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Chapter

Clay Hybrid Materials
Tanushree Choudhury

Abstract

The modern trend is to prepare hybrid material using nano clay. Formation of 
nano clay, an exfoliated clay, and proper dispersion in a polymer matrix remains 
a challenge. The green composite so formed by clay polymer mixing has many 
improved properties such as high Tg (glass transition temperature), high flame 
resistance, high tensile strength, and improved barrier properties, which may find 
application in textile industry, automobile industry, environmental and polymer 
engineering field.

Keywords: nano clay, dispersion, CTAB, organic modifier, properties

1. Introduction

Hybrid Materials, in general, have enhanced properties to their components 
alone. Some of the properties of these hybrid materials, which have been studied in 
depth, are moduli, thermal expansion coefficients, gas permeability, ionic conduc-
tivity, etc. These hybrid materials are classified based on their interaction between 
host and guest phases. Depending on the type of matrix and guest phase, hybrid 
materials have been classified into three groups: (i) “OI” organic-inorganic or 
molecular hybrids, “IO” inorganic-organic intercalation compounds, nanocompos-
ite materials, and solid-state hybrids exhibited by clay-calixarene derivatives [1].

One of such hybrid materials is clay-based hybrid material. Clay minerals are 
aluminosilicates. Though different types of clay have been used, for making hybrid 
materials, one of the most commonly used clay is montmorillonite. It belongs to 2:1 
type of clay, two silicate layers and one octahedral brucite type of layer containing 
a mostly aluminum-oxygen hydroxyl group. Isomorphous substitution of trivalent 
Al3+ ion by divalent/monovalent or tetrahedral Si with trivalent Al3+ ion leads to 
charge imbalance in the crystal. This imbalance is compensated by the presence of 
counter ions present at the surface of the sheet layer. The edge of each platelet has a 
hydroxide group allowing it to form water gels.

Clay particles are small in size <2 μm, have a large surface area-to-mass ratio. 
The counter ions (at the exchangeable sites on clay) along with water molecules also 
serve a bridge between the two layers keeping them inbound.

Exchangeable cations adsorbed on the surface layer can be replaced by other 
materials. Inherently clay surfaces are hydrophilic attracting polar groups. However, 
they can be made oleophilic by exchanging the cations with organic ions like cetyl 
trimethyl ammonium bromide ions or cetyl trimethyl ammonium pyridinium ions 
etc., producing organoclay composites or polymer clay nanocomposites (PCNs). 
These composites are extremely investigated in material science and find wide-
spread applications as adsorbents for heavy metal ions [2–4], ceramics and thin 
films [5], building materials [6], photocatalysts for wastewater treatment [7, 8], 
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drug delivery vehicle [9], bio-inspired materials [10], optoelectronic devices [11], 
ferrofluids [12], and hydrogel clay hybrids for pesticide and nutrient retention [13].

This review focuses on the properties of the different types of clay hybrid 
materials that can be prepared by intercalation chemistry, in situ polymerization 
and sol-gel techniques. It would also provide an insight into the application of these 
hybrids for a sustainable environment.

2. Clay-based hybrid materials

2.1 How clay can be used in a hybrid material

2.1.1 Structure of clay

Clay minerals belong to phyllosilicates. The principal building elements of the 
clay minerals are two-dimensional arrays of Si-O- tetrahedral and 2-D arrays of Al 
or Mg-O-OH octahedral as shown in Figure 1. In most clay minerals, such sheets of 
tetrahedral and octahedral are superimposed in different fashions [14].

a. Structure of tetrahedral sheet: In the Si-O sheets, the Si atoms are coordi-
nated with four oxygen atoms. The O atoms are located on the four corners 
of a regular tetrahedron with the Si atom in the center. In the sheet, three of 
the four oxygen atoms of each tetrahedron are shared by three neighboring 
tetrahedral. The fourth oxygen atom of each tetrahedron is pointed downward. 
This Si-O sheet is called a tetrahedral sheet or silica sheet.

b. Structure of octahedral sheet: In the Al, Mg-O-OH sheets, the Al or Mg 
atoms are coordinated with six oxygen atoms or –OH groups, which are located 
around the Al or Mg atom, with their centers on the corners of a regular 
octahedron resulting in hexagonal close packing. This sheet is called alumina or 
magnesia sheet. The fourth oxygen atom protruding from the tetrahedral sheet 
is shared by the octahedral sheet. This sharing of atoms may occur between one 
silica and one alumina sheet as 1:1 layer minerals.

