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Chapter

Massive Neutrinos and Galaxy
Clustering in f(R) Gravity
Cosmologies

Jorge Enrique Garcia-Farieta
and Rigoberto Angel Casas Miranda

Abstract

Cosmic neutrinos have been playing a key role in cosmology since the
discovery of their mass. They can affect cosmological observables and have several
implications being the only hot dark matter candidates that we currently know to
exist. The combination of massive neutrinos and an adequate theory of gravity
provide a perfect scenario to address questions on the dark sector that have
remained unanswered for years. In particular, in the era of precision cosmology,
galaxy clustering and redshift-space distortions afford one of the most powerful
tools to characterise the spatial distribution of cosmic tracers and to extract robust
constraints on neutrino masses. In this chapter, we study how massive neutrinos
affect the galaxy clustering and investigate whether the cosmological effects of
massive neutrinos might be degenerate with f(R) gravity cosmologies, which would
severely affect the constraints.

Keywords: massive neutrinos, gravity theories, structure formation,
galaxy clustering

1. Introduction

From first principles, it is well known that a theory of gravity is needed to
describe the spatial properties and dynamics of the large-scale structures (LSS) of
the universe. The observational data collected for several decades provide strong
support to the concordance model Lambda cold dark matter (ACDM), which yields
a consistent description of the main properties of the LSS [1-4]. However, since
cosmological observations have entered in an unprecedented precision era, one of
the current aims is to test some of the most fundamental assumptions of the
concordance model of the universe. In this sense, the ACDM model assumes (i) the
general theory of relativity (GR) as the theory describing gravitational interactions
at large scales, (ii) the standard model of particles and (iii) the cosmological princi-
ple. Moreover, in this framework, the universe is currently dominated by dark
energy (DE) in the form of a cosmological constant, responsible for the late-time
cosmic acceleration [5-7] and by a cold dark matter (CDM) component that drives
the formation and evolution of cosmic structures.

Recently, several shortcomings have been found in the ACDM scenario, like a
possible tension in the parameter constraint of Hy and g when different probes are

1 IntechOpen



Progress in Fine Particle Plasmas

used [4, 8-10]. This has motivated the interest on theoretical models beyond GR.
Among them, the models based on f(R) gravity are the favourite ones because of
their generality and rich phenomenology [11, 12]. Moreover, modified gravity
(MG) models represent one of the most viable alternatives to explain cosmic accel-
eration [13] that require satisfying simultaneously solar system constraints and to
be consistent with the measured accelerated cosmic expansion and large-scale con-
straints [14-17]. An extra motivation to study MG models is given by the fact that
massive neutrinos, the only (hot) dark matter candidates we actually know to exist,
can affect these observables and have several cosmological implications [18]. How-
ever, the degeneracy between some MG models and the total neutrino mass [19-21]
give rise to a limitation of many standard cosmological statistics [22, 23]. In this
context, the clustering analysis and redshift-space galaxy clustering have been
proven to be a powerful cosmological probe to discriminate among MG scenarios
with massive neutrinos, as will be discussed in the following sections.

Regarding the dynamics of background universe in the standard framework, it is
well described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,
whose line element in natural units ¢ = 1 is given by

ar?

ds* = —dt* + a*(t) [ + 72d6? + v? sin20d ¢ | . (1)

1 — ker?

where a(¢) is the so-called scale factor, (r, 0, ¢) are dimensionless spherical-
polar coordinates and k defines the geometry of the universe under consideration to
be flat (k = 0), open (k < 0) or closed (k> 0). The equations of motion that describe
the time evolution of a(¢) and the dynamic growth of the universe are called
Friedmann equations and are given by

-\ 2
a 872G kA
(;) ERAAEY @)
i (&) k
2—+ (—) = —87[Gp ——2+A, (3)
a \a a
that can be re-expressed as
, a
p= —3;(,0 +p)s (4)
a 472G A
- _ T 3 — 5
p 3 (P H+3p)+3 (5)

