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Chapter

Electrospinning Technique as a 
Powerful Tool for the Design of 
Superhydrophobic Surfaces
Pedro J. Rivero, Adrian Vicente and Rafael J. Rodriguez

Abstract

The development of surface engineering techniques to tune-up the composition, 
structure, and function of materials surfaces is a permanent challenge for the scien-
tific community. In this chapter, the electrospinning process is proposed as a versatile 
technique for the development of highly hydrophobic or even superhydrophobic 
surfaces. Electrospinning makes possible the fabrication of nanostructured ultra-
thin fibers, denoted as electrospun nanofibers (ENFs), from a wide range of poly-
meric materials that can be deposited on any type of surface with arbitrary geometry. 
In addition, by tuning the deposition parameters (mostly applied voltage, flow rate, 
and distance between collector/needle) in combination with the chemical structure 
of the polymeric precursor (functional groups with hydrophobic behavior) and its 
resultant viscosity, it is possible to obtain nanofibers with highly porous surface. As a 
result, functionalized surfaces with water-repellent behavior can be implemented in 
a wide variety of industrial applications such as in corrosion resistance, high efficient 
water-oil separation, surgical meshes in biomedical applications, or even in energy 
systems for long-term efficiency of dye-sensitized solar cells, among others.

Keywords: electrospinning, superhydrophobicity, wettability properties,  
polymeric precursors, industrial applications

1. Introduction

The measurement of the contact angle (CA) value is one of the most important 
parameters used for the determination and quantification of the wettability of 
solid surfaces. This CA is used to describe the behavior of a liquid droplet on a 
solid surface in air and is measured as the angle between the tangent at three phase 
points and the solid surface [1]. Accordingly, a surface is considered hydrophilic 
when the resultant solid surface shows a water contact angle (WCA) less than 90°, 
whereas a solid surface is considered hydrophobic when the WCA is higher than 
90°. Nowadays, due to the development of the nanotechnology, bioinspired surfaces 
with special wettability properties are continuously emerging in the scientific 
research areas. Some representative examples are the design of novel surfaces with 
superhydrophilic (WCA < 10°) [2] or superhydrophobic (WCA > 150°) [3] behavior 
measured by water as well as surfaces with superoleophilic (CA < 10°) [4] or even 
superoleophobic (CA > 150°) [5] behavior measured by using oil droplets.
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By convention, a superhydrophobic surface exhibits an extraordinary water 
contact angle value that is greater than 150° with a low sliding angle (typically 
less than 10°). The effect of the surface microstructure on the resultant water 
repellency can be explained by two distinct models depending on the degree of 
surface roughness such as the Wenzel model [6] and the Cassie-Baxter model [7]. 
According to the Wenzel model, the liquid is in contact with the entire exposed 
surface of the solid because the large interfacial energy at the water-solid inter-
face induces the penetration of water into the surface cavities. However, in the 
Cassie-Baxter model, the liquid does not penetrate the hollows or cavities of the 
corrugated surface and the water droplets mostly contact air pockets that are 
formed between water and a rough solid surface. Consequently, in the Cassie-
Baxter model, the superhydrophobic shows a lower sliding angle in comparison 
with the Wenzel state [8]. Till, the Cassie-Baxter state is preferred because of 
very small hysteresis and excellent rolling behavior even at till angles of a few 
degrees. In addition, it is known that some plants (i.e., lotus left), animal fur, 
or insect wings found in the nature can show this superhydrophobic behavior. 
According to this, in order to simulate this biological surface, the design of 
synthetic superhydrophobic surfaces is a continuous challenge in the scientific 
community [9].