In 2:1 layer minerals, one alumina or magnesia sheet shares oxygen atoms with 
two silica sheets, one on each side. These layers in clay minerals are stacked parallel 
to each other.

2.2 Origin of surface charge and modification of clay surface

In the tetrahedral sheet, tetravalent Si is sometimes partly replaced by trivalent 
Al. In the octahedral sheet, there may be replacement of trivalent Al by divalent Mg 
without complete filling of the third vacant octahedral position. Al atoms may also 
be replaced by Fe, Cr, Zn, Li, and other atoms. The small size of these atoms permits 
them to take the place of small Si and Al atoms; therefore, the replacement is often 
referred to as isomorphous substitution. When an atom of lower positive charge 
replaces one of higher valence, a deficit of positive charge takes place or in other 
words, excess of negative charge. This excess of negative charge is compensated 
by the adsorption on the layer surfaces of cation, which are too large to be accom-
modated in the interior of the crystal. In the presence of water, the compensating 
cations on the layer surfaces may be easily exchanged by other cations when avail-
able in solution, hence they are called exchangeable cations. Thus clay minerals bear 
the potential of forming hybrid materials.
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Natural clay is hydrophilic. The surface of the clay needs to be modified so 
that it can interact with hydrophobic polymers. The modification of clay surface 
is generally done by the cation exchange process. The ability of clays to exchange 
cations between each of their layers and retain them is a unique characteristic. The 
intercalated cations can be exchanged by other cations by treatment of other cations 
in solution. This cation exchange capacity can be defined as the maximum amount 
of cations that a given amount of clay can take up and this is constant. The ability to 
cation exchange in the interlayer space determines the adsorption ability of montmo-
rillonite [15]. The most exchangeable cations that can be adsorbed on the clay surface 
by the cation-exchange process are inorganic ions (mostly Na+, Ca2+, Mg2+, K+), 
amines, amino acids, cationic surfactants, and non-ionic surfactants. The surface of 
the clay can also be rendered organophilic by the reaction of hybrid monolayers of 
clay mineral and amphiphilic alkyl amino cation using Langmuir-Blodget method 
[16]. When a solution of an amphiphilic alkyl ammonium cation is spread onto clay 
suspension, negatively charged clay platelets in the suspension are adsorbed onto a 
floating monolayer of the alkylammonium cation at an air-clay suspension interface. 
The hybrid monolayers of clay platelets and alkylammonium cations formed at the 
interface can be transferred onto a solid surface to fabricate a hybrid multilayer.

2.3 Types of clay hybrid materials

The common types of clay hybrid materials are:

1. Intercalation compounds

2. Exfoliated/delaminated compounds

3. Sol-gel hybrid materials

Intercalation compounds: These compounds result from the intracrystalline 
insertion of organic compounds inside the layers of certain lamellar solids as shown 
in Figure 2.

Figure 1. 
Structure of clay mineral.
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i. Intercalation of ionic species: Clay minerals exhibit isomorphous substitu-
tion as a result of which Si is replaced by Al in a tetrahedral layer or Al by Mg 
in octahedral layer leading to charge deficiency, which in turn is compen-
sated by exchangeable cations. Exchangeable metal ions located in the inter-
lamellar space of MMT may be replaced by different organic cations such as 
alkylammonium ions in solution. Alkylammonium cations thus incorporated 
in organosilicates lower the surface energy of inorganic hosts and improve 
the wetting characteristic with polymer [17]. It provides a functional group 
that can react with polymer or initiate polymerization of monomers to 
improve interfacial strength between inorganic host and polymer. Layered 
double hydroxides (LDH), for example, Mg6Al2(OH)16CO3. 4H2O, have a 
positive charge on the Mg (OH)2 layers. They provide an opportunity for 
intercalation with organic anions [18].