after eliminating the curvature term. These equations lead to the definition of
the Hubble parameter as H = 4, which drives the expansion rate of the universe
and usually is represented in terms of the dimensionless factor %, defined by the
expression Hy = 100 h km st Mp ¢ tatthe present epoch. In order to have a full
description of the background universe, it is necessary an equation of state (EoS)
of the cosmic fluid, considering that it has three principal components: baryonic
matter, dark matter and radiation (see Figure 1a). A first approximation consists
in assuming a linear relationship between p and p; thus, the equation of state can
be written as p = wp, where w is a parameter that in principle can be time-
dependent w = w(t), but the simplest approach is to consider it as a constant.
Under this assumption, Eq. (4) is easy to solve, resulting in p(a) = a>1*%), The
case with w = —1 corresponds to the so-called cosmological constant; it is obtained
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Figure 1.
(a) The current composition of the universe derived from Planck data [4], (b) evolution of the energy density
pavameter p normalized to p,, , as a function of the scale factor a.

assuming a constant density energy so that the corresponding EoS is p = —p. The
case of a flat universe (k = 0) is interesting because of its agreement with many
observational results [4]; it also implies a special value of the matter density in the
universe that allows to introduce naturally a critical density p,, in terms of the
Hubble parameter. The critical density is also useful to define the dimensionless
density parameter Q; for the various species 7, related to radiation €,, matter ,,,
cosmological constant €, and curvature €. It is easy to verify that the sum of these
parameters is equal to unity, as it can be expected from the Friedmann equations; in
fact, Q,, + Q, + Qx + Q, = 1is known as the cosmic sum rule. Therefore, a
Friedmann universe can be described by the cosmological parameters

(Ho, Qu, Qy, €, Q4 ) such that the expansion rate as a function of the scale factor is
given by

H*(a) = Hy[Qa * 4+ Qua® + Qua > + Q4. (6)

This equation is usually written as a dimensionless function defined by E(a) =
H(a)/Hy. The last constraints on cosmological parameters obtained by the Planck
satellite show that w = —1.03 £ 0.03, consistent with a cosmological constant, and
Q,, = 0.3153 + 0.0073, Q25 = 0.692 + 0.012,Q;, = 0.000 + 0.005, where Q,, con-
tains the density of baryons (Q,) and cold dark matter (Q¢pp). Additionally, in the
last few years, it became usual to include the energy density of neutrinos €,; they
contribute to the radiation density at early times but behave as matter after the non-
relativistic transition at late times [24], so that for a flat universe, the total energy
density is given by p = p, + pcpm + Pp + £, + pa- Figure 1a shows the percentages,
derived from [4] data, in which each species contributes to the total content of the
universe. Figure 1b shows the evolution of the density parameter p (in units of p,, o)
as a function of the scale factor 4. For further details concerning the background
universe, see Refs. [25-27].

2. Modified gravity and massive neutrinos
2.1 Modified gravity models

One of the most interesting modifications of GR is that which modifies the
Einstein-Hilbert action by introducing a scalar function, f(R), as follows:
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= Jd4x\/—_g(R127J;(GR)+Em), @)

where R is the Ricci scalar, G is the Newton’s gravitational constant, g is the
determinant of the metric tensor g, and £,, is the Lagrangian density of all matter

fields. For a classification of f(R) theories of gravity and the assumptions needed to
arrive to the various versions of f(R) gravity and GR, see, e.g., [28]. Thus, for a
general f(R) model, one can consider a spatially flat FLRW universe with metric

ds* = —di® + a?(t)dx?, so that varying the Einstein-Hilbert action with respect tog,, ,
one can get a general form of the modified Einstein field equations. Consequently, the
corresponding modified Friedmann equations are given by

S (14 ) = 82G(py, + praa) + 5 ( f5R —f) — 36 (®)
~2(1+ f5)H = 82G (pm + %PW) +fp— Hfg» 9)

where R = 6(2H* + H ) and the over-dot denotes a derivative with respect to the
cosmic time £. In general, the background evolution of a viable f(R) is not simple as
it has been shown by [29-31]. However it is possible to get an approximation in a
way that is analogous to the DE models, by neglecting the higher derivative and the
non-linear terms. By defining the growth rate asf = dIné/dIna, the equation that
describes the growth of matter perturbations in terms of the density contrast §in a f
(R) model is approximated by [29, 32]

3

—3Qm(a)(1—9m(a))dgdzf( R (2——9 (a )) _3Geff

Qu(a).  (10)

where G4 is the effective gravitational constant that can be written as [33]. A
plausible f(R) function able to satisfy the solar system constraints, to mimic the
ACDM model at high-redshift regime where it is well tested by the CMB and, at the
same time, to accelerate the expansion of the universe at low redshift but without a
cosmological constant [34], suggests that

limf(R) = const, 1121Ln0f<R> =0, (11)

