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1. Introduction  

Modern technological processes include complex and large scale systems, where faults in a 

single component have major effects on the availability and performances of the system as a 

whole. For example manufacturing systems consists of many different machines, robots and 

transportation tools all of which have to correctly satisfy their purpose in order to ensure 

and fulfil global objectives. In this context, a failure is any event that changes the behaviour 

of the system such that it does no longer satisfy its purpose. Failure events lead to fault 

states (Rausand et al., 2004). Faults can be due to internal events as to external ones, and are 

often classified into three subclasses : plant faults that change the dynamical input – output 

properties of the system, sensor faults that result in substantial errors during sensors 

reading, and actuator faults when the influence of the controller to the plant is disturbed 

(Blanke et al., 2003).  

In order to limit the effects of the faults on the system, diagnosis is used to detect and isolate 

the failures. Diagnosis is often associated with control reconfiguration, that adapts the 

controller to the faulty situation such that it continues to satisfy its goal. Fault diagnosis and 

controller reconfiguration are carried out by supervision systems. This chapter only consider 

problems related  to the diagnosis of systems. Diagnosis includes distinct stages: 

1. The fault detection decides whether or not a failure event has occurred. This stage also 
concerns the determination of the time at which the failure occurs. 

2. The fault isolation find the component that is faulty. 
3. The fault identification identifies the fault and estimates also its magnitude. 
Diagnosis is usually discussed according to the model type used, with component based 

analysis that uses architectural and structure graph models, with continuous variables 

systems described by differential or difference equations and transfer functions, with 

discrete event systems represented by automata or Petri nets and with hybrid dynamical 

systems that combine continuous and discrete event behaviours (Blanke et al., 2003). 

Component based methods uses qualitative methods (Rausand et al., 2004)  as failure modes 

and effect analysis (Blanke, 1996) and bi-partite graphs to investigate the redundancies 

included in the set of constraints and measurements for diagnosis purposes (Cordier et al., 

2000; Patton et al., 1999). Fault diagnosis of continuous variables systems is usually based on 

residual generation and evaluation with parity space approaches or observation, 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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identification and parameters estimation techniques (Gertler, 1998; Patton et al., 1989). The 

behaviour of discrete event dynamical systems (DES) is described by sequences of input and 

output events. In contrast to the continuous systems only abrupt changes of the signal 

values are considered with DES. In that case, the state of the art is different in comparison 

with continuous approaches and only few results are available for diagnosis. The problem 

has been originally investigated with observation methods for automata (Sampath et al., 

1995) developed in connection with the supervisory control theory (Ramadge et al., 1987). 

This chapter focus on diagnosis of DES modelled with Petri nets (PN) where failures are 

represented with some particular transitions. The problem is to detect and isolate the firing 

of the failure transitions in a given firing sequence. The firings of the failure transitions are 

assumed to be unobserveable and must be estimated according to complete or partial 

marking measurements that are eventually disturbed by measurement errors. Several 

problems are related : firing sequences estimation, sensor selection, delay from failure event 

to detection, and also diagnosers complexity. Let us notice that this study is limited to the 

methods that represent the faulty behaviours according to the firing of failure transitions 

and that assume that the state (i.e. the marking vector) of the system is partially or totally 

measurable. In a alternative way, faults can be also considered as forbidden states. In that 

case, the observation of the state has been investigated in order to design controllers with 

forbidden marking specifications (Giua et al., 2002). Asynchronous diagnosis by means of 

PN unfolding techniques and hidden state history reconstruction obtained from alarm 

observations was also investigated (Benvenist et al., 2003). These approaches are not 

developped in this chapter. 

The chapter is divided into six sections. Section two states the problem and introduces the 

notations. Section three is about state space methods that are based on a partial expansion of 

the reachability graph of the PN under consideration. Section four concerns structural 

methods that investigate the causality relationships characterized by incidence matrix. 

Section five is about algebraic methods inspired from coding theory in finite fields of integer 

numbers. The section six sums up the results and is a tentative of synthesis of the different 

approaches. 

2. Problem statement, motivations and notations 

A dynamical system with input u and output y is subject to some faults f. Basically, the 

diagnosis problem is to find the fault f from a given sequence of input – output couples  

(U, Y ) with:  

U = (u(0), u(1),…,u(k)) 

    Y = (y(0), y(1),…,y(k)) (1) 

where k stands for time t = k.Δt, and Δt represents the sampling period of sensors. In the 

next Δt will be omitted and time t will be referred as k as long as there is no ambiguity. It is 

commonly assumed that no inspection of the process is possible. As a consequence the 

diagnosis is only based on available measurement data. Moreover the diagnosis problem is 

usually considered under real time constraints. As long as DES are considered the signals 

are not real-valued but belong to a discrete value set. 
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The motivations for the diagnosis of DES is obvious as long as DES occur naturally in the 

engineering practice. Many actuators like switches, valves and so on, only jump between 

discrete states. Binary signals are mainly used with numerical systems and logical values 

“true” and “false” are often used as input and output signals. Alarm sensors that indicate 

that a physical quantity exceeds a prescribed bound are typical systems with only two 

logical states. Moreover, in several systems also the internal state is discrete valued. As an 

example, robot encoders are discrete valued even if the number of discrete state is large 

enough to produce smooth trajectories. At last, one must keep in mind that a given 

dynamical system can always be considered as a DES system or as a continuous variable 

system according to the purpose of the investigation. As long as supervision problems are 

considered, a rather broad view on the system behaviour can be adopted that is based on 

discrete signals. On the contrary, if signals have to remain in a narrow tolerance band, the 

following approaches do no longer fit and one has to adopt a continuous point of view 

(Blanke et al., 2003). 

2.1 Ordinary Petri nets 

An ordinary PN with n places and q transitions is defined as < P, T, Pre, Post > where P = 

{Pi} is a non-empty finite set of n places, T = {Tj} is a non-empty finite set of q transitions, 

such that P ∩ T = ∅. Pre: P × T → {0, 1} is the pre-incidence application and WPR = ( wPRij ) ∈ 

{0, 1}n × q with wPRij = Pre (Pi, Tj) is the pre-incidence matrix. Post: P × T → {0, 1} is the post-

incidence application and WPO = ( wPOij ) ∈ {0, 1}n × q with wPOij = Post (Pi, Tj) is the post-

incidence matrix. The PN incidence matrix W is defined as W = WPO – WPR ∈ Z3n x q with Z3 

∈ {-1, 0, 1} and wi stands for the ith column of W (Askin et al., 1993; Cassandras et al., 1999; 

David et al., 1992). M = (mi) ∈ (Z+)n is defined as the marking vector and MI ∈ (Z+)n as the 

initial marking vector, with Z+ the set of non negative integer numbers. A firing sequence σ 

= Ti.Tj… Tk is defined as an ordered series of transitions that are successively fired from 

marking M to marking M’ (i.e. M [σ > M’) such that equation (2) is satisfied: 

 
} } }

σ → → → →L

j ki
T TT

1 2: M M M M'  (2) 

A sequence σ can be represented by its characteristic vector (i.e. Parikh vector) X = (xj) ∈ 

(Z+)q where xj stands for the number of times Tj has occurred in sequence σ (David et al., 

1992). Marking M’ resulting from marking M with the execution of sequence σ is given by 

(3): 

 ΔM = M’ - M = W.X  (3) 

The reachability graph R(PN, MI)  is the set of markings M such that a firing sequence σ 

exists from MI to M. A sequence σ is said to be executable for marking MI if there exists a 

couple of markings (M, M’) ∈ R(PN, MI)  such that M [σ > M’. 

