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Chapter

Dimensionality and Structure in
Cancer Genomics: A Statistical
Learning Perspective

Jacob Bradley

Abstract

Computational analysis of genomic data has transformed research and clinical
practice in oncology. Machine learning and Al advancements hold promise for
answering theoretical and practical questions. While the modern researcher has
access to a catalogue of tools from disciplines such as natural language processing
and image recognition, before browsing for our favourite off-the-shelf technique it
is worth asking a sequence of questions. What sort of data are we dealing with in
cancer genomics? Do we have enough of it to be successful without designing into
our models what we already know about its structure? If our methods do work, will
we understand why? Are our tools robust enough to be applied in clinical practice?
If so, are the technologies upon which they rely economically viable? While we will
not answer all of these questions, we will provide language with which to discuss
them. Understanding how much information we can expect to extract from data is
a statistical question.

Keywords: dimensionality, sparsity, high-dimensional statistics, cancer genomics,
biomarkers, learning theory

1. Introduction

This chapter should be equally approachable to those with a background in
machine learning/statistics and those with a more biological background. Beginning
with a contextualisation of cancer genomics as the starting point for drug and
biomarker discovery, we will attempt to convince the reader that statistical theory
serves as the backbone and language of modern developments in machine learning.
In order to facilitate those with less experience in biology, we will provide a very
brief introduction to the types of data encountered in sequencing-based studies and
the opportunities and problems they present. After providing some terminology
and useful concepts from high-dimensional statistics, we will discuss how these
concepts arise naturally in the context of cancer genomics, with some illustrative
examples of how different techniques may be employed in translational scientific
research. We will conclude by providing sketches of some modern developments
and a description of the transition from what can loosely be termed statistical
learning to what nowadays is referred to as machine learning.

1 IntechOpen
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1.1 Cancer genomics in drug discovery

Since the success of the Human Genome Project [1], sequencing technologies
have improved at an exponential rate, both in terms of cost per megabase
sequenced and the number of individuals who have had some portion of their
genome sequenced (although the cost remains higher in practice than often
reported) [2]. This has introduced an invaluable new resource for biomedical
research in general. For the study of cancer, a disease of the genome, the ability to
rapidly and cheaply sequence normal and tumour-derived DNA has transformed
basic research, birthing the field of cancer genomics. This is beginning to impact
frontline clinical oncology [3]. Whole genome sequencing is not yet standard of care
for the generic cancer patient, but access to in-depth genetic data is becoming more
common. Initiatives such as the 10,000/100,000 Genomes Projects [4] and The
Cancer Genome Atlas [5] have given researchers access to large clinical datasets
with a variety of accompanying omics data.

Understanding the genomic landscape of cancer genomes is critical to the drug
discovery pipeline [6], particularly in pre-clinical identification of targets and bio-
markers. Knowledge of the location and associated products of oncogenes (genes in
which mutation can cause a cell to become cancerous) can allow for intelligent
selection of druggable sites and identification of tumour suppressor genes (genes
that under normal circumstances prevent uncontrolled cell division) gives options
for therapies which may replace patients’ defective cell cycle control mechanisms.
Alongside new drugs, it is becoming increasingly common for therapies to be
offered alongisde genomic biomarkers, which may stratify patients who are more
likely to benefit from the treatment [7, 8].

These new sources and types of data allow researchers a greatly expanded
toolbox with which to investigate the causes and development of cancer, but also
present a unique set of challenges. The number of covaraiates in omics datasets
causes a variety of theoretical and practical problems for classical statistical analysis,
a problem often referred to as the curse of dimensionality [9].

1.2 Statistical learning and machine learning

Informally, the field of high-dimensional statistics attempts to address theoreti-
cal and computational problems associated with datasets in which the number of
covariates (in our case this may refer to chromosomal locations or genes) is com-
parable to or greater than the number of samples available. In these settings results
such as the central limit theorem that rely on divergence of the sample size inde-
pendent of the dimensionality are often not of much use [10]. This is often the case
in cancer genomics.

