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Chapter

Development and 
Characterization of High-Quality 
HfO2/InGaAs MOS Interface
Sukeun Eom, Min-woo Kong and Kwang-seok Seo

Abstract

The scope of this chapter is to introduce a highly efficient HfO2 atomic layer 
deposition (ALD) process with superior interface defect characteristics that can 
be applied on high-mobility III-V substrates. For a long time, the major academic 
research of III-V metal-oxide-semiconductor (MOS) studies was mainly oriented 
on searching for the suitable high-k dielectric, and among the reported high-k/
III-V MOS studies, Al2O3 and AlN have demonstrated the most promising results. 
However, usually, the dielectrics with higher dielectric constant suffered from 
more defective interface quality including the HfO2, which should be overcome 
to meet the intensive operation voltage scaling requirements. In order to protect 
the interface of the HfO2/III-V MOS, the exposed III-V surface has to be carefully 
treated before, while, and after the whole high-k deposition process. For this 
purpose, the effect of isopropyl alcohol precursor and in situ cyclic nitrogen plasma 
treatment on the HfO2 ALD process at III-V substrates was thoroughly investigated. 
Remarkable interface state density levels with strong inversion behavior were 
achieved, which have not been observed at the previous HfO2/InGaAs studies. Also, 
detailed analysis of the interface characteristics was investigated to broaden the 
understanding of the improvement phenomenon.

Keywords: high-k oxides, hafnium oxide (HfO2), atomic layer deposition (ALD), 
III-V channel, indium gallium arsenide (InGaAs), metal-oxide-semiconductor (MOS)

1. Introduction

Over the past decades, the semiconductor foundry business has gone through 
a dynamic transformation. Recently, the foundries are leading the process devel-
opment race at 10 nm [1, 2] and even to 7 nm [3, 4] and will continue to do so. 
However, the traditional physical scaling of advanced MOSFETs in conjunction 
with Dennard’s scaling rules has become extremely challenging as to increase the 
drive currents for faster switching speeds at lower supply voltages is largely at the 
expense of large leakage current in extremely scaled device [5]. As a result, even 
with the huge R&D investments, the semiconductor firms gradually lagged the 
advertised on-chip feature sizes demonstrated in the scaling roadmap, and finally 
the end of Moore’s law has been declared with the end of the 2016 International 
Technology Roadmap of Semiconductors (ITRS) [5, 6]. Also, the emergence of 
internet of things (IoT) and big data applications has driven a necessity of abundant 
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computing and memory resources that requires always-on and high-performance 
ultralow-power devices to generate data instantly. Several device architectures and 
novel materials based on both analytical and experimental academic research were 
proposed in the metal-oxide-semiconductor field-effect transistor (MOSFET) tech-
nology. Among the viable technologies, the compound semiconductor especially 
the III-V materials have stood out to be a promising channel candidate for the future 
highly scaled CMOS application.

The light effective mass of III-V materials compared to the Si even in the highly 
strained case leads to a higher electron mobility and a higher injection velocity, 
which should translate into a great turn-on performance even at a lower operation 
voltage (VDD) level down to 0.5 V. Moreover, there is already a mature industry 
that uses III-V high electron mobility transistors (HEMTs) for high-frequency 
applications [7, 8], and it provides excellent techniques such as InGaAs and InAs 
quantum well (QW) FETs [9, 10]. However, most of these III-V compound semi-
conductors have smaller bandgaps, which have great impact on the band-to-band 
tunneling leakage currents. In addition, according to Yan’s model [11], the higher 
permittivity of these materials may worsen the short channel effects (SCE). In 
spite of the demerits that may limit the scalability, the benefits are much more 
attractive which makes the III-V channel technology a powerful beyond CMOS 
solution. However, the use of III-V compound semiconductors has been reluctant 
to the industry because of its high-cost manufacturing process and CMOS-
incompatible process. Naturally, it brought out a strong motivation of research of 
III-V hetero-integration on a Si platform. The main obstacle of III-V on Si integra-
tion research is that as huge lattice constant mismatch exists between those two 
materials, growing epitaxial films directly on Si without defect is difficult [12]. 
Accordingly, different approaches have been developed, and among them, direct 
wafer bonding [13, 14] and aspect ratio trapping (ART) [15, 16] technologies have 
projected the most promising results.