2.2 Problem statement and notations 

The objective of diagnosis problem is to identify the occurrence and type of failure events, 

based on observable traces generated by the system. For this purpose, let us define ΔF = {Fk} 

the set of K distinct faults that may affect the system. A label L ∈ Δ = {N} ∪ ΔF is associated 
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to each transition. As a consequence T = TF ∪ TN with TF the set of “failure” transitions and 
TN the set of “normal” transitions. The firing of transitions is usually unobservable. L = N is 
interpreted as a “normal” behavior, and L = Fk means that fault Fk has occurred. Starting 
from an initial state, the system may evolve according to a “normal” behavior by firing 
“normal” transitions or according to a faulty behavior by firing a sequence with one or 
several “failure” transitions. 

Let us define θ = {θk} ⊂ T b be a list of b groups of fault transitions θk ⊂ T (or eventually 

single failure transitions). We define B(θ) = (bkj )∈ {0, 1}b × q such that bkj = 1 if Tj ∈ θk, else bkj 

= 0. Let us also consider Xθ = B(θ).X ∈ (Z+) b the firing vector to be estimated. In other words, 

the kth row of matrix B(θ) characterizes θk, and the sum of firing occurrences in the kth subset 

of transitions (i.e. the kth entry of X(θ)) has to be estimated from the measurement of the 

observable markings. To define a list θ of transitions subsets is interesting in case of non 

discernable faults. When the faults {Fk}k = 1,…K must be detected and located, then the list θ = 
{{TF1},…,{TFK}} with K singletons {TF1},…,{TFk} is used. When the faults {Fk}k = 1,…K must be 

detected but not isolated (i.e non discernable faults) θ = {TF1,…,TFK} with a single subset 
{TF1,…,TFK} is defined. 
The set P is also divided into the set PO = {P’i} of c observable places and the set PU of n - c 

unobservable ones: P = PO ∪ PU. Vector MO ∈ (Z+)c is defined as MO = C(PO).M with C(PO) = 

(cij ) ∈ {0, 1}c × n, such that cij = 1 if Pj ∈ PO and Pj = P’i, else cij = 0. Only the marking MO of the 

observable places is assumed to be measured.  Let us also define WO = C(PO).W ∈ (Z3)c x q, 

wO(j) as the jth column of matrix WO, and ΔMO according to (4): 

 ΔMO = C(PO).W.X = WO.X  (4) 

Petri nets are asynchronous models. As a consequence, two distinct transitions are never 
simultaneously fired and the following basic assumption can be considered: there always 
exists a marking measurement between two consecutive firings in a given firing sequence. 
The preceding hypothesis is necessary because the firing of a transition will be undetectable 
if it does not have any observable influence on the marking variation. For example, the 
marking of the cycle {P2, T3, P3, T4} in PN1 (figure 1) is not modified if there is no 

intermediate observation for the sequence of firings σ = T3.T4. Moreover the marking of a 
given place is not modified if a transition in the preset and another one in the post – set are 
both fired between two consecutive observations. For example, the marking of place P1 in 

PN1 remains unchanged after the execution of sequence σ = T2.T1. According to the 
preceding hypothesis, the firing sequences that are considered in the following can always 

be separated into sub-sequences of size 1 : X ∈ {0, 1} q, and ||X|| ≤ 1. 

 

 

 

 

 

 

 

 

 
Fig. 1. Example PN1 of Petri net with cycles 

T2P1 T1 

P2 P3 T3 T4
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3. State space methods for the diagnosis of DES  

3.1 Partial expansion of reachability graph and indetermined cycles 

Fault diagnosis based on state space approach and on partial expansion of the reachability 
graph was first formulated with automata (Sampath et al., 1995). Sampath et al. introduce 
the study of indeterminate cycles in automata and state that a langage is diagnosable if and 
only if the diagnoser satisfies the following condition : there is no Fk - failure indeterminate 
cycle for all failure types. 
The investigation of indeterminate cycles was then extended to PN with finite reachability 

graph (Ushio et al., 1998). The considered PN are live (i.e. for any Tj  ∈ T, and for all M ∈ 

R(PN, MI) there exists a sequence σ executable from M that includes transition Tj) and safe 

(i.e. for all M ∈ R(PN, MI), M ∈ {0, 1}n ) with some places that are observable and other not. 
Transitions are usually assumed to be unobservable. The diagnosability of the system is 
based on the study of indetermined cycles included in the observable part of the labelled 
reachability graph R(PN, TF, MI, PO) (Ushio et al., 1998). A cycle is called “determined” if it 
contains at least one observable state that results with no ambiguity from a normal firing 
sequence, or from a Fk - failure firing sequence (i.e. a firing sequence that contains a Fk - 
failure transition). Characterisation of the cycles is obtained according to label propagation 
and range functions that tell us how to assign the fault labels and how to estimate all the 
next possibly diagnoser states from an initial state. Starting from an observable initial 
marking, the diagnoser detects and isolates a failure transition in a given firing sequence 
from measurement of the successive observable states visited by the system.  
The notion of diagnosability is defined as the inherent property of the system that when a 
failure occurred, we can always infer its type, no matter how the system evolves after the 
failure. The resulting diagnosers are “delayed” (i.e. multi-steps diagnoser) in the sense that 
the occurrence of intermediate events may be necessary to detect and isolate the faults. The 
number of intermediate events is upper bounded according to the maximal size of the 
determined cycles. In (Chung et al., 2003) some transitions are assumed to be observable in 
order to increase the database used by the diagnoser. An algorithm, based on linear 
programming, of polynomial complexity in the worst case for computing a sufficient 
condition of diagnosability has been also proposed (Wen et al., 2005). 
Let us consider the Petri net named PN2 in figure 2 as an example. All transitions are 
supposed to be unobservable. The transition T1 represents a failure event F. Other 
transitions are assumed to represent normal events. 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 2. Example PN2 of Petri net 

P1 

P2 

P3 

P4 

P5 

T2 (N)

T1(F) T3 (N) 

T4 (N) 

T5 (N) 
T6 (N) 

T7 (N) 
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If the set of observable places is given by PO1 = {P1, P4, P5}, the observable part of the labelled 
reachability graph R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO1) is worked out as in figure 3a. This 
diagnoser has an indetermined cycle so the system is not diagnosable (figure 3a, on the left). 
If PO2 = {P1, P3}, the observable part of the labelled reachability graph R(PN2, {T1}, (1, 0, 0, 0, 
0)T, PO2) is worked out as in figure 3b. This diagnoser has no indetermined cycle so the 
system is diagnosable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Two partial expansions of the reachability graph for PN2  

 a) R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO1) ; b)  R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO2) 

As a conclusion, let us notice that the preceding method is efficient to evaluate the 
diagnosability of a system but not suitable to design diagnosers. The reason is that the 
partial expansion of the reachability graph must be worked out for all diagnoser candidates. 
Such a computation is time consuming so that it cannot be adapted for sensor selection 
problems in case of large scale systems. 