R—od

which can be satisfied by a broken power law function such that

1)

f(R) = _mzciz(% E (12)

where the mass scale m is defined as m? = H%QM and ¢4, ¢, and 7z are non-
negative free parameters of the model [34]. For this f(R) model, the background
expansion history is consistent with the ACDM case by choosing ¢1/c; = 6Q,/Q,
where Q) and Qy are the dimensionless density parameters for vacuum and matter,
respectively.

Nowadays it is generally accepted that some MG theories such as the [34] f(R)
are strongly degenerated in a wide range of their observables with the effects of
massive neutrinos; see, e.g., [19-21, 35]. This represents a serious challenge
constraining cosmological models from current and future galaxy surveys requiring
robust and reliable methods to disentangle both phenomena. Furthermore, for some
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specific combinations of the f(R) function and of the total neutrino mass m, = Xm,,
standard statistics would not distinguish them from the standard ACDM expectations
(see [21, 22, 36]). In addition, since the degeneracy is mostly driven by the non-linear
behaviour of both the MG and the massive neutrinos effects on the LSS, the linear
tools are not suitable to properly disentangle the combined parameter space [36].

2.2 Massive neutrinos and the large-scale structure

Motivated by the apparent violation of energy, momentum and spin in f-decay
processes, Pauli proposed the existence of neutrinos in 1930 to keep the conserva-
tion laws safe. Eventually, 26 years after they have been theoretically postulated,
the neutrinos were detected for the first time by Cowan [37]. Neutrinos are classi-
fied in three ‘flavours’ in the standard model of particles; they were considered to
be massless for some time until the discovery of the neutrino oscillation phenom-
ena, i.e. related to the change of flavour [38]. Since then, it is known that at least
two of the three neutrino families are massive, in contrast to the particle standard
model assumption; however, measuring the absolute masses of the neutrinos is not
easy, which makes this a very active field of research today, both for cosmology and
particle physics. In a cosmological context, the neutrinos leave detectable imprints
on observations that can then be used to constrain their properties; in particular, the
presence of massive neutrinos impacts the background evolution of the universe
and the growth of structures [39]. In the early universe, massive neutrinos are
relativistic and indistinguishable from the massless ones, behaving like photons,
meaning that their energy density drops like xa—*. In this stage, neutrinos are in
thermal equilibrium, and their momentum follows the standard Fermi-Dirac
distribution

4rg, p*dp
dp = L , 1
n(p)dp (2ﬂh€)3 BT 41 (13)

where 7( p) is the number of cosmic neutrinos with momentum between p and
p +dp, g, is the number of neutrino spin states, T,(z) is the neutrino temperature at
redshift z and kp is the Boltzmann constant. In principle, in the momentum distri-
bution function, the chemical potential should be also included; however, it has
been shown to be negligible for cosmological neutrinos [40]. The temperature of

the cosmic neutrino background and the one from CMB are related by T, (z = 0) =

(%) Y 3T,, (z = 0) [41], such that the temperature of the neutrino background at
certain redshift z is given by T, (z) = 1.95(1 + 2) K. Then, when the average
momentum of neutrinos drops below a certain mass, they become non-relativistic,
and their energy density drops like a3, behaving like baryons and cold dark
matter. Figure 2 shows the evolution of the massive neutrino density, normalised to
the today’s critical density, as a function of the scale factor from its early stage to the
late universe.

After neutrinos with mass m, decouple from the rest of the plasma at redshift z,,,,
as shown by Eq. (14)

1+ 2, (m,) ~ 1890 (1’:—\7) , (14)

the number density per flavour is fixed by the temperature, so that the universe
is currently filled by a relic neutrino background, uniformly distributed, with a
density of 113 part/cm? per species and an average temperature of 1.95 K. As
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Figure 2.