Recent decades have seen much excitement around the application of machine
learning methods to a wide variety of high-dimensional problems. Particular pro-
gress has been made in automated image recognition and natural language
processing (NLP). This progress has come via the development of specialised tech-
niques to exploit the structure inherent in each data type (e.g. convolutional neural
networks for image recognition [11] and word embedding for NLP [12]), but also
from a vastly increased pool of data on which to train models. These data resources
have typically been collected online, where there exists an abundance of labelled
and unlabelled images and pieces of text.

It is hoped that similar strides forward can be anticipated in biology, but it is
important to acknowledge the current gap in data availability between cancer
genomics and the other machine learning disciplines mentioned above. In the next
section we will discuss typical types of biological data encountered in cancer
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genomics (including sequencing-based omics technologics that may not strictly be
genomics, such as gene expression profiling), their dimensionality and typical
availability. While efforts to deploy machine learning architectures are certainly
producing results in some cases [13, 14], an important takeaway is that in many
cases, we are not yet in a situation where the data-heavy deep learning approaches
that have revolutionised image recognition will be applicable to cancer genomics
problems.

That is not to say that we cannot do anything! In fact, it is often instructive to try
and make headway in situations where a ‘data-heavy, structure-light’ approach is
unsuitable, and these sorts of investigations can have a profound impact on the
design of more sophisticated models [15]. As a final point, readers approaching
without a significant backlog of machine learning expertise will find that an under-
standing of statistical terminology will aid comprehension of the machine learning
literature which has them as its basis.

2. Omics and biological data
2.1 DNA sequencing

Cancer genomics is underpinned by the ability to sequence DNA cheaply and
quickly. DNA is organised into chromosomes, along each of which many genes are
arranged, with further non-coding regions interspersed in-between. The funda-
mental units of DNA are nucleotide bases, of which there are four varieties (labelled
C, G, T and A). These are organised in groups of length three called codons, which
code for the production amino acids. Codons are arranged in sequences such that
their amino acids when joined in chain form proteins—the products of genes.

The aim of sequencing is to read, base by base, the information content of DNA.
This was originally done by Sanger sequencing, a procedure to infer the base
composition of a piece of DNA one base at a time. High-throughput sequencing
automates this process via the following workflow:

1.DNA is isolated from a sample and amplified (replicated many times) to
ensure good signal.

2.Purified DNA is broken into many pieces of manageable length.

3.These short strands are sequenced individually and simultaneously by an
automated process similar to Sanger sequencing.

4.These short sequences are matched to a reference human genome to identify
where the DNA in the original sample differed from that reference.

2.1.1 Tumour/normal variants

In cancer, some subset of cells accumulate mutations, via random misreplication
of DNA during cell division or exposure to some external mutagen (e.g. cigarette
smoke, UV light). Tumour cells therefore contain DNA with a different sequence to
that of the patients’ typical sequence. To understand this two samples are collected,
one from the tumour and one from normal tissue, and both are sequenced. The
sequences are compared and this produces a list of locations at which mutations
have occured: these mutations can have a variety of types (replacements, insertions,
etc.) and can have vastly differing functional implications.
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In simplest setting, we could express a tumour’s mutational profile as a vector,
with each component corresponding to whether the tumour-derived and normal
sequences match at that point. How long would this vector be? The human genome
contains approximately 3 x 10° base locations. This is the dimensionality (which we
will refer to later on as p) of naively presented genomic data. We often like to
compare the dimensionality of a dataset with the number of samples (which we will
later call #) to which we can expect to have access. In this case, unless we have
access to tumour profiling for more than a third of all humans on the planet, we can
never hope that these numbers will be comparable. We could make a small gain by
listing all codons in the genome, labelling a component as one if the codon has been
functionally altered by mutations and zero otherwise. Here though we would still
have p = 10°.

We could simplify our data further. Decades of biological research has focused
on cataloguing the locations of genes across the genome. We might consider as
covariates each of the (approximately 2 x 10%) genes, and represent each sample as
a vector where each component refers to (a) whether or not the gene contained a
functional mutation; (b) how many such mutations were present; or (c) some other
representation of the severity of collective mutations presents in the gene, drawing
upon known biology. It is important to appreciate the trade-off we have made here:
we have imposed an external notion of structure onto our data and in return have
greatly reduced the dimensionality (by five orders of magnitude), but in exchange
have lost resolution and thus potential information. This gain/sacrifice will be
reflected when we choose to make even further structural assumptions in order to
construct sensible models.

