 
acids, ketones, furans and isoamyl acetate in liquid phase fermentation. Of all these 
compounds, the production of 2-phenylethanol (2-PE) stands out [32], with the 
aroma of rose petals, which is commercially important, since it gives character-
istics that positively influence wine quality, among others [90]. In particular, the 
influence of the carbon source [91, 92], the aeration rate [92], the composition of 
the medium [93] and growing conditions [94] on the production of aromas in K. 
marxianus has been studied.

K. marxianus produces polygalacturonases, enzymes that added in the fermenta-
tion of musts favor the release of aromatic compounds, resulting in citrus, balsamic 
and floral wines [33]. Other studies have demonstrated the fermentation capacity 
of K. marxianus in pure culture for the production of tequila; however, in mixed 
cultures with S. cerevisiae, the activity of K. marxianus is negatively affected [95].

Another group of important aromatic compounds is monoterpenoids. 
The common precursor of these compounds is geranyl pyrophosphate (GPP). 
Although plants, such as Vitis vinifera and Humulus lupulus, produce monoterpe-
noids [36], it has been reported that yeasts can also produce them [37], highlight-
ing K. lactis [38–40].

Marcišauskas et al. [34], using the strain of K. marxianus iSM996, constructed 
the first genome-scale metabolic model for this yeast. This model contains several 
unique biosynthetic pathways for aromatic compounds such as 2-PE, phenethyl 
acetate and ethyl acetate. The K. marxianus iSM996 model is a solid tool to evaluate 
the metabolic characteristics of K. marxianus, allowing the integration of experi-
mental data and strain design based on the model.

Ivanov et al. [35] studied the production potential of 2-PE by the strain of K. 
marxianus 35. The results revealed that the enzymatic activity of aminotransferase, 
pyruvate decarboxylase and alcohol dehydrogenase, key enzymes of the Ehrlich 
pathway, was almost twice as large compared to S. cerevisiae. In addition, the 
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residual concentration of 2-PE was twice lower in K. marxianus 35 and the effi-
ciency was found to be 73% for this strain. Additionally, the sequence variability 
in the genes encoding the key enzymes of the Ehrlich pathway suggests that in 
addition to the physiological advantages Kluyveromyces have probably undergone 
substantial evolutionary genetic alterations that result in higher enzymatic activities 
and a better transformation potential of 2-PE.

2.3 Hanseniaspora

Species of the genus Hanseniaspora are ubiquitous in the winemaking environ-
ment, and some of them have been proposed as wine yeast starters [96].

Fermentations of mixed cultures by wild yeasts, such as H. guilliermondii, 
together with S. cerevisiae have shown higher concentrations of acetate ester 
compared to fermentations with S. cerevisiae alone, without significantly affect-
ing acetaldehyde, acetic acid, glycerol and higher total alcohols [43]. However, 
Lleixà et al. [44] reported that the use of the H. vineae species as an initiator is 
capable of granting aromatic complexity in wines, producing key aromatic com-
pounds. However, the sensory evaluation of the wines produced by this apiculate 
yeast is still limited and the results have not been consistent. In this regard, 
Medina et al. [45] reported that fermentation using H. vineae produced up to 10 
times higher levels of 2-phenylethyl acetate in wine, compared to conventional 
and spontaneous fermentations. However, the opposite was observed for the con-
centration of 2-PE, which was significantly lower. Similar results were reported 
by Viana et al. [46, 47], regarding the high production of 2-phenylethyl acetate 
by H. vineae.

It should be noted that the aromatic contribution of 2-PE is controversial. 
Fuente-Blanco [97] reported that the contribution of 2-PE in the aroma of red wine 
was insignificant, in addition to depending on the aromatic context.

On the other hand, Viana et al. [16] reported that Hanseniaspora spp. produce 
high levels of ethyl acetate. In this regard, it is important to highlight that ethyl 
acetate at low levels, below 80 mg/L, confers aromatic complexity on the wine, 
giving it a “fruity” aroma. However, over 150 mg/L is responsible for the typical 
altered sensory properties of acescence [98].

The acetic acid concentration in wines is also important, becoming a defect near 
its flavor threshold of 0.7–1.1 g/L. Some H. uvarum species have been reported to 
produce acetic acid levels of up to more than 3.4 g/L [42].