3.2 Application 

State space method have been used to state the diagnosability of an automatic temperature 
control system (ATC) for automobile applications (Wen et al., 2005). The PN models of ATC 
has 3 components (figure 4a-b-c): 
a) The pump model has four unobservable states. The places ACI and AC2 stand for 

pump off and pump on respectively. The places AC3 and AC4 stand for pump failed off 
and pump failed on respectively.  

b) The fan model has two unobservable states : FAN1 and FAN2 stand for fan off and fan 
on respectively.  

c) The controller has four observable states and four events. The state Cl represents both 
the pump and fan are off. State C2 represents that the pump turns on first, while the fan 

(10000, N)

(01000, F)
(00001, F)

(00010, N) 
(00001, N) 

(00100, N) 

(10000, F)

(00010, F)
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a) b) 
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is in off. State C3 represents that the pump turns on, and the fan turns on. State C4 
represents that the pump turns off first, while the fan is still working. 

 

 
a) Pump 

 
b) Fan 
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c) Controller 

Fig. 4. PN3 model of an automatic temperature control system (Wen et al., 2005) 
 

Transition Event Type (Fail type) Sensor Map
t1 A/C ON (N) H to H
t2 Fan ON (N) H to L
t3 A/C OFF (N) L to H
t4 Fan OFF (N) H to H

t5 A/C ON (F1) H to H
t6 Fan ON (F1) H to H
t7 A/C OFF (F1) H to H
t8 Fan OFF (F1) H to H
t9 A/C ON (F2) H to H
t10 Fan ON (F2) H to L

t11 A/C OFF (F2) L to L
t12 Fan OFF (F2) L to H
t13 A/C FOFF (F1) H to H
t14 A/C FOFF (F1) H to H
t15 A/C FOFF (F1) L to H
t16 A/C FOFF (F1) H to H

t17 A/C FON (F2) H to H
t18 A/C FON (F2) H to H
t19 A/C FON (F2) L to L
t20 A/C FON (F2) H to L

Table 1. Transitions and sensor map of the ATC (Wen et al., 2005) 
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There are two failure types. Failure types F1 and F2 stand for pump fails off and pump fails 
on respectively. It is assumed that the system has one temperature sensor. The set of outputs 
is L = {low} and H={high} according to the temperature in the cabin of the vehicle. The 
meaning of the transitions and sensor map are listed in table 1. For example, S (H to H) 
means that the reading of the cabin sensor changes from High to High. The study of the 
indetermined cycles in observable part of reachability graph and the investigation of the 
transitions (events) with the same observable projection ( for example Tl, T5, and T9 
represent the same observable projection {el} where {el} depicts that the controller state is 
"pump on" and it's sensor reading changes from High to High) is useful to state that this 
system is diagnosable. 

4. Diagnosis based on structural approaches  

4.1 Event detectability 

Another diagnosis approach for DES has been developed according to event detectability of 

interpreted PN (Alcaraz-Mejia et al., 2003; Ramirez-Trevino et al., 2004). An interpreted PN 

is event detectable when any pair of transitions can be distinguished from each other by the 

observation of the input - output symbols of the interpreted PN (inputs are defined 

according to the events associated with the transitions and outputs are defined according to 

the measurements of the observable markings). Preliminary results have been obtained 

according to the additive independence of columns of the output matrix (Ichikawa et al., 

1988). A characterization of event detectability has been established as a consequence, when 

all columns of matrix WO = C(PO).W ∈ (Z3)c x q are not zero and different from each other 

(Alcaraz-Mejia et al., 2003). Input - output diagnosability in finite number of steps has been 

derived as a consequence. An interpreted PN is input - output diagnosable in r steps if any 

marking M resulting immediately from the  firing of a fault transition is distinguishable 

from any other marking M’ by firing any sequence with r transitions (Alcaraz-Mejia et al., 

2003; Ramirez-Trevino et al., 2004). Several structural characterizations of input - output 

diagnosability have been provided: necessary and sufficient conditions related to input - 

output relationships between places, sufficient conditions when the normal behaviour of the 

interpreted PN is event detectable (Alcaraz-Mejia et al., 2003; Ramirez-Trevino et al., 2004; 

Ramirez-Trevino et al., 2007). 

In order to illustrate event diagnosability, let us consider again PN2 in figure 2. On one 

hand, if the set of observable places is given by PO1 = {P1, P4, P5}, event detectability is 

worked out according to matrix WO1:  

 
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

O1

1 0 0 0 0

C(P ) 0 0 0 1 0

0 0 0 0 1

,   
− −⎛ ⎞
⎜ ⎟= = −⎜ ⎟
⎜ ⎟−⎝ ⎠

O O11

1 1 0 0 0 0 1

W C(P ).W 0 0 0 0 1 1 0

0 0 1 1 0 1 1

 (5) 

System (5) is not event detectable because columns 1 and 2, and also columns 3 and 4 of 

matrix WO1 are identical. 

On the other hand, if the set of observable places is given by PO2 = {P1, P3}, event 

detectability is worked out according to matrix WO2: 
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⎛ ⎞

= ⎜ ⎟
⎝ ⎠

O2

1 0 0 0 0
C(P )

0 0 1 0 0
,   

− −⎛ ⎞
= = ⎜ ⎟− −⎝ ⎠

O O22

1 1 0 0 0 0 1
W C(P ).W

0 1 0 1 1 0 0
 (6) 

However system (6) is diagnosable for fault F1, it is not event detectable because columns 3 

and 6 are zero and columns 4 and 5 are identical. As a consequence, input - output 

diagnosers cannot be derived. 

In (Aramburo-Lizarraga et al., 2005) the condition of event detectability is relaxed over parts 

of the model where the faults are not expected; thus the diagnoser handles a reduced model. 

Moreover, a method for splitting the global model into communicating modules is proposed 

that leads to the design of a set of distributed diagnosers. A framework concerning DES 

diagnosis based on PN and event detectability approach can also be found in (Ramirez-

Trevino et al., 2007) where the authors introduce a bottom-up modelling methodology that 

avoids tuning phases and state combinatory found in finite state automata approaches. 

