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Chapter

The New Etching Technologies of 
Graphene Surfaces
Phuong V. Pham

Abstract

Recently, graphene nanomaterial has drawn great interest due to its excellent 
electrical and optoelectrical properties. The etching of graphene based on plasma 
engineering to achieve atomically thin layer and extremely clean surface is a hot 
issue, which is highly desirable for industrial applications. The resided contami-
nants with high intrinsic roughness create the degradation of performance. The 
impurities are removed via surface cleaning method and layer-by-layer plasma 
etching via top-down lithography. Recently, new plasma technology-based etching 
causes no damage and secures its π-binding, which plays a key role in  conductivity 
and other characteristics. Thus, this chapter presents the recent advances in 
new etching technologies for nanomaterials (e.g., graphene) as well as emerging 
 applications based on these technologies.

Keywords: graphene etching, plasma, ion beam, neutral beam, inductively coupled 
plasma (ICP), atomic layer etching (ALE), reactive ion etching (RIE), chemical vapor 
deposition (CVD)

1. Introduction

An atomical graphene layer, which was invented in 2004 [1, 2], is considered 
as one of the best candidates for a broad application range with novel electronic 
and optoelectronic behaviors [1–21]. Unfortunately, the conductive graphene with 
no bandgap prevented its outstanding physical and chemical potentials. Thus, its 
bandgap tuning via various approaches is highly desired for extreme performance 
devices (Figure 1).

Recently, etching technologies are emerging as one of the best efficient tools 
to tune a device’s performance, thereby extending to many different fields in 
broadband [20–30]. The new approaches include the following: (i) inductively 
coupled plasma (ICP), neutral beam-based atomic layer etching (ALE), ion 
beam and reactive ion etching (RIE) [22–29], (ii) chemical vapor deposition 
(CVD) [30, 31] and (iii) thermally activated nanoparticles [32]. Plasma has used 
Si-integrated circuits for etching [22]. Among breakthroughs, plasma etching 
represents an important role in Si and non-Si (metal)-assisted devices. This 
chapter will present recent advances in new graphene etch technologies and their 
related applications.
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2. Emerging etch technologies of graphene surfaces

Graphene layers have a number of independent bandgaps, e.g., single layer has 
no bandgap, but a bilayer has bandgap, and could be utilized to make transistor 
a superior performance. The layer-by-layer graphene etching would form (i) a 
cleaner surface with removed residues and (ii) thinner graphene film leading to 
smaller bandgap value until there is no bandgap at a single layer. Depending on 
the types of defects such as disorder [33], doping [34], external field [35] and 
mechanic strain [36–40], the etching can make the host material (e.g., graphene) 
very useful (high conductivity, high mobility, high work function, etc.) [41]. As a 
result, bandgap can be higher (or lower) depending on the types of vacancy defects 
and etching rates [41].

2.1 O2 plasma etching

Plasma etch technology presents many advantages such as easy scale-up, 
manipulation and mass production. Under O2 plasma exposure, graphene multi-
layers were well-etched on SiO2 [23, 25] or SiC [24]. In 2014, the etching of host 
bilayer graphene was carried out by O2 using ICP and RIE apparatuses on the 
vertical and horizontal etch directions (Figure 2a, b) [23]. However, this approach 
formed defects during the use of RIE, but the defects were very few in the ICP case 
because of the high damage energy of RIE. Raman data provided the proof through 
disorder characteristics based on ID/IG ratio (0.94 and 1.18) when utilizing RIE and 
ICP, respectively [23]. Treating another substrate, SiC, the contact angle changed 
from 92.7° (multilayer), 91.9° (bilayer) and 92.5° (single layer) down to 70° when 
one layer epitaxial graphene etched away at 10 W and 2 min (Figure 2c, d) [24]. 
In 2011, through nanosphere lithography with low-power O2 plasma, Liu et al. 
found out the etched ordering of graphene nanoribbons (GNRs) on SiO2, which 
performed well in various shapes such as branches, chains, connected rings and 
circular rings (Figure 2e) [25].

2.2 N2 plasma etching and postannealing

Yang et al. utilized N2 plasma and postannealing (Ar/O2, 900°C), another 
technology in integration of layer-by-layer thinned plasma and post-annealing. 

Figure 1. 
Etch processing of graphene few-layer or graphene nanoribbon on various substrates through plasma, physic, 
chemistry to tune its electronics and optoelectronics.
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As a result, this dry-etching thinned regarding layer-by-layer easily from 
intrinsic multilayer graphene (Figure 3a–c) [26]. In another innovative etch 
technology by Lim et al. [27] and Kim et al. [28], Lim et al. utilized a neu-
tral beam ALE via two-step process of O2 radical absorption and Ar neutral 
beam desorption, and multilayer graphene was well-etched for each layer 
(Figure 3d). Although this etching was much more effective than the previ-
ous study [24–27], defects formed slightly on graphene lattice as high Raman 
D-peak (Figure 3c) [27].

2.3 Cyclic etching (O2 adsorption and Ar desorption by ion beam)

In 2017, Kim et al. newly innovated by adding two mesh grids between the 
plasma source and the substrate holder in the ICP chamber (Figure 3e–j) [28]. 
Consequently, the damage on graphene surface disappeared after the two-step 
plasma etching process of chemical absorption of O2 radical and physical  desorption 
of Ar ion beam at optimized plasma energy (11.2 eV).