Other compounds have been associated with the metabolism of H. vineae such as 
β-damascenone, isoamyl acetate and phenylacetaldehyde, which have been identi-
fied in ice wine fermentations [48].

Seixas et al. [99] reported the reconstruction of the metabolic network for 
H. guilliermondii UTAD222, noting that this strain of yeast contains four genes 
that code for β-glucosidases, as well as the genes necessary for the synthesis of 
acetaldehyde, ethyl esters and higher alcohols. Surprisingly, no S. cerevisiae acetyl 
transferase-like proteins, involved in the synthesis of acetate esters, were found in 
the ORFeome of H. guilliermondii UTAD222. This is contradictory because it has 
been described that the synthesis of these compounds is high in this species [43]. 
Likewise, no sequences associated with aryl alcohol dehydrogenases were found, 
enzymes necessary for the synthesis of higher alcohols from aldehydes, which could 
contribute to the lower reported capacity of this species to produce these com-
pounds, especially in comparison with S. cerevisiae.

Giorello et al. [100] recently reported genome sequencing, assembly and phy-
logenetic analysis of two strains of H. vineae. When these genomes were compared 
with 14 genomes of S. cerevisiae, specific flavor gene duplications and absences 
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were identified in the H. vineae genome. In this regard, the increase observed in the 
formation of 2-phenylethyl acetate and phenylpropanoids, such as 2-phenylethyl 
and benzyl alcohol, could be explained by duplications of ARO8, ARO9 and ARO10 
genes. Similarly, the high level of acetate esters produced by H. vineae compared to 
that of S. cerevisiae is related to the identification of six proteins with domains of 
alcohol acetyltransferase (AATase). The opposite occurs with the reduced produc-
tion of higher branched chain alcohols, fatty acids and ethyl esters, which responds 
to the absence of branched chain amino acid transaminases (BAT2) and acyl 
coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1).

2.4 Metschnikowia

Metschnikowia pulcherrima is one of the non-Saccharomyces yeast species with the 
greatest capacity to express extracellular hydrolytic enzymes. In M. pulcherrima, the 
presence of enzymes with pectinase, protease, glucanase, lichenase, β-glucosidase, 
cellulase, xylanase, amylase, sulfite reductase, lipase and β-lyase activity [49, 
101–103] has been described. Also, its high proteolytic activity makes it a candidate 
to be used in fermentations with S. cerevisiae, releasing amino acids and increasing 
the available nitrogen sources for the growth of S. cerevisiae [104, 105]. It also stands 
out for its glucosidase-dependent strain activity [106, 107], which increases in aero-
bic conditions [50], promoting the release of varietal aromas by hydrolyzing bound 
monoterpenes. The expression of β-D-glucosidase favors the release of free terpenes 
and this activity has been evaluated using the 4-methylumbelliferyl-β-D-glucoside 
(MUG) and p-nitrophenyl-β-D-glucoside (pNPG) substrates [108].

Terpenes are relevant in the varietal character of various white grape variet-
ies, being the main descriptors of varieties such as Muscat, Riesling or Alvariño 
[51]. Their presence and relevance in certain red grape varieties are also specific. 
However, the composition of free terpenes in the must is scarce, with a large 
amount of glycosylated terpenes [52]. These can be released by enzymatic hydro-
lysis by glycosidase enzymes [53, 109]. Within this group, linalool, geraniol, nerol, 
citronellol and alpha-terpineol stand out [51, 53].

The enzymatic hydrolysis of glycosides is mainly carried out by several 
enzymes that act sequentially, according to two steps: first, α-L-rhamnosidase, 
α-L-arabinosidase or β-D-apiosidase make the cleavage from terminal sugar 
and rhamnose, arabinose or apiose and the corresponding β-D-glycosides are 
released. Subsequently, the release of terpene occurs after the action of a β-D-
glucosidase [110].

Likewise, mixed fermentations between M. pulcherrima and S. cerevisiae have 
identified higher levels of acetate esters and β-damascenone, and lower levels of C6 
alcohols in ice wines of Vidal Blanc grape variety [48]. Similarly, a higher produc-
tion of higher alcohols has been reported, with a greater amount of isobutanol and 
phenylethanol [54].

Another aspect to highlight for M. pulcherrima is that it has the ability to produce 
biogenic amines (histamine, tyramine and putrescine); however, this phenomenon 
would be strain dependent [49].