Consequently, the remaining issue toward the practical realization of III-V mate-
rials is its defective interface quality which has been the major drawback compared 
to Si [17–21]. The poor native oxide quality compared with SiO2 is challenging 
even more with III-V materials. The III-V compound semiconductors are typically 
composed of binary, ternary, or even quaternary material by covalent bonding, and 
more complex elements mean a much richer population of possible oxides for the 
III-V materials [22]. These native oxides are not thermodynamically stable and very 
leaky that rise serious issues of creation of significant surface states on the oxide-
semiconductor interface and huge trap-assisted gate leakage current [17, 19]. At the 
early stage of research, GaAs MOSFET suffered from high density of interface states 
(over 3 orders compared to Si) hindering inversion mode operation.

In order to overcome the defective interface problem, many research groups 
conducted extensive research effort with a search for a perfect gate dielectric that 
suits the III-V substrate [23, 24]. The study of atomic layer deposition (ALD) high-k 
dielectric led to a successful integration of high-k gate dielectrics on III-V substrate, 
and recent research is mainly focused on the development and interface character-
ization of ALD high-k and III–V compound semiconductor. To evaluate the objective 
III-V metal-oxide-semiconductor (MOS) characteristics, it is important to under-
stand the trapping mechanism and know what kind of measurement is required. 
For Si, the primary defects are the well-known Pb centers, which are dangling bonds 
at the immediate interface with the dielectric [25]. However, for the III-V material, 
the anti-sites and interstitials are the critical defect centers [17], and the small DOS 
of the III-V materials is also a weak point [26]. These differences lead to different 
trapping mechanism, and unlike Si MOS, the III-V MOS gate stack often exhibits a 
particular C-V phenomenon typically known as the frequency dispersion effect [27]. 
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The features of the frequency dispersion effect are threefold. First, large inversion-
like hump occurs even at high measurement frequency, which could not be an actual 
inversion characteristic theoretically. Secondly, the C-V curve horizontally shifts to 
the negative direction as the measurement frequency decreases. Finally, the accumu-
lation capacitance increases as the measurement frequency decreases.

The large interfacial trap densities (Dit) that reside within high-k dielectric and 
III-V substrate are mostly responsible for the explained features [28]. The high Dit 
especially the near mid-gap states act as generation recombination centers that 
attribute to the inversion hump phenomenon in the weak inversion regime. In 
addition, the large donor-like Dit near the conductance band (for n-type substrate) 
induces a substantial surface charge that needs to be compensated by larger gate 
biases resulting in a horizontal shift in the C-V curve. Detailed discussions are 
well explained through both theoretical and experimental research [27, 28]. The 
accumulation capacitance increase, however, is quite difficult to be explained only 
by the interface traps. There have been numerous publications on this particular 
accumulation dispersion behavior, and discussion led to an explanation of a carrier 
transport model from the crystalline semiconductor into the border traps, which 
are defects within the bulk of the dielectric [29]. The capture and emission process 
occur at border traps with the interaction of conduction band electrons resulting 
in discrepancy of accumulation capacitance, and the thermal barrier in capture 
process is responsible for the strong temperature dependency.