2.1.2 Heterogeneity and depth

Another important concern for those dealing with cancer genome data is that
tumours are often highly heterogeneous. Different sub-populations of cells have
different mutation profiles, which fit into an evolutionary hierarchy within the
tumour’s history. The importance of understanding the role of heterogeneity is
beginning to be appreciated in a clinical context, and this has implications for the
type of data that are used. In the context of the high-throughput sequencing pipe-
line, the relevant quantity is depth: identifying not just one but a variety of tumour
sequences at a genomic locus along with the proportion in which they occur means
thinking very hard about how best to express that data.

2.2 Gene expression

It is often not just the sequence of a gene which it relevant in a tumour, but the
level of gene expression. The way that this is most often estimated is via the
proxy of RNA transcript abundance: RNA is a similar molecule to DNA that is
produced during the process of DNA being ‘read’, and acts as a messenger for
sequences that should be converted to protein. Abundances of different RNA
transcripts can be measured using procedures based on DNA sequencing. This
will in general give data with the same dimensionality as gene-based mutation
data, but is of a different type. Measured values are continuous to represent
concentrations of gene products, rather than discrete ‘mutated/not mutated’
values. This has implications as to the sort of structural assumptions we can make
about the data that we observe, and the models that will be best suited to
capitalise on that structure.
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3. Dimensionality and structure in statistical learning theory

Now familiar with the most relevant biological concepts, we turn to the
mathematical theory of high-dimensional statistics, which has experienced a surge
of interest in the last two decades. This is the language with which we will be
attempting to interrogate issues of inference and prediction in cancer genomics.
Informally, we may think of high-dimensional statistics to be concerned with the
realm in which the dimensionality of our input data, p, is comparable to or greater
than the number of training samples # we have available. In this regime the classical
asymptotic theory of statistics, which generally relies on an assumption of fixed
dimension and considers limiting behaviour as # — oo, may fail to apply. Classical
results such as the law of large numbers and central limit theorem are not

applicable.

3.1 What is high-dimensional statistics?

We often consider a very generic setup, in which we have paired data
{ (xl,yl), (xz,yz), s (xn,yn) } We model each of these pairs as being drawn from a
joint probability distribution Px.y K which gives the probability of observing any
combination of observation x and label y. For now we make no assumptions about
the nature of the y; labels: they may be continuous values (regression), discrete
values (classification) or more complicated objects such as is the case in survival
analysis. We assume that x; € ¥ CR? for each 1<i <#, so that our observed values
are vectors of length p and each element is a real number (possibly restricted to
some subset such as the positive reals—this is what X" specifies). We refer to p as the
dimension and 7 as the sample size of our data. We wish to fit some model M to the
data. This could be in order to make some inference about the parameters of the
distribution Py, which will hopefuly shed light on the effect of each of the
covariates contained in an observation x. Alternatively, we might be trying to
predict future values of y from unlabelled observations as accurately as possible.
These two aims are often distinguished by the umbrella terms statistical inference
and statistical learning.

In many statistical models we have a vector  of parameters with at least the
same dimension as our data (f€R?, g >p). In generalised linear models (GLMs)
the likelihood of an observation y depends upon the data x; solely via the inner
product x! 3, so that each component of /3 corresponds to the relative importance of
its associated covariate. Classically, we would attempt to to estimate the parameter
p via our observation through a procedure such as likelihood maximisation. How-
ever, it is clear in this context that if p is comparable to or larger than # then we
have very little chance of accurately inferring the parameter vector . For example,
we canot expect to simultaneously learn about the effect of 20 covariates if we only
have 10 observations: we say here that the model is unidentifiable.

High-dimensional statistics attempts to gauge what we can do in regimes such as
these. One is approach is to assume the data has some low-dimensional structure.
This means that we can embed our data in a lower dimensional space such that the
smaller representation of our data contains all or most of the necessary information
about the joint distribution Px.y. We will discuss some common structural
assumptions. The simplest and most interpretable is sparsity.

Definition 3.1. (Sparsity): ‘Relatively few covariates are important’.

Given a vector f§ € R parameterising a model, we say f is k-sparse, for k <p, if at
most k elements of # are non-zero, that is



Artificial Intelligence in Oncology Drug Discovery and Development

p

Blo=>"1{; # 0} <k.

j=1

We can say a model M parameterised by a vector f is k-sparse if the vector f is
k-sparse.