Ev%;lution of the massive neutrino density, normalised with respect today’s critical density, as a function of the
scale factor a, for a neutrino mass m, = 0.1 eV. The pink solid line shows the correct solution for p,(a), while the
green and blue dashed lines show the limit at early and late time, vespectively. The early time limit is
proportional to a*, underlining that at early times neutrinos are velativistic and behave like radiation. The late
time limit, instead, is proportional to a3, following the same evolution of matter. The short vertical dashed line
(black) marks the non-relativistic transition for neutrinos of this given mass. The figure was computed by using
the CAMB code.

neutrinos are non-relativistic particles at late times, they contribute to the total
matter density of the universe Qu, so that Qu = Qcpm + €5 + Q,, where Qcppr, Q,
and Q, are the dimensionless density parameters for CDM, baryons and neutrinos,
respectively. The density background is affected by massive neutrinos such that a
perturbation in the density field is well described by [39, 42] as follows:

Q,
5m == (1 —fy)(sCDM +fl/51-/’ Where fl/ = m, (15)

6, being the neutrino perturbations and Q, the density contribution related to
massive neutrinos that can be expressed in terms of the total neutrino mass, m, =
> .my,, as follows:

Zim,/i

Lol 16
93.14 h’eV (16)

v

Currently, several observations provide limits on the total neutrino mass under
the assumption of standard GR [43]. Depending of their mass, neutrinos can affect
different quantities such as the matter-radiation equality and at the same time
imprint features in cosmological observables like the clustering, the matter power
spectrum, the halo mass function and the redshift-space distortions [18, 44-47].

3. Halo mass function and clustering analysis

Considering the impact of MG and massive neutrinos in the clustering, a pow-
erful cosmological test to discriminate among these scenarios is provided by the
redshift-space distortions (RSD), that is, the shift in the position of the tracers due
to their peculiar motions. For this purpose, cosmological simulations have become a
powerful tool for testing theoretical predictions and to lead observational projects.
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In this context, the formation and evolution of cosmic structures can be understood
as a dynamical system of many particles, which trace the underlying mass distribu-
tion in a certain cosmological model. The N-body simulations, methods and algo-
rithms have progressed continuously, achieving a high resolution to resolve finer
structures with millions of particles, reducing the gap between theory and observa-
tions. For a detailed description on fundamentals of cosmological simulations, see,
e.g., [48-51].

Since the formation and evolution of cosmic structures is based on the growth of
small fluctuations in the density field, it is expected that the amplitude of these
initial perturbations have the correct value at late times to match the observed
clustering today. An analytical development based on perturbation theory makes
possible to follow the growth of structures to a certain extent using the linear
approximation, being valid as long as dp < p. Nevertheless, these calculations are
limited and cannot be extrapolated to explain completely the observational data;
they break down on a scale where the density contrast § ~ 1. Moreover, beyond the
linear regime, the observed structures have a density contrast in a wide range from
cosmic voids with § ~ —1 to § ~ 10° and larger. It makes necessary a more elabo-
rated description of the perturbations in the non-linear regime, which can be
achieved using higher-order perturbation theory or numerical simulations [48].

In this section we show a complementary analysis to the one performed in [52]
in order to investigate the clustering in the context of modified gravity with massive
neutrinos. We used a subset of the DUSTGRAIN-pathfinder runs [36], which
implement the Hu-Sawicki f(R) model including massive neutrinos and whose
cosmological parameters are consistent with Planck 2015 constraints [53].

3.1 Halo mass function

As CDM haloes form from collapsing regions that detach from the background
density field, their abundance can be related to the volume fraction of a Gaussian
density smoothed on a radius R above a critical collapse threshold &, [54]. The comoving
number density of the haloes is strictly related to underlining cosmological model, such
that within a mass interval [M, M + dM]|, the halo mass function is given by

dn(M, z) P dlno(M,z)~"

S =flo(M,z) LERTEE (17)

where f (o) is the multiplicity function, ¢ the RMS variance of the linear density
tield smoothed on scale R(M) and p the mean matter density. The product
f(6(M,2))p quantifies the amount of mass contained in fluctuations of typical mass
M = ‘—3‘7zR3ﬁ. The simplest argument to compute analytically the multiplicity func-
tion f (o) comes from the spherical collapse theory, following the [54] formalism,
such that a perturbation is supposed to collapse when it reaches the threshold
8. ~1.68, by assuming that the probability distribution for a perturbation on a scale
M is a Gaussian function with variance o3;, resulting in

o) =2 ey (-5 2, 13)