Among the reported high-quality insulator/InGaAs interface studies, the direct 
deposition of hafnium oxide (HfO2) on InGaAs substrate has generally led to poor 
electrical characteristics, and there are only few studies aimed at improving the 
intrinsic HfO2/InGaAs interface quality [30, 31]. These studies also target only in 
pretreatments, which is vulnerable during oxide deposition. Meanwhile, O3 and 
H2O are the most common oxidants employed in HfO2 ALD. However, one of the 
disadvantages of H2O-based ALD is high-concentration hydroxyl groups in the 
films, which degrades the dielectric interface during the post deposition annealing 
process [32]. In addition, sufficiently long purge time is needed because H2O tends to 
physisorb on the surface strongly, especially at low temperature. To solve this prob-
lem, O3 is used as one of the most promising alternative oxidants in ALD process, 
due to its strong oxidization and high volatility. However, O3 is known to oxidize the 
III-V surface during the initial deposition cycles which will neglect the prior surface 
treatments that easily cause the formation of inferior native oxides [33]. The excess 
interfacial oxidation of the InGaAs surface initiated by the use of ozone is widely 
reported in the previous studies. H2O oxidant also is not totally free from surface 
oxidation [34]. Therefore, the research on alternative oxidation sources is neces-
sary for the HfO2/InGaAs MOS studies to make the effort made in the pretreatment 
studies work.

2. Development of IPA-based ALD HfO2 on n-type InGaAs substrates

Looking into the oxidant candidates, isopropyl alcohol (IPA) is known to be 
irresponsive to the semiconductor surface during the initial ALD cycles [35], and 
as most pretreatment studies are aimed at removing the native oxides of the III-V 
surface, the IPA oxidant will be able to efficiently suppress the surface oxidation 
after the pretreatment process.

In order to study the effect of using IPA oxidant, O3 was used as the reference to 
compare. The basic cycle of the HfO2 deposition is consisted of a TEMAH precursor 
pulse and an oxidant (O3 or IPA) exposure with N2 purging process between the 
precursor injection and oxidant process. The temperature of the IPA precursor was 
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Figure 1. 
Comparison of the O3- and IPA-based HfO2 ALD characteristics: (a) deposition rate vs. oxidant time,  
(b) deposition rate vs. deposition temperature, and (c) growth per cycle rate.

maintained at 4°C. The vapor pressure of IPA at 4°C is around 10 mmHg, which is 
four times smaller than that at the room temperature [36]. It is important to control 
the excessive vapor pressure because it leads to a longer purge time, which disables 
an efficient ALD cycle.

The ALD characteristics of HfO2 using O3 and IPA oxidants are shown in 
Figure 1. Oxidant pulse times were 1 and 3 s for O3 and IPA, respectively, which 
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were chosen to meet the saturation requirement of ALD. Both oxidants had similar 
saturated deposition rate of 0.1 nm/cycle. Noticeable difference was observed 
in the temperature windows of oxidant type. While stable deposition rate of O3 
oxidant was maintained in a large temperature range, saturated deposition rate 
of IPA oxidant was only observed in a small temperature range around 320°C. In 
low temperatures, low deposition rate is due to insufficient reaction which is 
originated from low reactivity of IPA. Also, in high temperatures above 320°C, 
thermal decomposition of Hf precursor occurs, and it hinders the self-limiting 
characteristics of ALD. Therefore, the deposition temperatures of HfO2 ALD 
were chosen to be 230 and 320°C for O3 and IPA, respectively. Moreover, the film 
thickness per ALD cycles is presented. It is observed that the linear deposition 
rate per cycle is obtained for both oxidants and a thicker interface layer thickness 
appears to be existed for the O3 oxidant due to is strong reactivity (Figure 2).

Based on the ALD characteristics, the HfO2/Si MOS capacitors are fabricated on 
the Si substrate. All samples underwent standard Si cleaning steps that consisted 
of SPM- and HF-based cleaning and 400°C 10 min annealing after the dielectric 
deposition. The C-V and forward gate leakage characteristics are measured and 
discussed. First of all, the C-V hysteresis difference is notable. As anticipated, the 
C-V hysteresis significantly decreases by employing the IPA oxidant. Powerful 

Figure 2. 
Comparison of O3- and IPA-based HfO2/Si MOS capacitors: (a) C-V and (b) leakage-E plot.
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Figure 3. 
Multifrequency C-V responses of (a) O3- and (b) IPA-based HfO2/In0.53Ga0.47As MOS capacitors; insets are 
the hysteresis at 1 MHz.