The research is focused on the design of surfaces with a low surface energy 
combined with a hierarchical surface roughness on at least two different length 
scales (i.e., micrometric and nanometric morphology) [10]. Accordingly, 
multiple deposition techniques have been implemented for this specific pur-
pose such as layer-by-layer assembly [11], sol-gel process [12], electrochemical 
deposition [13], chemical vapor deposition [14], lithography [15], physical 
vapor deposition [16], and chemical etching [17], among others. However, an 
interesting deposition technique is the electrospinning process because it is pos-
sible to induce the dual effect of low surface energy and the desired roughness 
with multiscale surface morphology, respectively [18]. In the electrospinning 
process, an electrostatic force is used to obtain electrically charged polymeric 
jet, which overcomes the surface tension of the polymeric solution. As a result, 
elongated fibers are accelerated from capillary tip and are then deposited onto 
collector with the corresponding evaporation of the solvent, thereby making 
possible the fabrication of fibers with a good control over their corresponding 
morphological, optical, and wetting properties [19]. In this sense, the fabrica-
tion of ultrathin or nanofibers can be obtained as a strict control of the several 
parameters such as applied voltage, flow rate, and viscosity of the polymeric 
precursor or distance to collector, among others [20, 21]. The surface modifica-
tion to control the wettability of electrospun mats is possible due to the presence 
of fibers with micrometric and sub-micrometric diameter, thereby providing 
hierarchical surface with superhydrophobic behavior because of the small size 
of the resultant electrospun mats [22]. Finally, the number of scientific works 
based on the combination of electrospun fibers and superhydrophobic surfaces 
published in indexed journals has gradually increased. Potential applica-
tions can be found in areas as diverse as removal of oil from water, separation 
membranes, corrosion protection in metallic surfaces, or even in biomedical 
applications.

To sum up, this chapter is divided into the following subsections such as opera-
tional parameters in the electrospinning process, design of superhydrophobic 
surfaces composed of electrospun mats, and a summary table of the main applica-
tions derived from this work with their corresponding conclusions.
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2. Operational parameters in electrospinning process

Electrospinning is a very versatile technique that can be implemented in a 
wide variety of polymeric precursors from biodegradable [23–24], copolymer 
[25–26], natural [27], or even synthetic nature [28–29]. The fundamentals of this 
deposition technique are based on the use of electrostatic forces with the aim to 
obtain polymeric electrospun fibers with the desired morphology (submicron 
or nanometric scale) as a function of the experimental parameters [30, 31]. The 
basic features of this deposition process are shown in Figure 1 where a character-
istic “Taylor cone” is formed during the projection of the fibers [32]. Under the 
action of the electric field, the droplets formed in the tip of needle are gradually 
elongated forming a characteristic conic shape. In addition, when the polymeric 
precursor has traveled through the air, the solvent is gradually evaporated during 
the flight of the fibers, and as a result, the fibers are finally deposited onto the 
corresponding collector [33, 34].

Figure 2 shows the three main key factors that have to be controlled to obtain 
the electrospun fibers with the desired morphology. The first factor is related to the 
nature of the polymeric precursor, which is associated with its molecular weight, 
viscosity, molar concentration, surface tension, electrical conductivity, and solvent 
nature [35]. The second factor is inherent to the operation of the electrospinning 
setup such as applied high voltage, the flow rate, and tip-to-collector distance [36]. 
And the third factor is derived by the external environmental conditions such as the 
relative humidity and temperature [37].

Figure 1. 
(a) The aspect of the fibers being electrospun from the needle that contains the polymeric precursor solution 
(poly acrylic acid, PAA). (b) Detail of the “Taylor cone” formed at the tip of the needle as a function of the 
operational parameters. Reprinted with permission of Rivero et al. [32].
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3. Design of superhydrophobic surfaces obtained by electrospun fibers

By convention, a superhydrophobic surface exhibits an extraordinarily water 
contact angle value that is greater than 150°C with a low sliding angle (typically 
less than 10°). According to this, many plants (i.e., lotus left), animal fur, or insect 
wings found in the nature show this superhydrophobic behavior. In this sense, in 
order to simulate this biological surface, the design of synthetic superhydrophobic 
surfaces is a permanent challenge for the scientific community. The research is 
focused on the design of surfaces with a low surface energy combined with a hier-
archical surface roughness on at least two different length scales (i.e., micrometric 
and nanometric morphology) [10]. And this dual effect can be perfectly controlled 
by the electrospinning technique because it is possible to generate continuous 
ultrathin fibers with micrometric and sub-micrometric diameter, thereby providing 
the hierarchical surface with superhydrophobic behavior because of the small size 
of the resultant electrospun fibers.