4.2 Minimal sets of observable places for single step diagnosis 

Fault diagnosis is strongly related to the problem of sensor selection that leads to the 

determination of minimal sets (for inclusion) of observable places in order to detect and 

identify the firing of some particular “failure” transitions. In this context, places are 

assumed to have a physical meaning so that direct relationships exist between places, state 

variables and sensors. The problem is to decide the number and location of the places to be 

observed (i.e. the state variables to be measured) in order to estimate the firings of some 

transitions (i.e. to detect and isolate some faults). Such sets of places are named “minimal 

sets of observable places” (Lefebvre 2004; Lefebvre et al., 2007).The problem that is solved is 

to give necessary and sufficient conditions in order to decide if the unbiased observation of 

the marking variation for a set of places PO leads to immediate estimation of X(θ). 

The subset of places PO ⊂ P is called a set of observable places (SOP) for θ, if X(θ) can be 

estimated exactly (i.e. with no error) and immediately (i.e. with no delay) from the unbiased 

measurement of ΔMO between two consecutive observations. The subset of places PO ⊂ P is 

called a minimal set of observable places (MSOP) for θ, if PO is a SOP for θ, and if there is no 

subset of places P’ ⊂ PO, P’ ≠ PO that is also a SOP for θ. 

A SOP for θ  provides enough information to detect and isolate a firing in θ  before the 

occurrence of any other event and a MSOP is a minimal SOP for inclusion. According to 

basic assumption in section 2.b, PO is a SOP for θ means that for any vector X ∈ {0, 1}q such 

that ||X|| ≤ 1, the unbiased measurement of ΔMO =C(PO).W.X ∈ (Z3)c leads to immediate 

and exact estimation of vector X(θ) = B(θ).X ∈ {0, 1}b.  

Characterisations of SOP can be obtained with an enumeration of the partitions for PO or 

equivalently with the columns of the observable part WO of incidence matrix (Lefebvre 2006, 

Lefebvre et al., 2007). For any marking variation ΔMO let us define the disjoint partition of 

set PO as PA(ΔMO) = (P+(ΔMO), P –(ΔMO), P 0(ΔMO)) with P+(ΔMO)  = {Pi} ⊂ PO such that Δmi > 

0, P-(ΔMO)  = {Pi} ⊂ PO such that Δmi < 0 and P0(ΔMO)  = {Pi} ⊂ PO such that Δmi = 0. Let us 

also consider the set of transitions E(PA(ΔMO)) ⊂ T: 

 
+ +∈ Δ ∈ Δ ∈ Δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ = ° ∩ ° ∩ ° ∪ °⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
I I U

0
i O i O i O

O i i i i
P P ( M ) P P ( M ) P P ( M )

E(PA( M )) P P P P  (7) 
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where °Pi stands for the set of Pi - upstream transitions and Pi° stands for the set of Pi - 

downstream transitions. The subset PO ⊂ P is a SOP for θ if and only if characterisation 1 or 

equivalently 2 is satisfied (Lefebvre et al., 2007): 

1. For each subset θk ⊂ T, k = 1,…,b, there exist a list of rk disjoint partitions PAO(i) = 

(P+O(i), P –O(i), P 0O(i)) of PO,  i = 1,…, rk, such  that P+O(i) ∪ P –O(i)  ≠ ∅ and : 

=

= θU
k

O k
i 1,..,r

E(PA (i))  

2. For each subset θk ⊂ T, k = 1,…,b, and for any couple of transitions Tα ∈ θk, Tβ ∉ θk  we 

have wO(α) ≠ 0 and wO(α) ≠ wO(β). 
The preceding result leads to an algorithm of complexity q2 that generates the exhaustive list 

F(PO) of groups of transitions θk with minimal cardinality for which PO is a SOP. The 

reduction of the obtained list thanks to linear algebra can be obtained as a post processing 

(Lefebvre 2004). 

Algorithm a 
1. Initialise list F to be empty 
2. While T is not empty do 

3. Initialise subset θk to be empty 

4. Select Tj ∈ T  
5. Remove Tj from set T 

6. If wO(j) ≠ 0, then  

7. Add Tj to subset θk 

8. For any Ti ∈ T, do 

9. If wO(j) = wO(i), then transition Tj is added to set θk and Ti is removed from set T 
10. End for (step 8) 

11. Add subset θk to the list F 
12. End if (step 6) 
13. End while (step 2) 
A recursive algorithm based on a combinatory exploration of the PN subsets of places 

generates also the list G(θk) of all MSOP for θk. From a computational point of view, this non 

polynomial algorithm must be used with some precautions. But the complexity depends on 

the number of potential observable places, and not on the size of the whole PN. Thus, it is 

suitable even for large scale systems as long as the considered set of potential observable 

places remains small. In comparison with algorithms that partially expand the reachability 

graph, the complexity of our results does not depend on the size of that graph.  

Let us consider again PN2 with θ1 = {T1}. Applying the preceding characterisation (condition 

1 or 2), it is easy to state that PO1 is not a SOP for θ1, whereas PO2 is a SOP and also a MSOP 

for θ1. Moreover, this characterization leads to the exhaustive list of MSOP for θ1 : G(θ1) = 

{{P2}, {P1, P3}}. It leads also to the exhaustive list of transitions for which PO1 is a SOP : F(PO1) 

= {{T5}, {T6}, {T7}, {T1, T2}, {T3, T4}} and to the exhaustive list of transitions for which PO2 is a 

SOP : F(PO2) = {{T1}, {T2}, {T7}, {T4, T5}}. As a consequence, {P2} and {P1, P3} are the two 

possible MSOP for single – step diagnosis. 
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4.3 Diagnosis with CR and DP 

Causality relationships (CR) and directed paths (DP) in PN models (Lefebvre et al., 2005) 
can also be used for multi-steps diagnosis purposes. In that case, diagnosis is improved by 
considering that some transitions may be observable. For that purpose, the set TN is divided 
into a set TO of observable transitions and a set TU of unobservable ones. 
Let N and N’ be two nodes (i.e. places or transitions) of PN model. A CR exists from N’ to N 
if and only if the behaviour of the node N’ could affect the variable attached to node N. The 
CR size (referred as CR – rank in the following) can be understood as the number of places 
in the shortest causality relationship from transition Tk to place Pi or transition Tj, and as the 
number of transitions in the shortest causality relationship from place Pk to place Pi or 
transition Tj. When no causality relationship exists, the CR - rank equals infinity. The CR – 

rank of PN nodes in range I = [rmin, rmax] ∪ {∞} is characterised by the matrix CR(I) as given 
in (8) (Lefebvre et al., 2005): 

 + +⎛ ⎞
= ∈⎜ ⎟
⎝ ⎠

PP PT (n q )x(n q )

TP TT

CR (I) CR (I)
CR(I) I

CR (I) CR (I)
 (8) 

with CRPP(I) = CRPP(Pi, Pk, I) ∈ I n x n , CRPT(I) =CRPT(Pi, Tk, I) ∈ I n x q, CRTP(I) = CRTP(Tj, Pk, I) 

∈ I q x n, CRTT(I) = CRTT(Tj, Tk, I) ∈ I q x q. 
Similarly, a DP exists from N’ to N if and only if a token is able to move from N’ to N. A DP 
between two nodes is also a CR but a CR is not necessary a DP. The DP - rank of PN nodes 

in range I = [rmin, rmax] ∪ {∞} is characterised by a matrix DP(I) ∈ I(n+q) x (n+q) similar to CR(I) 
(Lefebvre et al., 2005). From a computational point of view, the determination of the CR and 
DP matrices results from polynomial algorithms of complexity (rmax - rmin).n.q. The CR and 
DP ranks are defined according to the table 2.  
 