ii. Intercalation of neutral species: Formation of organic-inorganic compounds 
by intercalation of neutral molecules in 2D solids, generally phyllosilicates 
of clay minerals family and it is also observed for other inorganic layered 
materials, for example, 2D transition metal halides, oxyhalides, dichalco-
genides, graphite, and graphite oxide, layered phosphates, phosphorous 
trichalcogenides. Different mechanisms are proposed that come into play 
during host-guest interactions in these intercalated materials. Van der Waals 
forces mainly occur when long-chain alkylammonium ions are inserted 
in the clay layers. When interlayer cations preserve the hydration shell, an 
association of molecules takes place with water molecule acting as H bond 
bridges, which on heating, eliminates water and produces direct coordina-
tion between guest species and involved transition metal [19]. Macrocyclic 
compounds such as crown ether and cryptands penetrate the interlayer 
space of phyllosilicates and other layered solids giving stable intracrystalline 
complexes [20]. The interlayer environment of certain layered solids exhibits 
acid character, which is typical of clay minerals group. Interaction with basic 
species produces a proton transfer between the inorganic host and organic 
guest molecule. The organic molecules being protonated gives rise to organic 
cations balancing the electrical charge of the silicate [21]. Many redox reac-
tions occur during intercalation of organic and organometallic species into 
various 2D solids. Clays containing interlayer cations like Cu (II) can interact 
with aromatic compounds such as benzene giving intercalation compounds 
characterized by the existence of σ or π bonds between the host solid and 
guest molecule [22].

Exfoliated or delaminated compounds: These compounds are formed when 
the layers of clay are delaminated and the resulting platelets are homogeneously dis-
persed throughout the polymer matrix as shown in Figure 3. The resulting materials 

Figure 2. 
Intercalated clay.
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are considered as nanocomposites as the interaction takes place at the atomic level 
between inorganic hosts and organic guest molecules.

Clay mineral is a potential candidate for the filler of these hybrid materials since 
it is composed of layered silicates, 1 nm thick, which can undergo intercalation with 
organic molecules [23]. The mechanism of interaction of clay with different poly-
mers is discussed below.

i. Vinyl polymers: These include vinyl addition polymers derived from mono-
mers like methyl methacrylate [24–30], acrylic acid [31], vinyl ester [32], vinyl 
polymer [33, 34], styrene [35–38], allyl ester resin [39], and acrylates [40].

Studying the mechanism of interaction of ethylene-vinyl acetate with clay, it 
has been found that as VA (vinyl acetate) content increases, copolymer presents 
increasing polarity but lower crystallinity with different mechanical behavior. 
Increasing polarity with increasing VA content is useful in imparting a high degree 
of polymer-clay surface interaction. Structure and mobility properties of EVA 
polymer are influenced by VA content and this chain mobility in and around 
clay galleries tend to modify the level of interaction in clay hybrid materials [41]. 
Polymer chains of PVA get adsorbed on individual inorganic lamellae in stages after 
the exfoliation of the clay mineral leading to the formation of intercalated nano-
composites [42]. PVA forms a composite structure with sodium montmorillonite 
and studies reveal the existence of both exfoliated and intercalated MMT layers 
for low and moderate silicate loadings. Exfoliation of layers has been attributed to 
water casting method used since the water suspended layers become kinetically 
trapped by the polymer and cannot reaggregate [43]. Syndiotactic PS (thermo-
plastic polymer) differs from other PS (such as a-PS) in that phenyl rings regularly 
alternate from side to side concerning polymer chain backbone. Two important 
factors responsible for homogenous dispersion of clay layers in s-PS hybrids are: (a) 
surfactant should be intercalated between silicate layers of clay by ionic bonding 
and (b) the hydrophobic tail of the surfactant molecule should be partially compat-
ible or interacted with s-PS molecules [44].

Organophilic modification of clay and amine-terminated PS employing anionic 
polymerization yielded completely exfoliated hybrids with aspect ratio exceeding 
600 when such organoclays were melt compounded with PS. In contrast to this, 
small molecular weight modifiers only promoted intercalation and failed to exfoli-
ate silicate particles during melt compounding. ABS (thermoplastic polymer) forms 

Figure 3. 
Exfoliated clay.
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an intercalated-exfoliated composite with clay. HENA (hydroxyethyl isonicotin-
amide) is used as an anchor monomer for homogeneous dispersion of clay minerals 
in PET (polyethene terephthalate) matrix [45].