An interesting approach is shown in [39] because the intrinsic properties of 
polyvinylidene fluoride (PVDF) can be enhanced by fabricating electrospun 
nanocomposite PVDF fibrous mats of predetermined morphology. In this work, 
the effect of five different factors such as polymeric concentration, nanoparticles 
loading, volumetric ratio of the solvents, flow rate, and spinning distance have 
been analyzed on the morphology and wettability by using a screening Design of 
Experiments (DoE) statistical methodology. The results clearly indicate that among 
all the factors examined, the PVDF concentration has been found to show the most 
significant effect on both the morphology and wettability.

Other representative example is presented by Rawal [40] where it is theoretically 
demonstrated by a simple analytical mode that it is possible to obtain superhydro-
phobic behavior of an electrospun nonwoven mat by controlling important design 

Figure 2. 
Schematic representation of a electrospinning setup for the fabrication of electrospun fibers as a function of 
variable parameters such as nature of the fluid, nature of the solvent, type of needle, high voltage applied, flow 
rate, collector distance, and type of collector, respectively. Reprinted with permission of Rivero et al. [38].
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parameters such as porosity and fiber orientation distribution. According to this, 
simply by enhancing the porosity of an electrospun fibers can show a superhydro-
phobic behavior. This effect of the resultant porosity is evaluated in [41] where the 
first example of successful production of self-standing fibrous membrane of poly-
mers with intrinsic microporosity (PIM-2) by electrospinning technique is shown, 
showing a great interest as a potential membrane material for adsorption and separa-
tion applications. The fibers are composed of a mixture of 5,5′,6,6´-tetrahydroxy-
3,3,3′,3′-tetramethyl-1,1′-spirobisindane (TTSBI) and decafluorobiphenyl (DFBP). 
The resultant coatings have shown bead-free and uniform fibers with an average 
diameter of 5.5 ± 1.5 μm, showing a superhydrophobic with a water contact angle 
value of 155 ± 6°. According to this, numerous articles can be found based on the 
fabrication of superhydrophobic electrospun coatings for oil-water separation. Wang 
et al. [42] described an electrospinning process to obtain superhydrophobic thermo-
plastic polyurethane nanofiber mat after decorating with modified nanosilicas. The 
water contact angle increases with the nanosilica concentration which it is ascribed 
to the increase in roughness of the TPU films as well as the low surface energy of the 
nanosilicas, being of great interest for separating mixtures of oil and water due to 
both superhydrophobicity and superoleophilicity. A similar work can be found in 
[43] with ultrathin electrospun fibrous PVDF membranes with both superhydro-
phobic and superoleophilic properties. The PVDF membranes are governed by the 
surface morphology and diameter of the PVDF fibers, which can be controlled by the 
PVDF concentration in the electrospinning solution. As the diameter of the PVDF 
fiber is increased, the surface roughness of the PVDF membrane is also increased. 
The ultrathin electrospun fibrous PVDF membranes carried out the highest water 
contact angle of 153° and an oil contact angle of 0°, being an interesting approach 
in high-efficiency liquid separation membranes for separating emulsified water-
in-oil solutions. Other different types of polymeric precursor such as polymethyl 
methacrylate (PMMA) can be also used for the fabrication of superhydrophobic-
superoleophilic fibrous membranes by electrospinning [44], thereby showing a high 
water contact angle up to 153.9° and nearly 0 oil contact angle. This super wettability 
property is associated with the hierarchical macro- and nanostructure on the surface 
of PMMA surface fibers, which is adjusted by weight ratio of the employed solvents. 
Other interesting work is presented in [45] for the preparation of a potential adsor-
bent with superhydrophobic (>150° in water) and superoleophilic (0° in oil) wetting 
properties for selective removal of crude oil from water. In this work, expanded 
polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was 
introduced to the polymeric matrix with the aim to impart rough to non-beaded 
fiber. Due to the use of EPS, a novel work is presented in [46] whereby the first time 
recycled expanded polystyrene foam with various proportions of titanium dioxide 
nanoparticles (TiO2 NPs) and aluminum microparticles (Al μPs) have been success-
fully spun into superhydrophobic nanocomposite fibers using the electrospinning 
technique, showing a contact angle value of 152°.