M(A,r) A=WPR+WPO A=WPR 

(A.(WPR)T)r CRPP(Pi, Pk, I) DPPP(Pi, Pk, I) 

(A.(WPR)T)r.A CRPT(Pi, Tk, I) DPPT(Pi, Tk, I) 

(WPR)T.(A.(WPR)T)r CRTP(Tj, Pk, I) DPTP(Tj, Pk, I) 

((WPR)T.A)r CRTT(Tj, Tk, I) DPTT(Tj, Tk, I) 

Table 2. CR and DP characterisation (Lefebvre et al., 2005) 

In the next, the set I will be omitted as long as I = [0, min(n, q)] ∪ {∞} because CR and DP 
ranks cannot exceed the number of places or transitions. 

In order to evaluate the potential of a set of observable nodes PO ∪ TO for diagnosis purpose, 
let us define the influence areas ICR(Tk) and IDP(Tk) of failure transition Tk, and dependence 
areas DCR(N) and DDP(N) of node N. The set ICR(Tk) of nodes that are CR - sensitive with 
respect to the transition Tk is called the CR - influence area of Tk. This area is a subnet of PN 

defined as ICR(Tk) = <PICR(Tk), TICR(Tk), PreICR(Tk), PostICR(Tk)> where PICR(Tk) ⊂ P is the set 

of places Pi such that CRPT(Pi, Tk ) < ∞. TICR(Tk) ⊂ T is the set of transitions Tj such that 

CRTT(Tj, Tk ) < ∞, PreICR(Tk) and PostICR(Tk) are the restrictions of the pre - incidence and post 
– incidence applications limited to the sets PICR(Tk) and TICR(Tk). The DP - influence area 
IDP(Tk) is defined in a similar way. The CR - dependence area DCR(N) of the node N is also a 
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subnet of PN defined as DCR(N) = <PDCR(N), TDCR(N), PreDCR(N), PostDCR(N)> where 
TDCR(N) and PDCR(N) are the sets of transitions and places that are likely to influence the 
node N through a causality relationship. The DP - dependence area DDP(N) is defined in a 
similar way. The characterisation of the sets PICR(Tk), TICR(Tk), PIDP(Tk), TIDP(Tk), TDCR(Pi), 
TDCR(Tj) TDDP(Pi), and TDDP(Tj) is given in table 3 according to the position of finite entries in 
columns or rows of CR and DP matrices. 
 

 CR DP 

PI..(Tk) CRPT kth column DPPT kth column 

TI..(Tk) CRTT kth column DPTT kth column 

TD..(Pi) CRPT ith row DPPT ith row 

TD..(Tj) CRTT jth row DPTT jth row 

Table 3. Influence and dependence areas (Lefebvre et al., 2005) 

The CR and DP investigation is helpful for delayed diagnosis of systems modelled by PN, in 

the sense that it provides in a systematic way the relationships between a fault transition 

and other nodes of PN.  

1. Let N ∈ PO ∪ TO. A necessary condition such that the observation of node N contributes 

to the diagnosis of Fk is N ∈ ICR(Tk) (Lefebvre et al., 2005). 

2. Let N ∈ PO ∪ TO. A sufficient condition to detect and isolate the firing of the fault 

transition Tk with the observation of node N is N ∈ IDP(Tk) and TDDP(PN/Tk) (N) = ∅ if N 
is a place or TDDP(PN/Tk) (N) = {N} if N is a transition in PN/Tk (i.e. PN where the 
transition Tk has been removed) (Lefebvre et al., 2005). 

If the preceding propositions cannot be applied, the nodes that have to be observed at first 

are the ones with the smaller dependence areas including fault transition Tk. This choice 

consists to select sensors in order to be sensitive with respect to the smaller set of events.  

4.4 Application 

PN can be used to model and monitor batch or chemical processes, like the system 

represented in figure 5a (Lefebvre et al., 2007). This system is composed of a tank R that can 

be filled and emptyed according to the flows Qsource provided by the source and Qdemand 

required by the distribution network. The system has three logical actuators: the input 

valves V1 and V2 and the output valve V3 with two states {open = 1, closed = 0}. The 

continuous state variable h corresponds to the tank level and is defined according to 

S.dh/dt = D – A.(2.g.h)1/2 with S the tank section, A the output pipe section and g the 

gravity acceleration. 

The goal of the PN supervisor PN4 is to keep the level h below the treshold LSH+ and above 

the treshold LSH- in order to limit the pressure in distribution network. When LSH- is 

reached V1 is opened during an appropriate time to fill the tank. Then V1 is closed. 

Eventually V2 is closed and V3 is opened if LSHH is reached. Two logical level sensors are 

used to detect the tresholds LSH- and LSHH. 
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P2 V1=0, V2=1, 
V3=0

T2:LSH- 

T3:LSHH

T4:LSH-

P3 V1=0, V2=0, 
V3=1 

P1 : V1=1, V2=1, V3=0 

T1 :LSH+ 

LSH+

LSHH

V3 

V1V2 

Distribution 
network 

Evacuation

 

h
LSH- 

 

LSHH

LSH-Timer 

 ⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3 4

1

PT 2

3

T T T T

1     0     1     0 P

CR (PN4)  0     0     0     1 P

1     1     0     0 P

 ,        ⎛ ⎞
⎜ ⎟= ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞⎝ ⎠

2 3 4

1

PT 1 2

3

T T T

  0     1     0 P

DP (PN 4 /T )            P

       0    P

 (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Tank system a) Sensors and actuators; b) PN4 model of the controller 

The set of observable places is assumed to be defined as PO = {P3}. A single fault is 

considered when the treshold LSH+ is exceeded. The MSOP for LSH+, included in P, are 

given by G({LSH+}) = {{P1}, {P2}}. The resulting MSOP are not suitable because no sensor is 

used to detect the threshold LSH+. Matrix CRPT shows that PICR(T1) = {P1, P2, P3}: the 

observation of each place contributes to the diagnosability of PN4. Matrix DPPT in PN4/T1, 

shows that TDDP(PN4/T1)(P2) = ∅ (but P2 is not observable ) and TDDP(PN4/T1)(P3) = {T3}. As a 

conclusion, the observation of P3 can be used as a two-steps diagnoser to detect a fault of 

sensor LSH+. 