Another approach to determine f (o) is given by accurate fitting functions, like
the proposed by [55], which extends phenomenologically the results of [54]. For
[55] the function f (o) is expected to be universal to the changes in redshift and
cosmology and is parameterized as follows:
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o

flo)=A [(E) i o] exp (~d/o?), (19)

where A is an amplitude of the mass function and 4, b, ¢ and d are free param-
eters that depend on halo definition. The variance ¢ is usually given by

P(k,z)

s W2(kR(M))k*dk, (20)

o*(R(M),z) = J

where P(k) is the linear matter power spectrum as a function of the wave
number k£ and W is the Fourier transform of the real-space top-hat window function
of radius R. A fundamental feature of the mass function is that it decreases mono-
tonically with increasing masses; furthermore, its dependency on cosmology is
encoded in the variance ¢?, as shown by the integrand of Eq. (20). From the point of
view of N-body simulations, an approach to compute the mass function is given
straightforward from Eq. (17), by counting the number of haloes N;, above a certain
mass threshold M,,;, in a comoving volume V such as

N, :AJ J dv (M, z)dMdz, (21)
Zmin Mmin dZ

where A is the area, 2,,;, and z,,,, are the redshift boundaries and dV /dz is the
comoving volume element.

Figure 3 shows the mass function of CDM haloes measured for all models of the
DUSTGRAIN-pathfinder runs at six different redshifts z = 0,0.5,1,1.4,1.6,2. Each
panel contains the mass function, per each model as labelled, to track its evolution
in redshift. As reference, the black dashed line represents the theoretical expecta-
tion by [55] for a flat ACDM model. As expected, massive haloes are less abundant
with respect to smaller ones in a fixed comoving volume. The mass function
decreases with redshift, since at earlier times the density field is smoother than at
late times. The plot is logarithmic, meaning that the number density of large mass
haloes falls off by several orders of magnitude over the range of redshifts shown.
The f(R) models both with and without neutrinos reproduce in very well agreement
this pattern, but only at really high masses, significant differences appear.
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Figure 3.
The mass function of CDM haloes per each model of the DUSTGRAIN-pathfinder project at six different
redshifts z = 0,0.5, 1, 1.4, 1.6, 2 as labelled. Each panel corresponds to one model as labelled, and the dashed

line represents the theovetical expectation by [55], assuming a flat ACDM model.
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Figure 4 compares the halo mass functions of the different DUSTGRAIN-path-
finder simulations, computed at z = 0 (left column), g = 1 (central column) and
z = 1.6 (right column). The lower panels show the percentage difference with
respect to the ACDM model. It is possible to see that the effect of f(R) and massive
neutrinos on the dynamical evolution of the matter density field results in different
halo formation epochs and different number density of collapsed systems. In par-
ticular, the fR4 model (blue) is the most deviated model from the standard scenario,
whereas the fR6, fR6_0.06¢V and fR6_0.1¢V models mimic the ACDM behaviour
over a wide range of masses.

3.2 Clustering analysis

To quantify the halo clustering, we used the two-point correlation function
(2PCF) that can be defined as the joint probability of finding a pair of objects at
certain spatial separation given a tracer distribution. To measure the full 2PCF
denoted as &(7, i), we used the Landy-Szalay estimator given by [56]:

. DD(r,u) — 2DR(r, ) + RR(r, )
S m) = RR(r, p) ’

(22)

where y is the cosine of the angle between the line of sight and the comoving
halo pair separation, 7, and DD, RR and DR represent the normalised number of
data-data, random-random and data-random pairs, respectively. This estimator is
almost unbiased with minimum variance; this is the reason why it is preferred over
the other estimators regarding the clustering measurements. Since the possible
deviations from GR are more evident on small scales, we consider an intermediate

non-linear range from 14" Mpc to 50 2~ Mpc and random samples ten times
larger than the halo ones. Then, in order to examine how significant is the RSD
correction, it is convenient to expand the 2D 2PCF in the orthonormal basis of the
Legendre polynomials L;(¢) [57] such that

&(s, 1) = So(s)Lo(u) + &(5)La() + &a(s)La(u), (23)

where each coefficient corresponds to the /th multipole moment:

_21+1J+1

G0 ==5—| ductmLi(p) (24)

M [Mah™H

Figure 4.