Other interesting approach can be found in [47] where a novel method is pro-
posed to fabricate hollow and surface porous PS fibrous membranes for the removal 
of oil from water. In this work, the spinning solutions were prepared by using 
camphene and tetraethoxysilane (TEOS) as pore-forming agents, and as a result, 
hollow PS fibers with 100–400 nm pores on the surface have been obtained by elec-
trospinning and freeze-drying, being this type of membrane a great alternative and 
promising tool for oil of spill cleanups. In other work [48], the enhanced mechani-
cal properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 
nanofibers (PA6) are evaluated. It has been corroborated that fibrous mats formed 
with the number ratios of jets 2/2 (PS/PA6) have shown a water contact angle of 
150° with three times increased tensile strength compared with only pure fibrous 
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PS mat, respectively. Other important study is presented in [49] where electrospun 
nanofibrous mats (ENMs) have been fabricated from blends of a host hydrophilic 
polymer, polysulfone (PSF), and small quantities of fluorinated polyurethane addi-
tive (FPA), respectively. The ENMs have been tested in desalination by membrane 
distillation, thereby showing competitive permeate fluxes with stable low permeate 
electrical conductivities.

Other aspect to be remarked is that the electrospinning technique can be also 
implemented by using copolymers. A clear example can be found in [50] where 
segmented polyimide-siloxane copolymers have been prepared using 4,4′-oxyd-
ianiline (ODA) and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) 
as hard segments and aminopropyl terminated polydimethyl-siloxane (APPS) and 
BTDA as soft segments. The water contact angle values of the electrospun mats have 
increased with increasing the siloxane content, and scanning electron microscopy 
(SEM) images reveal the bead formation known as pop-corn model, this finding 
being used specifically for self-cleaning materials.

Hang et al. [51] demonstrated the high versatility of the electrospinning because 
the coaxial electrospinning is presented by using Teflon AF as sheath material and 
polycaprolactone (PCL) as core material. The resultant electrospun fibers exhibit 
both superhydrophobic and oleophobic behaviors, and these coaxial fibers also 
preserve the core material properties as demonstrated with mechanical tensile tests. 
The use of coaxial electrospinning is also used in [52] where the design and fabrica-
tion of a composite electrospun membrane composed of polylactide:poly(vinyl 
pyrrolidone)/polylactide:poly(ethylene glycol) (PLA:PVP/PLA:PEG) core shell 
fibers loaded with bioactive agents, as functionally integrated wound dressing for 
efficient burn treatments. In addition, the electrospinning can be easily combined 
with other deposition techniques as it can be appreciated in [53]. In this work, 
superhydrophobic fabrics are produced by electrospinning and chemical vapor 
deposition. According to this, first electrospun PCL fibers are deposited and 
second, a thin layer of hydrophobic polymerized perfluoroalkylethyl methacrylate 
(PPFEMA) is deposited on the electrospun fibers, thereby yielding a superhydro-
phobicity behavior with a contact angle value of 175° and a sliding angle less than 
2.5°. A similar approach based on the use of two different deposition techniques is 
shown in [54] where the preparation of hierarchically structured PCL superhydro-
phobic membranes are obtained via combination of electrospinning and electro-
spraying techniques. Dizge et al. [55] fabricated an electrospun cellulose nanofiber 
membrane and then, two different deposition techniques such as sol-gel and CVD 
are implemented onto this electrospun membrane, thereby showing both superhy-
drophobicity and oleophobicity (also known as omniophobic), as demonstrated by 
its wetting resistance to water, ethanol, surfactant, and mineral oil. An application 
of this omniophobic membrane is in direct contact membrane distillation (DCMD) 
to separate water from saline feed solutions containing low surface tension sub-
stances. Deka et al. [56] presented the high flux and non-wettability of electrospun 
nanofiber membranes fabricated by electrospraying of aerogel/polydimethylsilox-
ane (PDMS)/polyvinylidene fluoride (PVDF) over electrospinning polyvinylidene 
fluoride-co-hexafluoropropylene (PVDF-HFP) membrane. The use of aerogel and 
PDMS is preferred as materials with low surface energy could be a safer alterna-
tive to perfluorinated compounds for environmental applications. In addition, the 
experimental results demonstrate non-wetting membrane distillation performance 
over continuous 7 days operation of saline water (3.5% of NaCl) and high anti-wet-
ting with harsh saline water 0.5 mM sodium dodecyl sulfate (SDS) and synthetic 
algal organic matter.