5. Diagnosis based on algebraic approaches 

5.1 Diagnosis based on coding theory 

Event sequences estimation is an important issue for fault diagnosis of DES, so far as fault 

events cannot be directly measured. This section is about event sequences estimation with 

PN models. Events are assumed to be represented with transitions and firing sequences are 

estimated from measurements of the marking variation. Estimation with and without 

measurement errors can be discussed in n – dimensional vector space over alphabet Z3  

(Lefebvre, 2006; Lefebvre, 2007). The basic idea to correct measurement errors by projecting 

measurements in orthogonal subspace of Vect(W) where Vect(W) stands for the subspace 

generated by the columns of W. This method is inspired from linear coding theory (Van 

Lint, 1999) and extend the results presented for continuous PN in (Lefebvre et al., 2001). 

a) b) 
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Measurement ˆΔM of marking variation ΔM ∈ (Z3)n may be affected by an additive error 

vector E ∈ (Z3)n: Δ = Δ +M̂ M E . The error vector will be characterized according to the 

Hamming distance d(W) of the considered PN that is defined with the Hamming distance of 

the columns of incidence matrix : 

 = ≠i j 0 id(W) min{min{d(w ,w ),i j},min{d (w )}}  (10) 

where d(wi, wj) stands for the Hamming distance between columns wi and wj of matrix W 

and d0(wi) = d(wi, 0) stands for the weight of vector wi. 

It is assumed that error vector E verifies the following conditions:  

1. Pr(d0(E) = 0) > Pr(d0(E) = 1) > ... > Pr(d0(E) = n) where Pr(d0(E) = i) is the probability 

that weight of E equals i; 

2. An error in position i does not influence other positions; 

3. A symbol in error can be each of the remaining symbols with equal probability. 

A short estimation algorithm easy to use and to implement when state measurement is 

complete (i.e. all entries of ˆΔM  are measured), and error free (i.e. measurement equals 

actual marking variation ΔM), is based on the comparison of the measurement with respect 

to columns of W and zero vector (this corresponds to the condition of event-detectability in 

case that all places are observable). When this measurement equals a single column of W, 

the algorithm decides that the corresponding transition fired. When it equals the zero 

vector, the algorithm decides that no transition fired.  

When measurement is perturbed by non zero error E, two problems must be mentioned:  

1. A miss estimation may occur when ˆΔM  is non zero and different from any 

columns of W. The estimation algorithm is not able to decide if a transition fired or 
not and which transition fired. As consequence the algorithm does not give any 
decision. 

2. A wrong estimation may occur when ˆΔM  does not equal actual marking variation 

ΔM but equals zero vector or another column of W. The estimation algorithm 
decides if a transition fired or not and which transition fired, but the decision is 
wrong due to the measurement error.  

To overcome these difficulties and to improve estimation, diagnosis can be reformulated as 

a linear problem in ((Z3)n , +, *), with the Smith transformation of W, where “+” and “*” 

stand for the sum and product endowed over Z3. The Smith transformation results from 

elementary operations (i.e. row or column permutations, linear combinations and external 

products), summed up in matrices P ∈ (Z3)n x n and Q ∈ (Z3) q x q such that: 

 
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

rI 0
P * W * Q

0 0
 (11) 

Ir is the identity matrix of dimension r x r, and r is the rank of matrix W. The Smith 

transformation leads to reduced incidence matrix W' defined as in equation (12) : 

 W' = (Ir 0) * Q-1 = (Ir 0) * P *W = F * W ∈ (Z3) r x q  (12) 
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Necessary and sufficient conditions for firing sequences estimation can be stated when 

measurement is error free and basic assumption in section 2.2 is satisfied: columns of 

incidence matrix W' defined by equation (12) are distinct and non zero (Lefebvre, 2006). 

In case of measurement errors that satisfy assumptions 1 to 3, two sets of sufficient 

conditions for firing sequences estimation have been also proposed (Lefebvre, 2007):  

1. Columns of incidence matrix W are distinct, non zero and errors E that disturb 

satisfy d0(E) ≤ (d(W) – 1) / 2 (i.e. the number of disturbed entries of measurement is 
no larger than (d(W) – 1) / 2).  

2. Columns of incidence matrix W' defined by equation (12) are distinct and non zero, 
and considered errors E belongs to distinct cosets different from C(0). The coset 

C(u) of u is defined as C(u) = {x ∈ (Z3)n such that x = u + y with y ∈ Vect(W)}, for 

any vector u ∈ (Z3)n. 
Moreover, the use of the Smith transformation of incidence matrix is also helpful to define 

the parity check matrix HT = (0 In-r ) * P ∈ (Z3) (n-r) x n, and to work out the syndrome of  

marking variation measurements S( ˆΔM ) = HT * ˆΔM  and to compare it with the syndrome 

of marking variation errors S(E) = HT * E. As a consequence the method leads to a less 

complex and more efficient diagnosis algorithm for DES modeled with PN (algorithm c) 

in comparison with usual method based on Hamming distance (algorithm b).  

Algorithm b 

1. For each time k, measure M̂ (k) the current state of DES  

2. Compute ˆΔM  (k) = M̂ (k) – M̂ (k-1)  

3. Compute weight d0( ˆΔM  (k)). If d0( ˆΔM (k)) ≤ (d(W) - 1) / 2, then no event occurs 

between two consecutive state measurements. Go to step 6. 

4. Compute Hamming distance d( ˆΔM (k), wj) for each column wj of W. If d( ˆΔM (k), 

wj) ≤ (d(W) - 1) / 2 then Tj fired. Go to step 6. 

5. If for all j = 1,...,q, d( ˆΔM (k), wj) > (d(W) - 1) / 2 then measurement is too much 

disturbed by errors (i.e. d0(E) > (d(W) – 1) / 2) and no decision is provided (i.e. a 
miss estimation occurs). 

6. Wait until time k + 1. Go to step 1. 
Algorithm c 

1. For each time k, measure M̂ (k) the current state of DES  

2. Compute ˆΔM (k) = M̂ (k) – M̂ (k-1)  

3. Compute HT * ˆΔM (k). If HT * ˆΔM (k) = 0 then measurement is not disturbed by 

errors: Δ = Δ ˆM(k) M(k) . Go to step 5.  

4. If syndrome HT * ˆΔM (k) ≠ 0, compute coset leader E(k) and Δ = Δ −ˆM(k) M(k) E(k) . 

Go to step 5.  

5. Compute ΔM'(k) = F * ΔM(k). 

6. Compare ΔM'(k) with zero vector. If ΔM'(k) = 0 then no event occurs between 2 
consecutive state measurements. Go to step 8. 