Sparsity is a useful assumption to make for a variety of reasons. We are reducing
the number of parameters that we must estimate—for a k-sparse model, we need
only estimate k parameters. Before we do so we need to decide which k parameters

are allowed to be non-zero, that is, to which k-dimensional subspace (out of (Z; )

choices) our parameter belongs. In practice this is not a huge issue—some powerful
theory from the field of convex optimisation allows for efficient training of sparse
models (see the LASSO estimator below). Finally, sparse models are interpretable.
A small number of covariates selected for importance can be useful in hypothesis
refinement.

3.1.1 Sparse data vs. sparse models

It is worth at this point drawing a distinction between two phenomena in
statistics and data science both referred to as ‘sparsity’, both of which are exhibited
in cancer genomics. The first is sparse data, in which almost all observed data points
have the same value (typically zero). Mutation data displays this trait—the rate at
which mutations occur in the genome varies widely across and within cancer types,
but rarely exceeds 100 Mut/Mb, that is one mutation per 10* nucleotide base pairs
[16]. This sparsity is exploited in the way that tumour/normal DNA data is stored,
in file formats such as VCF (variant called format) and MAF (mutation annotated
format). Many programming languages and data science packages have data struc-
tures optimised for sparse data, and it is also often possible to optimise learning and
algorithms for sparse data. However, here we will focus on sparse models. These are
models where it is assumed that only a small subspace of the covariate space is
relevant, via assumptions such as the one described above.

This notion that there is some sparse representation of data but that it may not
translate directly to a subset of our covariates motivates the more general principle
of Sufficient Dimension Reduction (SDR). Sparsity restricts our attention to some
small subspace of the covariate space R?. More generally, we may insist on some
important smaller subspace, but one that does not depending on a specific repre-
sentation of our data x. The definition of SDR is somewhat more technical, so those
without mathematical background may find it easier to skip.

Definition 3.2. (Sufficient Dimension Reduction): ‘Some small representation
of our data contains all the important information’.

Given (X, Y) drawn from probability distribution Px .y, we say there exists a

sufficient dimension reduction of size d* if there exists some function S : R? — R4’
with d* <p such that Y is conditionally independent of X given S(X), that is,

YILX | S(X)

For an observation x, the image S(X) is a d * -dimensional representation of x. As
a special case we have linear sufficient dimensional reduction if the function S is a
linear projection A* : R? — R%".

Picking apart this definition, conditional independence means that Y only
depends on X through some low-dimensional image. Note that, in contrast to
sparsity, we have not made reference to a linear model parameter . In fact, in the
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context of a generalised linear model where Y depends on X only through some
function of #7X, we can simply take S(X) = A*X = f” and see that Y admits a
sufficient dimensionality condition with d” = 1. SDR, therefore, is a helpful notion
in settings in which we need to apply a non-linear model structure. Methods based
on finding sufficient dimension reduction projections by searching through spaces
of projections [17] in combination with non-linear base classifiers are beginning to
show promise in a variety of domains including the analysis of high-dimensional
medical data [18].

3.1.2 Techniques in high-dimensional statistics: Selection and regularisation

It is all very well imposing assumptions of low-dimensional structure onto our
data. How can we now exploit this to produce models that reflect the structural
assumptions we have made? One answer is regularisation. Regularisation refers to
some penalisation process being applied to the parameters of our model. The intuition
is that, given some model parameter f of size greater than or equal to the dimension p
of our data, and thus of comparable magnitude to our number of samples, we have
enough degrees of freedom when fitting the model that we can be guaranteed to
produce almost perfect training set results without having done anything more than
memorise our data. Therefore we must place restrictions on our parameter, and the
trick is to do this as part of the model fitting process by combining a regularisation
term to the loss function of our learning procedure (ideally in such a way as to
preserve what is known as loss convexity, which allows efficient model fitting).

Regularisation is applied in practice across a whole range of model types, but is
easiest to understand in the context of linear regression, so in the discussion that
follows we will restrict ourselves to this setting.