Figure 2. 
(a) Sequence of graphene etching via O2 plasma. (b) Schematic of two etching mechanisms of O2 plasma: 
vertical etching and horizontal etching. (c, d) The contact angle of graphene/SiC without/with O2 plasma, 
respectively. (e) On-chip device assisted by O2-etched nanosphere graphene ((a) and (b) are reproduced with 
permission from [23], Copyright 2014, Springer; (c) and (d) are reproduced with permission from [24], 
Copyright 2010, American Chemical Society; (e) is reproduced with permission from [25], Copyright 2011, 
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
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2.4 Others (RIE, H2, CH4/H2 and Fe NPs)

In addition, there are still strategies for graphene surface etching such as Ar/H2 
mixture in reactive ion etching (RIE) (Figure 4a) [29], H2 etching during CVD gra-
phene growth (Figure 4b–e) [30], CH4/H2 etching during CVD graphene growth 
(Figure 4f) [31] or thermally activated Fe nanoparticles (NPs) (Figure 4g, h) [32]. 
However, the demonstrated results showed high defects through very high D-peak 
intensity in Raman spectra [29] or the random and nonuniform nanoribbon-etched 
graphene [28] and nanotrench-etched graphene based on Fe NPs [32]. Compared 
with the developed etch technologies above, the etching method by Kim et al. [28] 
revealed to be the best to date because of perfectly no damage and layer-by-layer 
etching from an innovative ion beam ICP.

3. Applications based on etched graphene

In Table 1, applications associated with the above etched-graphene investiga-
tions are briefly summarized. A chip utilized nanosphere-etched GNRs by O2 
plasma at low power [25] and revealed the high-performance electronic device 

Figure 3. 
(a) Sequence of layer-by-layer etching via N2 irradiative and oxidative etch. (b, c) Raman data of pristine, 
irradiated and annealed multilayer graphene. (d) Schematic of ALE process of graphene via O2 radical 
absorption and Ar neutral beam desorption. (e) A double-grid ICP ion beam apparatus for graphene etching 
via chemical O2 absorption and physical low-energy Ar ion beam desorption. (f, g) OM and (h, i) AFM 
data of pristine bilayer graphene, and after an ALE cycle. (j) Raman data of pristine bilayer graphene after 
an ALE cycle for white dots of (f, g) ((a–c) are reproduced with permission from [26], Copyright 2011, IOP 
Publishing; (d) is reproduced with permission from [27], Copyright 2012, Elsevier; (e–j) are reproduced with 
permission from [28], Copyright 2017, Nature Publishing Group).
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with the exotic GNR architectures (chain, branch and circle ring). In another 
application, a metal oxide semiconductor (MOS)-like transistor was made; 
although the etched effect was formed, it simultaneously produced a high-energy 
plasma damage that induced poor electrical characteristics [27]. One more 
application related to the monolayer deep patterning was fabricated by etching 
(N2) and annealing (Ar/O2), and this pattern presented good quality for slight 
defects [26]. In 2015, Papon et al. fabricated the Y- and Z-shaped GNRs during 
CVD graphene growth, and the etching effect vehemently happened at high 
H2 concentrations [30]. But these shapes were random and not well-controlled 
mechanically.

Figure 4. 
(a) An RIE apparatus using Ar/H2 to etch graphene on SiO2. OM data of H2-etched graphene during CVD 
growth and then annealing (Ar/H2, 1000°C) under ambient atmosphere (b–d). (e) Raman data of etched 
graphene and partially oxidized Cu surface. (f) Schematic of few-layer graphene etching by thermally 
activated iron nanoparticles. (g) SEM data of etched few-layer graphene as nanotrench; tiny dots are iron 
NPs; scale bar is 0.8 μm. Inset is AFM data of few-layer graphene after being etched ((a) is reproduced with 
permission from [29], Copyright 2011, AIP Publishing; (b–e) are reproduced with permission from [30], 
Copyright 2015, the Royal Society of Chemistry; (f) is reproduced with permission from [31], Copyright 
2018, American Chemical Society; (g) and (h) are reproduced with permission from [32], Copyright 2008, 
American Chemical Society).



21st Century Surface Science - a Handbook

6

4. Conclusions

Generally, there are many unexploited huge potentials from the etched-
graphene products, but the perspectives are bright. If these etching technologies 
are extended to other nanomaterials such as transition metal dichalcogenides 
(TMDs) or transition metal carbides, nitrides, and carbonitrides (MXenes), and 
black phosphorous [42], it will definitely achieve high-quality electronics and 
optoelectronics. Bandgap tuning for nanomaterials will significantly improve 
the on/off current ratio, photoresponsivity, quantum efficiency, conductivity 
and others. Layer-by-layer etching for multilayer materials by low-energy plasma 
technology (double mesh grids inserted for plasma apparatus such as chlorine-
radical ICP, neutral-beam ICP and ion beam ICP) with no physical damage would 
be the next research direction and can be applied to the other low-dimensional 
materials [28, 43] to achieve ultrahigh performance of electronic and optoelec-
tronic devices [28, 43]. For instance, in the latest report in 2019, Kim et al. utilized 
a chlorine ICP innovative plasma apparatus that has no physical damage effect 
by inserting double mesh grids for cyclic ALE process on intrinsic multilayer 
MoS2 and successfully fabricated heterostructured photodetector with ultra- 
responsivity (~106 A/W) in the visible range [43].
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