7. Compare ΔM'(k) with columns of matrix W'. If ΔM'(k) = w'j then Tj fired. Go to step 
8. 

8. Wait until time k + 1. Go to step 1. 
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The correction capacity (i.e. number of error vectors that are corrected) of algorithm b is 
given by equation (13):  

 
−

=

⎛ ⎞
⎜ ⎟

−⎝ ⎠
∑

(d(W) 1)/2
i

i 1

n!
2 .

i!(n i)!
 (13) 

and its complexity results from 2n.(q+1) scalar comparisons or operations whereas 
correction capacity of algorithm c equals 3n – r – 1, and its complexity results from 
r.(2n+q)+(n–r).(2n–1+3n-r) scalar comparisons or operations (Lefebvre, 2007). 
As a conclusion, one can notice that algorithm c is more efficient for PN with small rank in 
comparison with the number of places, and that it is of particular interest for PN with few 
transitions in comparison with the number of places. Another conclusion is to prefer 
algorithm c for PN with a small Hamming distance. This result is not surprising as long as 
the correction capacity of algorithm a is directly related to the value of Hamming distance. 
For PN with small Hamming distance, the number of biased markings that belong to a 
single sphere is also small.  

5.2 Redundant Petri nets embedding 
This method incorporates redundancy into Petri nets and uses algebraic decoding 
techniques as the Berlekamp – Massey decoding (Berlekamp, 1984) to detect and identify 
faults (Li et al., 2004; Wu et al., 2005). The marking of the original PN is embedded into a 
redundant one and the diagnosis of faults is performed by mean of linear parity checks. The 
algorithm operates in the integer finite field of order p, referred as (Z+p) with p a prime 
integer large enough. This approach has a complexity of m2.(n+q) (Wu et al., 2002) improved 
to complexity m.(n+q) (Wu et al., 2005) where 2.m represent the number of places that are 
added to the original PN. 
In comparison with the method in section 5.1, two kinds of faults are considered : (1) place 
faults are associated with conditions that cause the corruption of the number of tokens in 
some places of the PN. Place faults are measured, with the Hamming distance metric, in 
terms of the number of faulty places independent of the number of erroneous tokens in each 
faulty place ; (2) transition failures are associated with preconditions that prevent tokens 
from being removed from the input places in some transitions (even though tokens are 
deposited at the corresponding output places) or postconditions that prevent tokens from 
being deposited at the output places in some transitions (even though tokens are removed 
from the corresponding input places). Errors “-1” and “+1” are used respectively and 
transitions faults are measured with the Lee distance metric (Berlekamp, 1984). By adding 
2.m places in the redundant PN, Wu et al. proves that the method allows the simultaneous 
identification of m place faults and 2.m – 1 transition failures. 
It is assumed that the firing of the transitions in the redundant PN are not directly 
observable whereas the marking is periodically observed, and that the diagnosis is 
performed over a time interval of N sampling periods (N is eventually chosen equal to 1). It 
is also assumed  that 
1. A particular transition does not suffer both a precondition and postcondition 

during interval [1, N] (otherwise, their effect will be cancelled);  
2. The erroneous number of tokens in each place is also bounded within interval  

[-(p - 1/2), (p - 1/2)]; 
3. Parameter p is a prime integer that satisfy p > max(n + 2.m, q). 
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The key idea of the method is to design two matrices C ∈ (Z+p)2m x n and D ∈ (Z+)2m x n that 
define the state of the embedded PN such that equation (14) is satisfied :  

 

⎛ ⎞ ⎛ ⎞
+ = + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

PO PR

PO PR

W W
M(k 1) M(k) .X(k) .X(k)

C.W D C.W D
 

(14)
 

Defining the parity check matrix as in P = (-C I2m), the syndrome of marking M(k) is given 
by S(k) = P.M(k). 

Let us define ET+(N) ∈ (Z+)q as the vector of postcondition faults, ET-(N) ∈ (Z+)q as the vector 

of precondition faults and EP(N) ∈ (Z+)2m + n  as the place faults vector during time interval [1, 
N]. As a consequence the faulty marking is defined as : 

 + −⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠T T

PO PR
P

PO PR

W W
M̂(N) M(N) .E (N) .E (N) E (N)

C.W D C.W D
 (15) 

The identification of both transition failures and place faults based on the syndrome S(N) is 

completely determined by matrices D and C : 

 S(N) = D.(ET+(N) - ET-(N)) + P.EP(N) (16) 

On one hand, Wu et al. propose to define matrix D as in equation (17) : 

 ( )+

− − − −

⎛ ⎞
⎜ ⎟

α α α α⎜ ⎟
⎜ ⎟= ∈α α α α⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟α α α α⎝ ⎠

L

L

L

M M M O M

L

1 2 3 q
2m x q2 2 2 2

2m 1 2 3 q

2m 1 2m 1 2m 1 2m 1
1 2 3 q

1 1 1 1

D Z  (17) 

where αi are q distinct non zero elements in Z+p. In case m = 1, the determination of matrix 
D is given according to : 

( )+⎛ ⎞
= ∈⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

2 x q

2 2 2 2

1 2 3 q
D modp Z

1 2 3 q
 

On the other hand, they propose to define matrix C such that equation (18) is satisfied 
(operations are defined in Z+p) :  

 Φ .(-C I2m) =  H2m  (18) 

with : 

( )

+

+
+

+

+

⎛ ⎞α α α α
⎜ ⎟
⎜ ⎟α α α α
⎜ ⎟= ∈α α α α⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟α α α α⎝ ⎠

L

L

L

M M M O M

L

1 2 3 n 2m

2 2 2 2
1 2 3 n 2m

2m x (n + 2m)
3 3 3 3

2m 1 2 3 n 2m

2m 2m 2m 2m
1 2 3 n 2m

H Z  
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  (19) 

( )

+ + + +

+ + + +
+

+ + + +

+ + + +

⎛ ⎞α α α α
⎜ ⎟
⎜ ⎟α α α α
⎜ ⎟Φ= ∈α α α α⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟α α α α⎝ ⎠

L

L

L

M M M O M

L

n 1 n 2 n 3 n 2m

2 2 2 2
n 1 n 2 n 3 n 2m

2m x 2m
3 3 3 3
n 1 n 2 n 3 n 2m

2m 2m 2m 2m
n 1 n 2 n 3 n 2m

Z  

In order to identify simultaneously place and fault transition Wu et al. define : 

D* = -p.D 

 C* =  p.1 - C (20) 

 P* = (C – p.1 I2m)  

where 1 is a 2m x n matrix with all entries being 1. The syndrome S(N) defined as S(N) = 
P*.M(N) is used to identify first m or less place faults by means of the Berlekamp – Massey 
algorithm and then 2m – 1 transitions by computing the modified syndrome :  

 ST(N) = (S(N) – P*.Ep(N)) / p = D.(ET+(N) - ET-(N)) (21) 

5.3 Applications 
Algebraic methods have been used for the diagnosis of manufacturing and robotic systems 
(Lefebvre, 2007, Wu et al., 2005) and for large scale power networks like the IEEE 118-bus 
power system (Ren et al., 2006).  
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Fig. 6. PN5 model of a manufacturing system 

In order to illustrate algebraic methods, let us consider PN5 in figure 6, that is a 
simplified model of a manufacturing workshop (Silva et al., 2004). The final product is 
composed of two different parts that are processed in two separate machines modelled 
by transitions T1 and T2, and stored in buffers P4 and P6, respectively. Then, they are 