The mass function of CDM haloes for all the models of the DUSTGRAIN-pathfinder at three different vedshifts:
z = o (left column), z = 1 (central column) and z = 1.6 (right column). The lower panels show the percentage
difference with respect to the ACDM model. As in Figure 3 the dashed line represents the theovetical prediction
by [55].
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Figure 5 shows the RSD effects on the iso-correlation curves of the 2D two-point
correlation function (2PCF) in the plane (r,, 7)), where r, and r coordinates are,
respectively, the perpendicular and parallel components along the line of sight of
the observer. The 2PCF has been computed for the ACDM catalogue of the
DUSTGRAIN-pathfinder simulations, in real space (left panel), and for the
corresponding sample in redshift space (right panel). The contours are drawn at the
iso-correlation levels &(s1,s)) = 0.3,0.5,1.0,1.4,2.2,3.6,7.2,21.6. In real space the
correlation function is undistorted, describing circular curves in this plane. In
redshift space, the effect caused by the RSD is clearly visible on small scales, where
the 2PCF is stretched in the direction of 7| (Fingers-of-God effect), and in the infall
effect on large scales, the contours are squashed along the perpendicular direction
(Kaiser effect).

The symmetry of the 2PCF in real space means that the full clustering signal is
encoded in the monopole moment &y (), while the rest of the multipole moments
are statistically equal to zero. Figure 6 shows the monopole moment, &,(r), of the
CDM haloes for all models considered in the DUSTGRAIN-pathfinder project, at
three different redshifts z = 0, 1, 2. Subpanels show the percentage difference
between MG models [f(R) with and without massive neutrinos] and the ACDM
model. The monopole moments of the 2PCF of the fR4 and fR4_0.3¢V models are
the ones that deviate most from ACDM at low redshift. This behaviour is also
present in the models fR5, fR5_0.15¢V and fR5_0.1eV, but it is less significant. In
general, it is observed that massive neutrinos increase the clustering signal for all
models, especially at high redshift, the fR6, fR6_0.06¢V and fR6_0.1eV models
being degenerated with respect to ACDM. The quadrupole and hexadecapole
moments are consistent with zero at 1o error bar.

Another important feature to take into account in the clustering analysis is
related to the bias that is introduced when the ACDM model is wrongly assumed to
predict the DM clustering of a f(R) universe with massive neutrinos [58]. This

1074 1073 1072 107 10° 10t

1y [Mpe/h)

5| [Mpe/h)

~20

—30 -2 -10 0 10 20 30
vy [Mpe/h]

Figure 5.

Ca%tltlaurs of the 2D two-point corvelation function (2PCF) in the plane (v ,7)), the ri and r| coordinates are,
respectively, the perpendicular and parallel components along the line of sight of the observer. The 2PCF has been
computed from an N-body simulation, in veal space (left panel), and for the corvesponding sample in redshift space
(right panel). The contours are draw at the iso-correlation levels é(sl,s”) =0.3,0.5,1.0,1.4,2.2,3.6,7.2,21.6
as indicated by the colour bar. Both the effect of redshift space distortions on small scales (Finger-of-God effect)
and the infall effect at large scales (Kaiser effect) are clearly visible in the left panel. On small scales the

2PCF is stretched in the direction of v, and on large scales the contours are squashed along the perpendicular
direction.
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Figure 6.

The real-space 2PCF r>&, of CDM haloes for all the models of the DUSTGRAIN-pathfinder project at three
different vedshifts: z = o (left column), z = 1 (central column) and z = 2 (vight column,). From top to bottom,
the panels show the fR4, fR5 and fR6 models, respectively, compared to the results of the ACDM model. The
ervor bars, shown only for the ACDM model for clarity reasons, are the diagonal values of the bootstrap
covariance matrices used for the statistical analysis. Percentage differences between £(R), f (R) + m, and ACDM
predictions are in the subpanels, while the shaded vegions represent the deviation at 16 confidence level.

effective halo bias, (b), allows to characterise the relation between the halo cluster-
ing and the underlying mass distribution. By using the theoretical effective bias
proposed by [59] and its corresponding mass function, it is possible to disentangle
the degeneracy with respect to og. The level of agreement with the measurements
obtained from the f(R) and f(R) + m, scenarios give us a better understating of the
discrepancy with the ACDM ones. To compute the theoretical mass function, we
consider the linear CDM + baryon power spectrum as have been stated in the CDM
prescription [60] and replacing p,, with pcpy [42]. These quantities can be obtained
with CAMB or another Boltzmann code; the linear power-spectrum for CDM,