Acrylonitrile co-monomer incorporated into poly (styrene-co-acrylonitrile) 
copolymer accelerates intercalation of copolymers into the galleries of silicate 
layers modified with an organic intercalant. The faster intercalation of a matrix 
polymer leads to the better dispersion of silicate layers in the matrix polymer [46]. 
In the hybrids of SAN, clay particles or nanoscale building blocks are distrib-
uted uniformly and their sizes are strongly dependent on co-monomer content. 
Acrylonitrile co-monomer incorporated into SAN facilitates the intercalation 
of copolymers into the galleries of silicate layers modified with an intercalant. 
H-bonding interaction between the nitrile groups of SAN and –OH groups on 
silicate layer makes a negative contribution to exchange energy of mixing so that the 
intercalation of copolymers into the galleries of the silicate layer is accelerated. It is 
also expected that the enhanced polarity of SAN due to incorporated acrylonitrile 
co-monomer can destroy H-bondings of intercalant in the galleries. This might also 
increase the rate of intercalation of SAN into the galleries of silicate layers modified 
with intercalants. Synthesis of hybrid materials using natural clay and modified 
PVC resulted in the removal of heavy metals (Fe, Cu, Pb, Zn, Cd, Co, and Mn) 
from aqueous solution and also exhibited good adsorption capacity for Fe (III) [47].

ii. Condensation step polymers: Several important polycondensates have been 
used in nanocomposites preparation with layered silicates. They are poly-
amides [48], polyimides [49], polyurethane urea [50], polyurethane [51], 
poly (butylene terephthalate) [52], poly (ethylene terephthalate co-ethylene 
naphthalate) [53], epoxy [54, 55], amino, sulfonic acid, and silyl functional-
ized groups [56–59], and surface-modified groups [60].

Polyamides and polyimides are polymers containing polar functional groups and 
form homogenous and exfoliated dispersion of silicate layers as silicate layers of clay 
have polar functional groups and are compatible only with polymers containing 
polar functional groups. Polyamide-6 (PA6), Polyamide 66 (PA-66), and Nylon 
form majority of commercial polyamides. PA-66 contains a mixture of chains (only 
amines, acid groups, or a mixture of two). Differences in end group configuration 
can lead to significant differences in morphology and properties of blends with 
functionalized polymers. A lower degree of exfoliation in PA-66 nanocomposites, 
the affinity of PA-66 for organoclay is less than PA-6 nanocomposites forming the 
basic aspect of difference in the chemical structure of two polyamides [61]. Nylon-
6-clay hybrids (NCHs) have been prepared by using 10A0 silicate layers of clay 
minerals, which are dispersed homogeneously in the polymer matrices resulting in a 
drastic change in properties (high strength, high modulus, high heat and distortion 
temperature) and this has been achieved with only a few % of clay [62]. The com-
patibility of forming hybrids with clay and polymers containing amide and imide 
groups increases as both contain polar functional groups. PBI (polybenzimidazole) 
is a thermally stable thermoplastic polymer, contains 1,3-dinitrogen heterocycle. 
When PBI is added to clay suspensions in a polar environment, the mineral layers 
will first adsorb the bulky macromolecule and the intercalation proceeds to comple-
tion via exchanged sites of the organically modified clay [63]. Polyurethane (PU) 
elastomers are segmented polymers with soft segments derived from polyols and 
hard segments from isocyanates and chain extenders. Linear PU is obtained by poly 
condensate technique using a mixture of diols and diisocyanate. MMT nanolay-
ers are dispersed in PU matrix replacing hydrophilic organic exchange cations of 
native mineral with more organophilic diethanolamine/triethanolamine. Presence 
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of these groups in galleries of MMT renders them organophilic and promotes the 
absorption of diol into the interlayer of MMT and improves the particle-matrix 
interactions since di and triethanolamine contain functional groups, which react 
with  diisocyanate [64].

Pure PU exhibits an amorphous halo at 20° in 2θ. The gallery spacing of the 
layered clay is 1.1 nm. The gallery spacing of the layered clay in the composites 
increases to 1.6 nm for the PU/layered nanocomposites. This indicates that PU 
chains were intercalated between the layers of clay [65]. A multilayered structure 
consisting of alternate PU chains stacked with the layers of the silicate layers in the 
microstructure of PU/OMT nanocomposites has been confirmed in literature [66].