−⎛ ⎞
⎜ ⎟−⎜ ⎟
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⎜ ⎟

−⎜ ⎟
⎜ ⎟−=
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1 0 1 0 0

1 0 1 0 0W
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0 1 1 0 0

0 0 1 1 0
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assembled by the machine T3, and processed in T4 and T5. During the processing, 
several tools are needed, modelled by places P3, P5 and P7. 
PN5 has n = 9 places, q = 5 transitions, is of rank r = 4 and incidence matrix W has a 
Hamming distance d = 2. Matrices F and HT, worked out as in section 5.1, are given 
according to equation (22): 

 

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
F

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0

,     

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−=
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

T

1 0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 0 0

0 1 1 0 0 0 1 0 0H

1 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 1 1

 (22) 

 

Syndromes Errors of weight 1 Syndromes Errors of weight 1 

(-1 0 0 1 0)T (1 0 0 0 0 0 0 0 0)T (1 0 0 0 0)T (0 0 0 0 1 0 0 0 0)T 

(1 0 0 -1 0)T (-1 0 0 0 0 0 0 0 0)T (-1 0 0 0 0)T (0 0 0 0 -1 0 0 0 0)T 

(0 1 -1 0 0)T (0 1 0 0 0 0 0 0 0)T (0 1 0 0 0)T (0 0 0 0 0 1 0 0 0)T 

(0 -1 1 0 0)T (0 -1 0 0 0 0 0 0 0)T (0 -1 0 0 0)T (0 0 0 0 0 -1 0 0 0)T 

(1 -1 1 -1 1)T (0 0 1 0 0 0 0 0 0)T (0 0 1 0 0)T (0 0 0 0 0 0 1 0 0)T 

(-1 1 -1 1 -1)T (0 0 -1 0 0 0 0 0 0)T (0 0 -1 0 0)T (0 0 0 0 0 0 -1 0 0)T 

(0 0 0 1 0)T (0 0 0 1 0 0 0 0 0)T (0 0 0 0 1)T 
(0 0 0 0 0 0 0 1 0)T 

(0 0 0 0 0 0 0 0 1)T 

(0 0 0 -1 0)T (0 0 0 -1 0 0 0 0 0)T (0 0 0 0 -1)T 
(0 0 0 0 0 0 0 -1 0)T 

(0 0 0 0 0 0 0 0 -1)T 

Table 4. Correspondence between syndromes and coset leaders for PN5 

PN5 has 243 cosets and each coset has 81 vectors. The table 4 gives the relationships between 

syndromes and coset leaders. Let us notice that the two last syndromes correspond to two 

different coset leaders. As a consequence not all errors of weight 1 will be corrected by 

algorithms b and c (errors (0 0 0 0 0 0 0 1 0)T and (0 0 0 0 0 0 0 0 1)T cannot be separated as 

errors (0 0 0 0 0 0 0 -1 0)T and (0 0 0 0 0 0 0 0 -1)T ). 

Analysis of performance and numerous simulations show that the miss estimation rate for 

algorithm c is quite better in comparison with algorithm b (Lefebvre 2007), but the wrong 

estimation rate for c increases in comparison with b. Let us mention that whatever the 

algorithm used, the presence of miss estimation depends strongly on the Hamming distance 

of W. 

Applying the method developed in 5.2 in order to identify 1 place fault and 1 transition 

failure (m = 1) with p = 13, the matrices D and D*, that lead to transition failure diagnosis are 

given according to equation (23): 
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⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 2 3 4 5
D

1 4 9 3 12
,    

− − − − −⎛ ⎞
= − = ⎜ ⎟− − − − −⎝ ⎠

* 13 26 39 52 65
D 13 x D

13 52 117 39 156
 (23) 

On the other hand, the matrices H, C and C*, that lead to place fault diagnosis are given 
according to equations (24) and (25): 

 
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

5 10 4 10 2 10 5 2 11 11 4 1 0
H

12 9 2 3 2 1 3 10 10 6 8 0 1
 (24) 

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

4 10 2 10 5 2 11 11 4
C

2 3 2 1 3 10 10 6 8
 

 
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

* 9 3 11 3 8 11 2 2 9
C

11 10 11 12 10 3 3 7 5
 (25) 

The parity check matrix is defined according to (26) : 

 
− − − − − − − −⎛ ⎞

= ⎜ ⎟− − − − − − − − −⎝ ⎠
* 9 3 11 3 8 11 2 2 _ 9 1 0

P
11 10 11 12 10 3 3 7 5 0 1

 (26) 

As a consequence 2 places are added in the PN model of figure 6 for diagnosis purposes. 
These new places are defined according to equation (27): 

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
* *

PO

16 37 51 61 88
C .W D

25 55 137 44 188
,   

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
* *

PR

30 31 64 54 74
C .W D

34 65 143 46 161
 (27) 

and the initial marking of embedded PN is given according to (28): 

 ( )
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

9 T*
I I*

I
M M 2 2 1 0 1 0 1 0 0 45 66

C
 (28) 

The use of embedded PN defined with equations (27) and (28) is useful to detect at first 
place faults and then transitions failures according to the comparison of syndrome S(N) = 
P*.M(N) with the columns of matrices H given by equation (24) and with the columns of 
matrix D given by (23).  

6. Conclusions 

The investigation of diagnosis methods for discrete event systems shows that Petri nets is 
efficient not only to model the considered systems but also to support the diagnosis 
methods. Several approaches can be used in order to check diagnosability, to select 
sensors and to work out diagnosers. The table 5 sums up the main characteristics of these 
method.  

As a conclusion it is important to notice the great effort, observed this last years to 
develop and improve diagnosis methods for DES. The strong connection with observation 
properties in automata and the use of advances in computer science like the coding theory 
have played an important role in that development. Now, the challenges are, from our 
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point of view, to continue this investigation, by combining the different methods together 
and also to take advantages from many important contributions that have been proposed 
for continuous systems. To build a bridge from continuous variable systems to DES 
theories remains one of the most promising issues for the next years. 
 

 
State based 
approach 
(section 3) 

Event 
detectability

and SOP 
(sections 

4.1 and 4.2) 

CR and DP 
investigation 
(section 4.3) 

Diagnosis in 
Z3 

(section 5.1) 

Diagnosis in 
Z+p 

(section 5.2) 

Diagnosability 
checking 

Yes Yes Yes No No 

Sensor  
selection 

No Yes Yes No No 

Immediate / 
delayed 

diagnosis 

Immediate 
and delayed 
diagnosis at 

most in k 
steps 

Immediate 
diagnosis 

Delayed 
diagnosis at 

least in k steps

Immediate 
diagnosis 

Immediate 
and delayed 
diagnosis at 
most in N 

steps 

Marking 
measurements 

Partial and 
unbiased 

Partial and 
unbiased 

X 
Partial and 

biased 
Complete 
and biased 

Partial firing 
sequence 

observation 
Yes No X No No 

Complexity : 
Polynomial or 

Non 
polynomial 

NP P / NP P P P 

Table 5. Main features of several diagnosis methods for DES 
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