PiPM(k) = T/ T2 P0 (), is expressed in terms of P;°M™ (k) and PJ7, (k), with
Tcom(k) and T, (k) being the transfer functions. It implies, as shown by [61], that
the effect of neutrinos on the cluster abundance is well captured by rescaling the

smoothed density field such that

o* — ooy (2) = Jljw#(f’z)wz(kze)kzdk (25)

with the CDM power spectrum obtained by rescaling the total matter power
spectrum with the corresponding transfer functions, T'cpy and T}, weighted by the
density of each species so that

(26)

QcomT com(k, ) + QbTb(k,Z))z

Pcpm(k,z) = P (k,z) < T (k,z)(Qcom + Q)
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Figure 7.

The coloured solid lines represent the apparent effective halo bias, (b), as a function of redshift, averaged in the
range 10 h™* Mpc <r <50 h™* Mpc. Black lines show the theoretical ACDM effective bias predicted by [59]
(dashed), normalised to the g values of each DUSTGRAIN-pathfinder simulation, while the cyan-shaded
areas show a 10% error. The upper set of panels shows the results, considering the total power spectrum, while
the lower set of panels shows the results when the CDM+baryon power spectrum is used instead.

The impact on the bias when the CDM prescription is not considered can be
appreciated in Figure 7. In most cases this correction is small with the exception
of the fR4_0.3 eV model. A detailed discussion on these results can be found
in [52].

3.3 Modelling the redshift-space distortions

In a realistic case, spectroscopic surveys observe a combination of density and
velocity fields in redshift space. The observed redshift is a combination of cosmo-
logical effects plus an additional term caused by the peculiar motions along the line
of sight of the observer. This combination makes the redshift-space catalogues
appear distorted with respect to the real-space ones, and they can be reproduced
from N-body simulations since the positions and velocities are known. Currently,
the modelling of the redshift-space distortions provide a powerful tool to test the
gravity theory by exploring the spatial statistics encoded in the 2PCF, which is
anisotropic due to the dynamic distortions.

We consider the first two even multipoles of the 2PCF, &, and ¢&,, taking
into account that odd multipole moments vanish by symmetry. The analysis
consisted of modelling (i) the individual multipole moments and (ii) both
multipole moments simultaneously. To derive cosmological constraints from the
clustering signal and quantify the effects of f(R) gravity and massive neutrinos
on RSD, we performed a Bayesian analysis to set constraints on the linear growth

12



Massive Neutrinos and Galaxy Clustering in £(R) Gravity Cosmologies
DOI: http://dx.doi.org/10.5772 /intechopen.92205

"

@y’

CiCys

Cis/

20 10
s [Mpch™]

Figure 8.

Covariance matrices from the analysis of the vedshift-space monopole and quadrupole moments of CDM haloes
with Bootstrap errors. The models correspond to ACDM (upper panels), fR4 (central panels) and fR5 (bottom
panels), at three different vedshifts z = 0.5, 1.0 and 1.6 from left to right.

rate f (€,) and the linear bias. All numerical tasks were performed with the
CosmoBolognaLib1 [62].

The Kaiser formula is a good description of the RSD only at very large scales,
where non-linear effects can be neglected, but it does not describe accurately the
non-linear regime. Thus, with the aim of extracting information from the RSD
signal at non-linear regime and considering the increasing precision of recent and
upcoming surveys, many more approaches have been proposed. There is a vast
literature that shows the efforts to model the RSD beyond the linear Kaiser model
[63-66], some of them making use of a phenomenological description of the veloc-
ity field and others, instead, taking into account higher orders in perturbation
theory since, in principle, there is no reason to stop at linear order. Other
approaches do a combination of both frameworks. A simple alternative to model the
redshift-space 2PCF at small scales consists of extending the Kaiser formula, by
adding a phenomenological damping factor that plays the role of a pairwise velocity
distribution. It can account for both linear and non-linear dynamics. Therefore, to
construct the likelihood, we consider this model sometimes called dispersion model
[67], which introduces a damping function to describe the distortions in the clus-
tering at small scales (Fingers-of-God). This model is enough accurate to quantify
the relative differences between f(R) models with massive neutrinos and ACDM.
For the Bayesian analysis, the dispersion model is fully described by three
parameters, f og, bog and Zg, that we constrain by minimising numerically the
negative log-likelihood.