In linear regression we have a model M}, parameterised by f, given by

MﬁiYiZX;Tﬂ‘l—é’, (1)

for some noise . We are saying that Y can be approximated by a linear combi-
nation of the components of X, with the relative weightings of each component
given by the components of f. The loss of our model (a measure of how inaccurately
it is predicting across all our data) is given by

M) =3 > (vi —XTp)" @

i=1

In general we choose f to minimise this loss for an optimal model, but suppose
we wish to find an optimal k-sparse model, that is one for which f is k-sparse.
Rather than minimising over all possible choices of 3, we are minimising the loss
over all values of § that are also k-sparse:

min  {L(My)}. (3)

PERE, |Bly<k

Here we face a computational difficulty: we have to separately check each subset
of covariates of size k and minimise on that set of possible parameters, then
compare them all to find the best. What we do to circumvent this is include a
penalisation term for f, which encourages sparsity alongside the loss function in our
optimisation. An obvious choice would be the LO ‘norm’, |f|,, which counts non-
zero coefficients. In practice this is not computationally feasible (to be technical, the
problem is non-convex and so NP-hard), so instead we use the the L1 norm |A|,



Aprtificial Intelligence in Oncology Drug Discovery and Development

given by ij:llﬂ ;| While this does not explicitly encode sparsity, it turns out that in

practice it does produce sparse solutions. This process of replacing a non-convex
problem with an easier one is in general called convex relaxation.

Technique 3.1. (Regularisation for Sparsity: L1/LASSO): Given the setup
above, L1 regularised estimation (known in the case of linear regression as the
LASSO estimator [19]) selects f solving the following optimisation

n
min Z L£(Mg) + 2B,

where 4 is a positive number chosen to specify how strongly we want to encour-
age sparsity: different values of 1 will produce different & s in the ouput. A
particularly attractive feature of the LASSO selector is that it acts simultaneously as
a variable selection and model fitting procedure.

To take stock, we have begun with an assumption that some small subset of our
covariates are important in predicting the response Y. This assumption might have
come from necessity due to data availability, from knowledge of the biological
system we are modelling, or from both. We will discuss these possibilities in more
depth in the next chapter. We have taken a simple model, and altered it to express
this structure, and have done so in a way that is computationally feasible.

The specific form of the regularisation we employ can have very subtle effects
on the traits it encourages in models, which should motivate us to be very careful
when translating the biological knowledge we want to express into our learning
systems. For example, adding an identical regularisation term but replacing the L1

norm with the L2 norm (||, = 1/>_ ?) does not produce sparse models, but rather

models that do not contain large coefficients. The corresponding structural
assumption for this is slightly more technical (we can assert a multivariate Gaussian
prior on the parameter space for f). This can be applied in a wide variety of high-
dimensional situations, often alongside other forms of regularisation, as a combat-
ant to over-fitting (typically via cross-validation).

Technique 3.2. (Regularisation for Dimension: L2/Ridge Regression): L2
regularised estimation (known as ridge regression in the linear setting [19]) selects
p solving the following optimisation

min Z L’(M/;) + A,
i—1

BER?

where again /4 is a positive value that can be selected by cross-validation to
reduce overfitting.

(Data) (Model) (Computation)

, i , Sparsity . L1 Penalty i X
Dimensionality ————— Structure 4§ Regularisation

L2 Penalty
Figure 1.

An example of a high-dimensional workflow, where high dimensionality is addressed via the imposition of
model structuve, in this case sparsity. This is translated into a computationally tractable extension of standard
regression model fitting via an L1 penalty. Dimension-induced overfitting is simultaneously managed via L2
regularisation. If sparsity is a reasonable structural assumption, that is few covariates have genuine impact, L2
regularisation should have a velatively small impact.
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Figure 1 describes the workflow of modelling high-dimensional data. The data
dimensionality, as discussed in the previous chapter, is the underlying problem, which
we address with structural assumptions informed from a mixture of external knowl-
edge and practicality, which are then transformed into a feasible computational prob-
lem. Intuition around the biological and also statistical context are applied at each step.

For those unsatisfied with the abstract nature of the discussion above, we now
attempt to provide more concrete examples.