Other clear example of the implementation of these superhydrophobic elec-
trospun fibers is for the development of anticorrosion surfaces where polymeric 
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precursors with an intrinsic hydrophobic behavior are used such as polystyrene 
(PS), poly(vinyl chloride) (PVC), and polyvinylidene fluoride (PVDF), among 
others. Cui et al. [57] reported a simple and controllable electrospinning technology 
to fabricate polymeric nanofibers composed of polyvinylidene fluoride (PVDF)/
stearic acid (SA) that are successfully deposited onto metallic substrates (aluminum 
sheets). The resultant electrospun nanofibers show a clearly superhydrophobic 
behavior with water contact angle value of 155 ± 2°C, thereby exhibiting excellent 
long-time corrosion resistance. In other works, metal oxide nanoparticles such as 
zinc oxide (ZnO) or alumina (Al2O3) are used, which are perfectly embedded in the 
electrospun fibers and act as efficient corrosion inhibitors. In addition, the pres-
ence of this type of nanoparticles between the interstices of the electrospun fibers 
can increase the surface roughness as well as the air entrapment, and as a result, 
an increase in the water repellent behavior is obtained. According to this, Radwan 
et al. [58] reported the addition of ZnO nanoparticles to the polymeric precursor 
of PVDF with the aim to improve the corrosion resistance, maintaining the same 
superhydrophobic behavior (155 ± 2°). In addition, by using the same corrosion 
inhibitor (ZnO), Iribarren et al. [59] presented multifunctional protective PVC-
ZnO nanocomposite coatings deposited on aluminum alloys by electrospinning. 
In the first step, an exhaustive study about the evolution of the resultant fiber 
diameter as a function of the applied voltage and the flow rate is evaluated. Figure 3 
shows that the fiber diameter of PVC electrospun fibers is reduced when the applied 
voltage is increased from 8 up to 14 kV (see Figure 3a), whereas the resultant fiber 
diameter is increased when the flow rate is gradually increased (see Figure 3b) from 
0.6 up to 1.2 mL/h. Once it has been evaluated, the operational parameters in the 
corresponding fiber diameter, the electrospun PVC-ZnO nanofibers were deposited 
by using a voltage of 14 kV and a flow rate of 0.6 mL/h because it has been dem-
onstrated that an increase in the water repellency behavior is observed when the 
diameter among bead-free fibers is reduced. And this effect has been corroborated 
because the resultant surface wettability of the electrospun coating presents similar 
water contact angle values in the range of 145–155°C.