With increasing and urgent market demand to produce higher performance 
electronic devices with a smaller size, lighter weight, and better quality, develop-
ing PI films with low coefficient of thermal expansion (CTE) has increasingly 
become one of the most important issues. The best way to lower the CTE of PI is to 
introduce low CTE inorganic materials such as clay into PI matrix, yielding PI/clay 
hybrid composites [67]. Polar aprotic solvents are used for the synthesis of these 
hybrids, but due to solvent-solute interaction, are not easily removed from the PAA 
film at temperatures used during thermal curing for PI. The residual solvent causes 
the PAA (polyamic acid)/clay films to be plasticized during thermal imidization and 
thus leads to PI/Clay hybrid films with relatively higher values in CTE, but lower 
than pure film. To eliminate such negative effects of the aprotic solvents on CTE, 
PAA solutions not containing them should be prepared. A novel PI/clay hybrid film 
prepared from PAA salt of triethylamine and organoclay in a mixed solvent of THF/
MeOH is described in the literature. It is expected that the hybrid will have a much 
lower CTE than those obtained from PAA in an aprotic solvent.

Full separation of clay layers in the polymer matrix is also achieved by using 
epoxy resin, which has high polarity and curing property [68]. The presence of 
polar –OH groups in clay layers impede nonpolar species from entering the galleries 
and exfoliating the clay layers. The mechanism of clay exfoliation in epoxy clay sys-
tems have been studied and reported in the literature. According to it, the acidity of 
alkylammonium ions catalyze homopolymerization of diglycidyl ether of bisphenol 
A (DGEBA) molecules inside the clay galleries. CEC of clays determines the number 
of alkylammonium ions present between clay layers and therefore controls the space 
available for the diffusion of DGEBA molecules during mixing of organoclay with 
epoxy resin.

iii. Polyolefins: These include polypropylene [69–74], polyethylene [75–77], 
ethylene propylene diene methylene linkage rubber [78].

These polymers do not contain any polar groups and homogenous dispersion 
in the silicate matrix is difficult. Homogenous dispersion of silicate layers in PP is 
not realized even by using an MMT intercalated with di-stearyl ammonium ion 
(DSDM-MT) in which polar surfaces of clay are covered with nonpolar long alkyl 
groups. A novel method of preparing PP-clay hybrid has been developed. PP is 
mixed with DSDM-MT and polyolefin oligomer with polar telechelic –OH groups 
(PO-OH) as a compatibilizer. In this process, PO-OH oligomer intercalates between 
the layers of clay through the strong H-bonding between –OH groups of PO-OH 
and oxygen groups of silicates. Interlayer spacing increases thus resulting in weak-
ening of interaction between layers.

Another method of preparing PP/clay nanocomposites is by improving the com-
patibility of PP with organoclay by functionalizing the backbones of PP with polar 
monomers such as epoxy and maleic anhydride (MA) [79]. Compatibilizers pro-
mote compatibility of clay and polymer for good nano dispersion. Polyolefin-graft 



Clay Science and Technology

8

MA as compatibilizer is used to enhance the possibility of intercalation of polymer 
between clay layers. The presence of MA increases the possibility of nanocomposite 
formation for PS, but this does not appear to help PP. PP/clay nanocomposites 
modified with the optimum level of compatibilizer yielded the greatest improve-
ment of composite properties [80].

PE (polyethene) is another widely used polyolefin polymers. Alkylammonium 
ion facilitates interaction with polymer because it renders hydrophilic clay surface 
organophilic. Organically modified clay is not well dispersed in nonpolar PE as 
the nonpolar groups are too hydrophobic. Exfoliation and interaction behaviors 
depended on the hydrophilicity of PE grafted with MA and chain length of the 
organic modifier in the clay. When the number of methylene groups in alkyl amine 
(organic modifier) was larger than 16, exfoliated nanocomposites were obtained 
and the MA grafting levels was higher than about 0.1 wt% for the exfoliated nano-
composite with modified clay [81].