4. Cancer genomics questions in the language of high-dimensional
statistics

4.1 Biomarker/driver gene identification

We have discussed some of the terminology associated with high-dimensional
statistics. We can now express some cancer genomics questions in the same language.
We have data with a very high dimensionality p: bases, codons or genes (p~3 x 107,
1 x 10 and 2 x 10* respectively) and we would like to predict some outcome, be it a
survival value, biomarker signature or other phenotype. Due to the resources and
time required to perform whole genome or exome sequencing we often face restric-
tions in the number of samples at our disposal. The popular Cancer Genome Atlas
resource [5], for example, contains sequencing data for around 20,000 tumour/
normal matched samples. Even if all of these samples were relevant to our study, and
we were trying to predict some phenotype Y using gene-level data, we would be
working in the pan regime. If we were using codon or nucleotide level information,
we would be well into the p > > 7 regime. In the following we will assume we are
working with some gene-level covariates, and investigate what sort of structural
assumptions we may wish to make in order to fit tractable and robust models.

4.2 Sparsity by assumption: driver genes

Driver genes in the simplest sense are genes that, when mutated, will elevate risk
of the development, progression or adaptation of a tumour [20]. They may be
grouped roughly into oncogenes and tumour suppressors: oncogenes admit muta-
tions giving some selective advantage to a cancer cell, while tumour suppressors in
their standard form protect against aberrant cell growth or apoptosis evasion. Iden-
tifying driver genes (or driver sites within genes) among the extensive backdrop
mutation in tumours is notoriously difficult. Selection pressures produce subtle and
often non-obvious patterns of mutation density between neutral and non-neutral
genes as well as distinct signatures for oncogenes and tumour suppressors [21].
Neglecting these difficulties for now, suppose we wish to infer some phenotype Y
(again for simplicity we assume that this is continuous and single-valued). We do
not have nearly enough data to fully explore the dependence of Y on all genes
simultaneously—we have to assume that there are relatively few relevant features/
driver genes. This is exactly a sparsity assumption—a regularisation method such as
LASSO might be helpful. The advantages of this are twofold. We have identified a
set of genes of interest, which might form the basis for some targeted prognostic
panel, while simultaneously inferring a predictive structure on top of this list of
genes. The added interpretability of our model given by assuming a structural
restraint is useful when verifying our results in the lab. We have produced a
manageable set of interesting genes that can be investigated on a more detailed
individual basis.
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4.3 Sparsity by necessity: gene panels for genome-wide biomarkers

Another justification for selecting some small set of genes/genomic loci to
include in an investigative panel is that the cost and time to perform sequencing
depends (approximately linearly) on the size of the subsection of the genome to be
sequenced, and the depth at which it is sequenced. This means that in many
practical or clinical environments, cost is a major factor. While the cost of whole
genome sequencing has decreased at an impressive rate, it is far from being stan-
dard of care for cancer patients. It is therefore important that gene-panel style
biomarkers are as small as possible, while maintaining enough accuracy that clini-
cians feel confident in acting upon predictions. This is a particular issue for genome-
wide biomarkers, which have gained popularity in recent years, for example in
cancer immunotherapy. Examples include tumour mutation burden [22] and indel
burden [23], which report density of somatic mutation across the entire cancer
genome. In this case all regions of the genome are relevant to greater or lesser extent
(Figure 2)—the optimal panel for prediction would be the entire genome (or
exome, depending on the specific biomarker). However, certain genes may be
particularly relevant, for example by taking an active role in DNA repair mecha-
nisms. When estimating such biomarkers, we therefore want to offset the positive
predictive contributions of individual genes/loci against the added cost burden
given by inclusion in the panel. Analyses of the impact of panel size on predictive
power in theoretical and practical settings are becoming more common [24].

Suppose we have some set G of genes, where g refers to an individual gene with
coding sequence of length 7,. Now let P C G refer to a gene panel comprising a set of
genes, and Mp be a model trained on some data with covariates included according
to the gene panel P. Then we might wish to solve the optimisation problem

Regional Association to TMB in Lung Cancer

140
120 - .
LN ]
100 .
L ]
.
.
~—~ 80 — . . [
‘% N - o *
_8; | ® ) . . :
60 — ‘ [ ] .. e 2 L] ..
.'.'. o* N s o . ] '.n: :‘ b
l' :.:% ("] ? °

1 2 3 4 5 6 7 8 9 11 13 15 18 22 24

Chromosome

Figure 2.