Figure 8 shows the normalised covariance matrices (C,- i/\/CiiCj ,j) of the
redshift-space monopole and quadrupole moments of CDM haloes with bootstrap
errors resampling at three different redshifts z = 0.5,1.0 and 1.6. As it can be
appreciated, the covariance matrices represent how the scatter propagates into the

! Freely available at the public GitHub repository https://github.com/federicomarulli/CosmoBolognaLib.
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likelihood and on the final posterior probabilities of the parameters. Then, to assess
the posterior distributions of the three model parameters, we perform a MCMC
analysis. The fitting analysis is limited to the scale range 10 < [Mpc h_l] <50,
assuming flat priors in the ranges 0 <fog <2, 0 <bog <3 and 0 <X3<2. Figure 9
shows the fog-bog posterior constraints obtained from the MCMC analysis of &g, &,
and &, + &, for each mock catalogue of the DUSTGRAIN-pathfinder. The figure
shows the constraints for all models considered in this work at z = 1.0 using the
monopole (orange), quadrupole (green) and monopole plus quadrupole (blue),
while the intersection regions correspond to the joint analysis of the multipoles.
Thus, the joint analysis of the redshift-space monopole and quadrupole is able to
break the degeneracy between fog and bog even in the presence of massive neutri-
nos. In Figure 10, we show the theoretical behaviour of the linear distortion
parameter and the growth factor as a function of the redshift for each family of
models, assuming a flat ACDM model.

From the fog-bog posterior contours, at 1 — 20 confidence levels, the results
suggest that the clustering information encoded in the two first non-null multipole
moments of the 2PCF can discriminate the alternative MG models considered in this
work at z>1. At low redshifts the f(R) models studied are statistically indistinguish-
able from ACDM, and further studies are required to break this degeneracy.
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Figure 9.

Contours at 1 — 20 confidence level of the f o3 — bog posterior distributions, obtained from the MCMC analysis
in redshift space for 2PCF multipoles of CDM haloes. The contours correspond to z = 1.0 with the monopole in
orange and the quadrupole in green.
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Figure 10.

Theoretical expectation of the linear distortion parameter p (upper panel) and the growth rate fog (lower
panel) as a function of the redshift for each family of mocks from the DUSTGRAIN-pathfinder runs, assuming
a flat ACDM model.

4, Conclusions

In this chapter we have introduced the theoretical framework of modern cos-
mology in present massive neutrinos. We emphasize on the structure formation and
on the statistical description of the density field as well as the measurements of
galaxy clustering and discuss the redshift-space distortions and the differences
between clustering in real and redshift space, considering that in the recent years,
the spatial distribution of matter on cosmological scales has become one of the most
efficient probes to investigate the properties of the universe, such as test gravity
theories on large scales, to explore the dark sector and the origin of the accelerated
expansion of the universe as well as a probe to constrain alternative cosmological
models.

In the context of models based on modified gravity and massive neutrino cos-
mologies, we investigated the spatial properties of the large-scale structure by
exploiting the DUSTGRAIN-pathfinder simulations that follow, simultaneously, the
effects of f(R) gravity and massive neutrinos. These are two of the most interesting
scenarios that have been recently explored to account for possible observational
deviations from the standard ACDM model. In particular, we studied whether
redshift-space distortions in the 2PCF multipole moments can be effective, break-
ing the cosmic degeneracy between these two effects. We analysed the redshift-
space distortions in the clustering of dark matter haloes at different redshifts,
focusing on the monopole and quadrupole moments of the two-point correlation
function, both in real and redshift space. The deviations with respect to ACDM
model have been quantified in terms of the linear growth rate parameter. We found
that multipole moments of the 2PCF from redshift-space distortions provide a
useful probe to discriminate between ACDM and modified gravity models, espe-
cially at high redshifts (2>1), even in the presence of massive neutrinos. The linear
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growth rate constraints that we obtain from all the analysed f(R) + m, mock cata-
logues are statistically distinguishable from ACDM predictions at high redshifts.
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