Rubber is another such polymer. Carbon blacks are excellent reinforcers due to 
their strong interaction with rubbers, but they often decrease the processability 
of rubber compounds because of high viscosity at high volume loading. MMT 
exchanged with a liquid rubber (LR) is termed as LR-MMT for utilization of its 
favorable shape. Co-vulcanization of nitrile rubber was done with LR-MMT for the 
formation of the molecular composite. It has been studied that there exist strong 
rubber-filler interactions as (comparable to those in carbon black filled system) in 
LR MMT, in which negatively charged silicate layers are bonded to LR molecules 
with positively charged terminal sites forming “bound rubber.”

Polymers grafted on silicate surfaces also helps in delamination of its layers. It 
has been reported in the literature that PDMS (polydimethylsiloxane) grafted onto 
MMT layer surface via condensation of hydroxyl groups of PDMS and those hydroxyl 
groups on MMT layers prevents the nanolayers of MMT from reaggregating.

Intercalation of EPDM chains into OMMT galleries provided a strong interaction 
between EPDM and OMMT sheets in exfoliated composites.

It has been observed that the photoluminescence quantum efficiency of con-
jugated polymer PE improves manifold in the presence of the inorganic phase like 
montmorillonite clay [82]. Incorporation of montmorillonite clays into conjugate 
polymers like PAni gives rise to hybrid/inorganic composites with special proper-
ties for application in organic light-emitting diodes (OLEDs), organic field-effect 
(OFETs), organic solar cells (OSCs), and electrochromic devices (ECDs) [83].

iv. Fiber-reinforced polymers: Many fibers have been added as reinforcements 
to the polymer matrix. They are PS-Sisal fiber composites [84]. Bamboo 
polymer composites [85], short oxide fiber reinforced in kaolin [86], bamboo 
glass-reinforced in PP [87], thermoplastic starch [88], switchgrass.

v. Biodegradable-polymers: These include biodegradable resin clay 
 composites [89].

Metal incorporated clay composites such as phosphorous clay composites show 
improved fire performance [90].

Starch modified by grafting with vinyl monomers (e.g., methyl acrylate) onto 
the starch backbone yielded thermoplastic materials. Kaolin, a natural mineral, 
hydrated aluminosilicate, with high surface and presence of polar groups showed 
very good compatibility with thermoplasticized starch.

Aliphatic polyesters, polylactide (PLA) comes under the area of environmentally 
degradable polymer materials. These are well suited for the preparation of dispos-
able devices because of their biodegradability. The main characteristics of the PLA 
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matrix are its easiness to degrade by the enzymatic or hydrolytic way. Hydrolytic 
degradation of PLA is a well-known process. Hydrolytic chains cleavage proceeds 
preferentially in amorphous regions, leading therefore to an increase of polymer 
global crystallinity. The formation of lactic acid oligomers, which directly follows 
from this chain scission, increases the –COOH end groups concentration in the 
medium. These carboxylic functions are known to catalyze the degradation reac-
tion. Relative hydrophilicity of clay plays determining roles in the hydrolytic deg-
radation process. More hydrophilic the filler, more pronounced is the degradation. 
Thermoplastic corn starch (TPS) clay hybrids showed enhanced biodegradation as 
compared to TPS alone [91].

vi. Hyperbranched polymers: These polymers have a tree-like structure with a 
large number of branch points radiating from a multifunctional core mole-
cule and hence a potentially high degree of end-group functionality per mol-
ecule. The –OH end groups are assumed to be concentrated in the periphery 
of the molecules in a hydrophilic environment. Polyester HBPs also show 
excellent processing char and shrinkage control. Dispersion of HBPs with 
various types of organically modified MMT in THF led to intercalation over 
the whole range of MMT contents and the layer expansion correlated with 
the polarity of organic modifier rather than the size of HBPs [91].

HBPs with highly branched, 3D structure and high concentration of end groups 
have the promise of good internal bonding rubber phase due to the presence of 
surface functional groups, in addition to low initial viscosity [92].

Sol-gel hybrid materials: This class of hybrids has received different names 
such as ORMOSILS and ORMOCERS, referring to organically modified silicates or 
ceramics, respectively.

The technological importance of the sol-gel process is due to the simplicity in 
its preparation. Silicon alkoxides are the main precursors used in the synthesis of 
glasses and ceramics and they are also being used in the preparation of new organic-
inorganic hybrid materials [93].