To date, only the genome of one M. pulcherrima strain has been reported [111], 
and genetic studies are scarce. Reid et al. [103] identified and characterized the gene 
that codes for an aspartic protease of M. pulcherrima IWBT Y1123, called MpAPr1. 
The results indicated that this protein presented homology with proteases of the 
yeast genera. Likewise, aspartic protease activity was confirmed by heterologous 
expression in S. cerevisiae YHUM272. This gene was found in 12 other strains of M. 
pulcherrima; however, analyzes revealed that the intensity of the enzyme activity 
was strain dependent and was not related to the gene sequence.
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2.5 Brettanomyces spp.

The yeast Brettanomyces bruxellensis is one of the main contaminant yeasts in 
wines, with the ability to metabolize hydroxycinnamic acids, which are naturally pres-
ent in grapes, into volatile phenols [55, 56]. It has been described that this yeast can 
grow in various stages of wine production, for example, after alcoholic fermentation, 
during malolactic fermentation, during maturation in barrels or in already bottled 
wine. This characteristic is due to its ability to tolerate high ethanol variables [57].

Volatile phenols represent a large family of aromatic compounds where vinyl 
and ethyl derivatives are involved with product deterioration [55, 58]. These 
volatile phenols, especially 4-ethylphenol, are responsible for odors that have been 
described as “animal,” “medicine,” “leather” and “stable,” which at concentrations 
above their perception threshold are detrimental to the aromatic profile of wines 
[55, 58].

The production of these compounds by Brettanomyces spp. is the result of the 
enzymatic transformation of hydroxycinnamic acids (3-methoxy-4-hydroxycin-
namic acid (ferulic acid) and 4-hydroxycinnamic acid (p-coumaric acid)) by the 
action of two specific enzymes: cinnamate decarboxylase (CD) and vinylphenol 
reductase (VR) [112–115]. Also, Brettanomyces yeast species are capable of produc-
ing 2-acetyl-3,4,5,6-tetrahydropyridine, 2-acetyl-1,2,5,6-tetrahydropyridine and 
2-ethyl-3,4,5,6-tetrahydropyridine. These compounds are responsible for “mousy 
taint” produced by microorganisms in the presence of lysine and ethanol [59].

It has been described that the ability of these yeasts to produce volatile phenols 
is variable [116, 117]. Factors such as the pH of the wine, the concentration of 
sugar and the moment in which this yeast is inoculated influence this capacity 
[118]. Along with this, it has been observed that the production of 4-ethylphenol 
in red wines is related to population growth, a phenomenon that would be strain 
 dependent [119].

From the genetic point of view, there is a great intraspecific diversity of strains 
of B. bruxellensis [120–123], which translates into the different phenotypes of 
production of reported volatile phenols. The number of chromosomes in this spe-
cies can vary between 4 and 9, with chromosome sizes in the range of 1 to 6 Mb, and 
total genome size between 20 and 30 Mb [124, 125]. Also, karyotypic studies suggest 
speciation due to genome rearrangements. However, available genetic studies are of 
a limited number of strains [121, 126–130]. In this regard, a transcriptomic analysis 
of the strain of B. bruxellensis LAMAP2480 exposed to p-coumaric acid indicates 
that this acid generates a stress condition, inducing the expression of the proton 
pump together with the output of toxic compounds, as well as the output of nitro-
gen compounds, reducing intracellular concentration and triggering the expression 
of nitrogen metabolism genes (Figure 3) [121].

Additionally, sequencing and genome analysis of the strain of B. bruxellensis 
AWRI1499 reported the presence of three homologous proteins with the isoamyl 
acetate hydrolysis enzymes of S. cerevisiae that are related to isoamyl alcohol con-
centrations and isoamyl acetate produced in fermentation. This strain was evalu-
ated under fermentation conditions in model wine and produced higher levels of 
esters [60]. In this sense, it has been described that the formation of esters between 
Brettanomyces strains is variable.

The positive aromatic contribution of these yeasts has been studied mainly in 
beer. Brettanomyces spp. are able to esterify medium and long chain fatty acids in 
their respective esters, influencing the sensory profile of beers. Likewise, it has been 
reported that Brettanomyces has β-glucosidase activity, which would be responsible 
for breaking down the cellobiose present in the barrels, explaining its survival dur-
ing the wine aging stage [131]. Crauwels et al. [120] reported that B. bruxellensis has 
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two genes that encode β-glucosidases. Most strains from beer, with the exception 
of strain ST05.12/22, have only one copy, while strains isolated from the wine have 
both ORFs.