Rivero et al. [60] presented a comparative study of multifunctional coatings 
based on electrospun fibers with incorporated ZnO nanoparticles by using two 
different polymeric precursors such as PVC and PS, respectively. In order to charac-
terize the morphology of the resultant electrospun fibers, atomic force microscopy 
(AFM) was performed, as it can be appreciated in Figure 4, showing an important 
difference in the fiber diameter. In this sense, 2D AFM images with their corre-
sponding profiles (three evaluation lines) clearly reveal that a bigger size in diam-
eter fiber is obtained for PS samples (Figure 4a and b) in comparison with PVC 

Figure 3. 
(a) Evolution of the resultant fiber diameter as a function of the applied voltage with a specific fixed flow rate 
of 0.8 mL/h. (b) Evolution of the fiber diameter as a function of the flow rate with a specific fixed applied 
voltage of 12 kV. Reprinted with permission of Iribarren et al. [59].
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Figure 5. 
Optical image of the water contact angle (WCA) value for PS (a) and PVC (b) samples; (c) aspect of the 
electrospun fibers with a characteristic white coloration deposited onto a standard microscope glass slide; (d) 
picture of the water drop onto the electrospun fibers. Reprinted with permission of Rivero et al. [60].

samples (Figure 4c and d). In addition, the arithmetic average roughness Ra of 
the PS coating was found to be 505.7 nm, which is higher than that in PVC coating 
with a value of 427.5 nm. This result is in concordance with the high value of WCA 
because an increase in the hydrophobicity is clearly obtained by the increment in 
the resultant surface roughness, and due to this, the WCA values for PS samples are 
higher than PVC samples (see Figure 5).

Figure 4. 
2D-AFM images for a dimension of 60 × 60 μm2 of the PS electrospun fibers (a, b) and PVC electrospun fibers 
(c, d) with their corresponding profiles. Reprinted with permission of Rivero et al. [60].
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These two previous polymeric precursors of PS and PVC have been also studied 
in [61] where the superhydrophobic behavior as a function of the fiber diameter, the 
presence of TiO2 nanoparticles, and the effect of heat treatment in the nanocom-
posite fibers are evaluated. The main purpose is for energy systems, as it can be used 
in the design of dye-sensitized solar cells (DSSCs) for anti-icing and self-cleaning 
materials with the aim to show long-term efficiency of the cells. The results show 
that TiO2 nanocomposite fibers have higher contact angle values, which is attrib-
uted to the nanoscale gaps/bumps/voids formed on the fiber in the presence of 
TiO2 nanoparticles, thereby reaching superhydrophobicity on the nanocomposite 
electrospun fiber films. Azimirad et al. [62] presented a dual layer of dip-coated 
TiO2 film (top layer) and electrospun polystyrene (bottom layer) deposited onto 
stainless steel with the aim to show both superhydrophobicity and corrosion resis-
tance, thereby showing great important and potential applications, especially in 
marine industries. Other interesting approach is presented in [63]. In this case, the 
optimum conditions to produce electrospun polystyrene (PS) and aluminum oxide 
(Al2O3) nanocomposite coating with the highest roughness and superhydrophobic 
properties are 25 kV of applied voltage and 1.5 mL/h of flow rate at 35°C. The 
experimental results indicate a water contact angle value of 155 ± 1.9 and contact 
angle hysteresis of 2 ± 4.2°.

Finally, other interesting application field for the electrospun fibers is the 
design of biomaterials with application as surgical meshes, sutures, or in artificial 
tissue [64]. In this work, a superhydrophobic poly(L-lactic acid) (PLLA) surface 
is obtained by dispersing synthetic talc (ts) into PLLA fibers. This synthetic talc, 
characterized by the presence of long aliphatic chains in the structure, is soluble 
in the electrospinning solvent mixture, whose viscosity is significantly modified 
by small amount of talc. The evaporation during the electrospinning process 