A solution of the molecular precursor is transformed into a sol or a gel by a 
chemical reaction, resulting in a solid material upon evaporation. This transfor-
mation allows the production of materials with different possible compositions, 
intercalated microstructures, and chemical homogeneity at temperatures less than 
those used for fusion.

Typical sol-gel processing variables leading to different morphologies of the 
materials are water to alkoxy and catalyst to alkoxy ratios and the type of solvent 
and catalyst used [94].

3. Conclusion and outlook

Clay mineral poses a host of technical issues, such as dispersion of the inorganic 
filler in the polymer/base matrix. Better is the dispersion, better is the hybrid. Clay 
dispersed in natural dispersant renders the most thermally stable organoclay.

Functionalization of clay surface for better compatibility with polymers is 
needed for the development of new synthetic layered materials with a wide range 
of properties. PAni/clay hybrids have been widely studied due to many advantages 
such as high optical contrast (%T), environmental stability, as well as compara-
tively low cost. However, the difficulties in processing PAni into films due to its very 
low solubility in most of the available solvents and the relatively poor mechanical 
properties decrease its performances and abilities in such applications. Green 
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hybrids reinforced with natural fibers and macromolecules have pronounced biode-
gradable and recyclable properties and thus emerge as better packaging materials.

Current research focuses on the use of advanced nanotech catalysts and materi-
als for the purification/remediation of contaminated surface or groundwater and 
municipal water or industrial wastewater. Though clay hybrids have been exten-
sively used as nano adsorbents for the removal of heavy metals, As, and dyes from 
wastewater, its fabrication as inorganic membranes have received limited attention 
in the literature. Titania pillared clay, an important class of layered materials, 
exhibits unique surface charge characteristics that make them a good candidate 
for removal of organics from wastewater by just adjusting the pH of the solution. 
Development of such membrane reactors integrating the separation process with 
photocatalysis would lead to an important new technological application that would 
add economic value to the vast natural deposits of clay minerals located worldwide. 
However, membrane fouling is still a critical problem that results in flux decline 
with time, needs to be addressed. In a nutshell, the outlook is bright and sustainable 
for clay hybrid materials.

Abbreviations

MMT montmorillonite
VA vinyl acetate
EVA ethyl vinyl acetate
PVA polyvinyl alcohol
ABS acrylonitrile butadiene styrene
PET poly (ethyl terephthalate)
HENA hydroxyethyl iso-nicotinamide
SAN styrene-co-acrylonitrile
PA polyamide
PU polyurethane
OMT organic montmorillonite
PI polyimide
CTE co-efficient of thermal expansion
PAA polyamic acid
DGEBA diglycidyl ether bisphenol A
CEC cation exchange capacity
DSDM-MT distearylammonium montmorillonite
PO polyolefin oligomer
PP polypropylene
MA maleic anhydride
PE polyethylene
LR liquid rubber
PDMS polydimethylsiloxane
EPDM ethylene propylene diene methylene linkage rubber
PLA polylactide
HBP hyperbranched polymer
mPE metallocene blended polyethylene
AN acrylonitrile
PMMA polymethyl methacrylate
PPCN polypropylene clay nanocomposites
OMS organomethylsilicate
PAM polyacrylamide
EVOH ethylvinylalcohol



11

Clay Hybrid Materials
DOI: http://dx.doi.org/10.5772/intechopen.92529

Author details

Tanushree Choudhury
Chemistry Division, VIT Chennai, Chennai, India

*Address all correspondence to: tanushree.c@vit.ac.in

MAO methylaluminoxane
TMA trimethylalkoxide
PAni polyaniline
PCL polycaprolactum
PHA polyhydroxyalkanoate
PBS polybutylene succinate
DEP resin
PCN polymer clay nanocomposites
PS polystyrene
NCH nylon clay hybrid
PBI polybenzoimidazole
OMT organo montmorillonite
THF tetrahydrofuran
MeOH methanol
OLED organo light emitting diode
OFET organo field effect
OSC organic solar cell
ECD electrochromic device
TPS thermoplastic corn starch
ORMOSIL organo modified silicate
ORMOCERS organo modified ceramics
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