2.6 Schizosaccharomyces spp.

While Schizosaccharomyces genus yeasts have been associated with the production 
of compounds such as hydrogen sulfide (H2S) and acetaldehyde [61] that negatively 
impact the aromatic quality of wines, S. pombe stands out mainly for its ability to 
degrade malic acid into ethanol and deacidify musts of grapes and wines.

L-Malic acid is a compound that is present in grape must and its concentration 
depends on the grape varieties and climatic conditions. When malolactic fermenta-
tion (MLF) occurs, the lactic acid bacteria transform L-malic acid into lactic acid, 
reducing the total acidity and thereby increasing the pH of the grape must [132]. 
However, factors such as ethanol concentration, pH, temperature and sulfur dioxide 
(SO2) level affect the successful completion of MLF [133].

An alternative to this process is the malo-ethanolic deacidification carried out by 
S. pombe [62, 134]. This yeast exhibits a high tolerance to low pH and high levels of 
SO2, characteristics that make it highly compatible for use during the winemaking 
process [135]. Benito et al. [63] reported that the conversion of malic acid to ethanol 
decreases the total acidity by approximately 4 g/L and increases the final pH by 
approximately 0.4.

Other interesting characteristics of this yeast are associated with its ability to 
reduce gluconic acid concentrations [64, 65]. It has also been reported that the urease 
activity of Schizosaccharomyces strains could reduce the content of ethyl carbamate 
and biogenic amines in wine by reducing the concentrations of urea [66, 67]. 
Another application that Schizosaccharomyces has is aging on the lees, thanks to the 
strong autolytic release of the polysaccharides from the cell wall [136, 137].

Figure 3. 
Model of early response to stress by p-coumaric acid.
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The contribution from the aromatic point of view of S. pombe has been recently 
reported where it has been observed that it stands out mainly for producing fewer 
amounts of higher alcohols in comparison to S. cerevisiae, which could be attributed 
as a strain-dependent characteristic [62, 63, 66, 68, 69].

Benito et al. [63] reported a lower production of isobutanol, 2-methyl-butanol, 
3-methyl-butanol and 2-phenyl-ethanol in white wines by S. pombe in comparison 
to S. cerevisiae. Similar results have been reported by Mylona et al. [66] where, fer-
menting red must, they observed a decrease in 2-methyl-butanol, 3-methyl-butanol 
and isobutanol by S. pombe in comparison to S. cerevisiae. On the other hand, Chen 
et al. [69] observed that S. pombe possesses a special ability to produce more 2, 
3-butanediol, which contributes to the fruity aroma described as banana to wines.

In the case of esters, a similar phenomenon occurs, observing that 
Schizosaccharomyces shows a tendency to produce lower concentrations of esters in 
comparison to S. cerevisiae. It has been reported to produce lower concentrations 
of isoamyl acetate and 2-phenyl-ethyl acetate in comparison to S. cerevisiae [62]. 
Likewise, lower production of total esters was reported by Del Fresno et al. [68] in 
comparison to S. cerevisiae.

Finally, S. pombe fermentations have been reported to show higher levels 
of acetoin in comparison to S. cerevisiae controls. Also, they are commonly 
associated with high levels of acetic acid. These levels might vary from strain to 
strain [68–70].

3. Conclusion

There are many physiological studies on the contribution of non-Saccharomyces 
yeasts to the aromatic profile of wines. However, reports at the genetic level that 
explain the differences observed in these yeasts with respect to S. cerevisiae are 
scarce.

Despite the little information available, it is possible to establish that the differ-
ences in aromatic potential observed in non-Saccharomyces yeasts are mainly due 
to modifications in the Ehrlich pathway and the biosynthesis of acetate esters and 
ethyl esters. These changes can be summarized as follows:

a. Differences in the regulation of gene expression of these routes

b. Absence of paralogous genes

c. Gene duplications

d. Modification of enzymatic activities

The identification of most of these biological mechanisms has been possible 
thanks to the use of massive sequencing technology (NGS).

Given the relevance of the contribution of non-Saccharomyces yeasts to the 
quality and typicity of wines and their impact on taste, more studies with genetic 
approaches that explain the metabolic diversity of these yeasts are required.
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