For an additive, genome-wide biomarker such as TMB (tumour mutational burden), all genomic loci are
significantly correlated with TMB (unlike in typical GWAS studies). How do we choose a subset that is not
prohibitively large but can veliably estimate the marker via some predictive model?

10
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min {L£(Mp)} such that |P|<L, (4)
C

where £(M) is the loss of the model M, |P| =},

gene panel P and L is some prescribed maximum panel length. Note the similarity
with the LASSO setup described in Section 3.1. In the case of a linear model we can
similarly reformulate the problem in terms of the parameter $, and solve the
analogous problem.

Technique 4.1. (Weighted L1 Regularisation/LASSO): Here we select f satisfy-
ing the optimisation problem

< pMg is the total length of the

min { £(Mp) +izngy/sg|

IG|
BER prre

where we have again swapped the panel length bound L for the regularisation
parameter A. Since all the #, values are positive, this is still a convex optimisation
problem and thus can be solved efficiency as in the standard case. Choice of 4 is less
likely to be chosen via cross-fitting, as smaller values of 4 will always improve predic-
tive power. Instead 1 will be chosen to control the size of the resulting gene panel.

4.3.1 Distinguishing causative mutations

It should again be noted that these are illustrations of how high-dimensional
model construction is done. In reality many more subtleties may have to be taken
into account. In the above a key caveat requiring understanding is the role of
selective pressure in cancer-relevant genes [25], and how this affects the mutation
rate in different sections of the genome [26]. One way this can be investigated is by
looking at the relative predictive power of synonymous and non-synonymous
mutations for genome-wide mutation burden [27]. The gold standard for identify-
ing causative relationships between genotype and phenotype, however, remains
with functional validation studies.

4.4 Survival prediction

No review of statistical learning in cancer genomics would be complete without
a mention of survival prediction. Survival prediction is useful in a variety of situa-
tions, far beyond direct prognostic application. Hazard regression models based on
genomic data have been useful in identifying therapeutic resistance [28] or general
prognosis [29, 30] factors, which are of great interest to those developing drugs or
attempting to understand which patients can expect to benefit from them.
Regularisation-based techniques are perfectly adaptable to proportional-hazards
style models [31], to which end there has much literature beyond what we have
scope to discuss in this chapter.

5. Modern techniques in high-dimensional statistics and dimensionality
reduction

We conclude with some examples from recent literature of techniques related to
dimensionality reduction in modelling genomic data. The examples have been cho-
sen to demonstrate the structure/regularisation workflow discussed in this chapter,
and are small a set of examples rather than (anywhere near) an exhaustive list.
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5.1 Regularised graphical models

In the regression examples discussed previously, the parameters of interest have
represented the weighted effect of observed covariates on a label. In supervised and
unsupervised cases, we are also often interesting in looking at how closely related
different covariates are, through estimating the correlation matrix of the observa-
tion variable X. If we have an observation of dimensionality p, then the covariance
matrix will be of size pz, so problems of estimation from small # are even more
confounded!

Two forms of regularisation are popular, often used in tandem. The first is a
sparsity penalty applied to all matrix entries [32]. What does this correspond to
structurally? It means that that most pairs of covariates are independent (or at least
uncorrelated). This is a very relevant notion in network analysis, where variables
are thought to affect each other in a way that can be described by some graphical
structure. Sparsity of matrix elements then corresponds to sparsity of the graph
describing the network. It is also not uncommon to sparsely penalise precision,
defined by the components of the inverse covariance matrix [33].

Alternately (or in addition), we may wish to limit the number of distinct patterns
of correlation, so that all covariates display a correlation profile that is made up of a
combination of a relatively small set of base signatures. This structure may be fitted
for by imposing rank-based regularisation [34, 35]. For those wanting a greater
appreciation of the theory, the way this is imposed is another good example of
convex penalty relaxation (as was achieved by switching from the L, to L; norm in
sparsity regularisation), where here the nuclear norm is used as the convex relaxa-
tion of matrix rank.