Figure 6. 
(A–D) FESEM images of the prepared ES PLA/TiO2 fibers at different magnification scales. Note that the 
images (B) and (D) are magnified from the locations indicated in images (A). Reprinted with permission of 
Wang et al. [65].
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Figure 7. 
TEM images of the prepared typical ES PLA/TiO2 fibers. (A) Low-magnification TEM image of ES 
PLA/TiO2 fibers. (B) Magnified TEM image of an ES PLA/TiO2 fiber captured for the observation of 
typical cavities. (C) Magnified TEM image of an ES PLA/TiO2 fiber captured for the observation of TiO2 
nanoparticles. (D) High-resolution TEM image zoomed in from the marked area in (C) for the identification 
of the lattice fringe of TiO2 nanocrystallites. (E–G) The O, C, and Ti element mapping images of the location 
are indicated in image (C) with a dashed rectangle. The scale bars in all the mapping images (E–G) are 
100 nm. Reprinted with permission of Wang et al. [65].

promotes the synthetic talc dispersion into the polymer matrix (PLLA), thereby 
obtaining a nanometric size scale distribution of the talc. In addition, among the 
parameters studied, the relative humidity (RH) was found significantly to affect 
the fiber morphology. By keeping all the electrospinning parameters constant 
and increasing the relative humidity (Rh), the morphology completely changes. 
This increment increases the homogeneity of the PLLA/ts fibers and turns out to 
be opposite with respect to PLLA fibers. Moreover, the influence of the electrical 
field by decreasing the voltage shows that the homogeneity tends to decrease. The 
dispersion of the synthetic talc on the nanofiber produces an evident effect in the 
wettability, as the PLLA/ts electrospun mat is highly hydrophobic by exhibiting an 
increment in the WCA value from 92 up to 140°. Other aspect to remark is that the 
presence of talc has promoted the development of a small amount of crystallinity 
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during the electrospinning process, thereby making possible the development of 
α-crystallographic form during the annealing.

Other interesting work based on the use of biodegradable polymer is presented 
in [65] where polylactide/TiO2 composite fiber (PLA/TiO2) scaffolds with both 
superhydrophobic and superadhesive porous surfaces have been obtained for water 
immobilization, antibacterial performance, and deodorization. The size of the 
pores of the as-fabricated PLA/TiO2 electrospun fibers observed on the surface has 
shown to have a length of 200 ± 100 nm and a width of 150 ± 50 nm demonstrated 
by using field-emission scanning electron microscopy (FESEM) (see Figure 6) and 
transmission electron microscopy (TEM) (see Figure 7), respectively. As it can be 
appreciated in both figures, the formation of regular pores elongated along the fiber 
axis was observed on the fiber surface and it is associated with the rapid phase sepa-
ration during the electrospinning process as induced by the voltage solvent evapora-
tion and the fast solidification. In addition, according to the TEM image of Figure 7, 
the distribution of the TiO2 nanoparticles over the electrospun surface fiber has 
been analyzed by using energy dispersive X-Ry (EDX) elemental mapping tech-
nique (Figure 7E–G). According to this, a uniform Ti element distribution has been 
observed, indicating that TiO2 NPs have been homogeneously dispersed in the PLA 
electrospun fibers. In addition, a powerful adhesive force can be associated with the 
van der Waals forces and the accumulated negative pressure forces of the as-spun 
PLA/TiO2 fibers. Other important aspect to remark is that the resultant PLA/TiO2 
composite fiber presents a high antibacterial efficiency against three different types 
of bacteria (Escherichia coli, Staphylococcus aureus, and Candida albicans) as well as 
high deodorization efficiency because the reduction of two typical pollutants such 
as ammonia and formaldehyde have been reduced after exposition to visible light 
radiation. To sum up, this multifunctional biodegradable fiber scaffold can bring 
promising benefits to the real world in specific biomedical or even bioengineering 
applications.

4. Summary table of potential industrial applications

To sum up, in order to have a better understanding of the different superhy-
drophobic coatings analyzed in this work, a summary of the different electrospun 
fibrous coatings with their corresponding employed solvents as well as their 
potential industrial applications can be appreciated in Table 1.