5.2 Localised sparsity assumptions

We have made an extensive discussion of sparse models in this chapter. We
might wonder if there are any generalisations to the assumption that relatively few
of our covariates are important throughout all of our samples. One such generalisa-
tion would be that for some subsets of our samples sparsity assumptions hold, but
that the important covariates may differ from subset to subset within our data. In a
localised sparsity setting, we are often given some knowledge of the organisational
structure of data, either in a discrete way through a prior partition of the samples or
network structure, or in a continuous way through a measure of distance between
samples (which may come directly from the input data). We can then fit linear
models that are regularised towards sparsity, but where variable selection is allowed
to vary between samples, and allowed to vary more between samples that are more
distant. This has been applied to the prediction of drug toxicity based on differential
gene expression data [36].

5.3 Variational autoencoders

For our final example we consider a notion of dimensionality reduction that is
more general and that has been studied extensively in the machine learning litera-
ture. This nicely elucidates the grey border between statistical and machine learn-
ing, and the difficulties and opportunities available to biological research by
embracing the latter.

Variational autoencoders (VAEs) are a class of neural networks with a variety of
architectures and sizes, but whose premise centres around producing an encoding/
decoding framework between high-dimensional data and a lower dimensional
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representation [37]. VAEs have an ‘hourglass’ shape: input data is fed into the
network, and information is propagated through layers of progressively smaller size
until a bottleneck is reached. The central layer will have some small number of
latent nodes. Subsequent layers increase in size, reaching an output of dimension
matching the input. VAEs are trained to reproduce the inputs with which they are
trained as accurately as possible. We can then view the central latent nodes as an
encoding of our input data [38]. This might (a) contain some insightful information
and (b) be useful as lower dimensional input data for training other models.

In the context of cancer genomics [39], VAEs pose two challenges, illustrative of
those that machine learning procedures in general must overcome to be useful in a
basic research or clinical setting. Firstly, they are highly parameterised compared to
the types of model discussed so far. We have discussed at length the balance
between data availability and model size, and the significant extra effort necessary
to extract information when information is scarce. One of the advantages of deep
learning procedures is their versatility and lack of dependence on prior knowledge
and assumptions of structure. The cost is that they are very data intensive, prohib-
itively so in some cases. Secondly, while a VAE’s latent nodes may be informative
within a network, there is no necessary guarantee that they will be interpretable by
a human, nor that biologically relevant features will have been neatly allocated to a
single node. Strategies to ‘untangle’ VAEs are necessary to make biologically rele-
vant predictions [40].

6. Conclusions

The dimensionality of data in genomics is a sticking point that at its full potency
is more debilitating than in any other research discipline [9]. Even at the current
pace of increase of the availability of sequencing data, it will be a long time away (if
ever) that the most powerful and general machine learning techniques will be at our
disposal without recourse to the vast wealth of biological knowledge we as a species
have accumulated. To properly use that knowledge, we need researchers who are
able to speak the language of both camps. It is not sufficient that researchers in
cancer genomics provide data and questions to researchers in machine learning, nor
that machine learning researchers communicate back the output of their methods.
Instead, methods need to be crafted bespokely by those who understand what
features of cancer data are relevant, how those features manifest themselves and
how to exploit them in a mathematically consistent way.

This entire workflow is quite easy to follow when the sort of structure we are
insisting upon in our models is very simple. Even when a structural assumption can
be motivated in a single sentence (see Definition 3.1), and a model is simple (such as
in linear regression), a good design of learning procedure might not be immediately
obvious. It can likely, however, be given a fairly ground-up description within a
single book chapter. When the structural assumptions we really want to incorporate
might well extend as far as our current appreciation of the mutational processes
affecting tumours across heterogenuous cell populations, chromosomes, genes and
codons, and the models we want to fit are similarly at the cutting edge of computa-
tional research, then the position of an interdisciplinary researcher may well require
far more legwork to maintain.

As motivation for the above legwork, it should go without saying that cancer
genomics in the machine learning age has potential to do a great deal of good in the
long term. Yet uncovering a deeper understanding of how cancer works is not the
only worthwhile goal. Designing procedures that can work #ow to be more effec-
tive, sometimes crossing a threshold between non-pracitcality and practicality (in
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some part of the world), can have a more immediate benefit. In the clinic, the time
scale and cost of data collection are not abstract mathematical problems, so design-
ing a test that works with less data can be just as enabling as uncovering a new
paradigm of cancer progression.
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