5. Conclusions

In this work, electrospinning is presented as a novel engineering technique for 
the design of superhydrophobic surfaces. In order to obtain this special wettability, 
it is necessary to control two crucial factors such as a low surface energy and a hier-
archical surface roughness on at least two different length scales (i.e., micrometric 
and nanometric morphology). The electrospinning is a good candidate because it 
is possible to control both parameters as a function of the operational parameters 
such as applied voltage, polymeric precursor concentration, flow rate, and tip-to-
collector distance. A good control over these parameters makes possible the fabrica-
tion of electrospun fibers with a desired morphology (mostly size, porosity, and 
fiber diameter).

Finally, a summary of different potential industrial applications is presented 
due to the design of corrosion-resistant surfaces, high-efficient water-oil separation 
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Electrospun fiber coating Solvent Research field Ref.

TTSBI + DFBP Tetrachloroethane (TCE) Adsorption applications [41]

TPU decorated with 

modified nanosilicas

N,N-dimethylformamide 

(DMF) and tetrahydrofuran 

(THF)

Water-oil separation [42]

PVDF N,N-dimethylformamide 

(DMF) and acetone

Water-oil separation [43]

PMMA N,N-dimethylacetamide 

(DMAc) and acetone

Water-oil separation [44]

EPS and EPS/zeolite Tetrahydrofuran (THF) Water-oil separation [45]

PS/TEOS/camphene N,N-dimethylformamide 

(DMF)

Water-oil separation [47]

PSF N,N-dimethylacetamide 

(DMAc) and acetone

Desalination by membrane 

distillation

[49]

PAA N,N-dimethylacetamide 

(DMAc) and tetrahydrofuran 

(THF)

Self-cleaning [50]

Teflon AF (sheath)/PCL 

(core)

2,2,2-trifluoroethanol (TFE) Microfluidics [51]

PLA:PVP/PLA:PEG Dichloromethane Burn wound healing and 

skin regeneration

[52]

PCL Chloroform and methanol Fabrics [53]

PCL N,N-dimethylformamide 

(DMF) and chloroform

Water-oil separation [54]

Cellulose acetate N,N-dimethylacetamide 

(DMAc) and acetone

Water-saline solution 

separation

[55]

PVDF-HFP N,N-dimethylformamide 

(DMF) and acetone

Desalination by membrane 

distillation

[56]

PVDF/SA N,N-dimethylformamide 

(DMF)

Corrosion protection [57]

PVDF-ZnO N,N-dimethylacetamide 

(DMAc) and toluene

Corrosion protection [58]

PVC-ZnO N,N-dimethylformamide 

(DMF) and tetrahydrofuran 

(THF)

Corrosion protection [59]

PVC-ZnO

PS-ZnO

N,N-dimethylformamide 

(DMF) and tetrahydrofuran 

(THF)

Corrosion protection [60]

PS-TiO2

PVC-TiO2

N,N-dimethylformamide 

(DMF) and N,N-

dimethylacetamide (DMAc)

Energy systems (DSSC 

devices)

[61]

PS-TiO2 N,N-dimethylformamide 

(DMF)

Corrosion protection [62]

PS-Al2O3 N,N-dimethylacetamide 

(DMAc) and tetrahydrofuran 

(THF)

Corrosion protection [63]

PLLA Toluene and chloroform Biomedical applications [64]

PLA/TiO2 Chloroform and acetone Water immobilization, 

antibacterial performance, 

and deodorization

[65]

Table 1. 
Summary of the different sensitive electrospun coatings, the metallic substrates used, and the resultant corrosion 
tests for the development of new and innovative protective coatings with good anticorrosion properties.
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membranes, long-term efficiency of dye sensitized solar cells, or even in biomedical 
applications for the development of antibacterial surfaces with a high efficiency 
against bacteria or pollutants. To sum up, it has been demonstrated that this deposi-
tion technique can be used as a promising alternative in the real world in several 
disciplines of the science and technology.
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