oxidation ability of ozone may induce undesired interfacial oxide at the Si interface 
forming defective hafnium silicate leading to a large hysteresis, while IPA-based 
HfO2 appears to be negligible on this effect [37]. The dielectric constants of IPA-
based and O3-based HfO2 extracted by the thickness series method are 19.4 and 17.6, 
respectively [38]. While the C-V results report promising potential of IPA oxidant 
in ALD HfO2, the leakage properties suggest a different aspect. Leaky forward 
gate leakage especially in the medium gate voltage range of the IPA-based HfO2 is 
presented compared to the O3-based HfO2. It is well known that at this gate bias 
range, the dominant leakage mechanism is by the Poole-Frenkel tunneling, which 
is a conduction method of electron tunneling from a metal electrode to traps in a 
nearby insulator layer, followed by detrapping of the electrons from the traps by 
virtue of a lowered potential well due to an applied electric field [39]. It usually 
implies the bulk quality of dielectric; in short, the larger the leakage in this E-field 
is, the more inferior the gate insulator is. It is speculated that by using the IPA 
oxidant, the bulk quality may be inferior than using the O3 oxidant in ALD HfO2. 
This might affect the further scaling down potential and the border trap density in 
ALD HfO2 application on InGaAs substrate [40].
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By using the developed O3- and IPA-based HfO2 dielectrics, HfO2/InGaAs 
MOS capacitors were successfully demonstrated [41]. The multifrequency 
(1 kHz–1 MHz) C-V characteristics of HfO2/n-In0.53Ga0.47As MOS capacitors using 
the O3 and IPA oxidants are presented in Figure 3. The C-V curves of the O3-based 
HfO2 ALD showed a large inversion hump in the negative bias range, which is 
attributed to the large density of interface defect states near the mid-gap trap level. 
In contrast, those of the IPA-based HfO2 ALD showed a notable suppression of the 
inversion hump behavior. In addition, by employing the IPA oxidant, the effective 
oxide thickness (EOT) has decreased. We hypothesize that the reduced inversion 
hump and decrease of the EOT originate from the suppression of unintentional 
interfacial oxides by the use of the IPA oxidant. Detailed material characteristics 
analysis was conducted and proved the hypothesis to be convincing [41]. To our 
knowledge, it is the first successful demonstration of HfO2 deposition using IPA at 
InGaAs substrate.

Despite the advantages of using the IPA oxidant, frequency dispersion at the 
accumulation region slightly increased from 3.3 to 4.7% per decade. In Figure 4, 
these values were used to estimate the border trap densities (Nbt) by using a distrib-
uted bulk-oxide trap model, and increased Nbt of 1.1 × 1020 cm−3 eV−1 was extracted 
compared to 6.7 × 1019 cm−3 eV−1. Also, larger C-V hysteresis and severely degraded 

Figure 4. 
Border trap estimation of HfO2/InGaAs MOS capacitors by using the distributed oxide bulk trap model  
(a) O3-HfO2 and (b) IPA-HfO2.
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leakage currents at positive bias are noticed. Based on these results, an inferior qual-
ity of the HfO2 film for using IPA oxidant was predicted which should be resolved 
for reliable use of the IPA oxidant.

In order to improve the weak IPA-based HfO2 bulk quality, the study of origin 
in HfO2 defect is necessary. One of the main concerns in the replacement of SiO2 
to HfO2 is that compared to SiO2, HfO2 generally suffers from high defect densi-
ties leading to several issues such as large carrier trapping, mobility degradation 
due to coulombic scattering in the channel surface, and threshold voltage shifts in 
gate stress conditions [42]. To be specific, the threshold voltage shift issue was not 
a new phenomenon that suddenly happened with use of HfO2. In immature SiO2 
MOSFETs, it is widely known that the extrinsic contaminations in SiO2 with alkali 
ions induce this similar phenomenon [43]. However, with HfO2, it appeared to be 
caused by the high defect concentrations, which originated from a more fundamen-
tal problem, not an extrinsic defect. Consequently, many researches were devoted 
to HfO2 physical model simulation in order to identify the type of defects and their 
energy levels, and by these physical studies, researchers hoped to learn how the 
deposition and processing conditions can be optimized to minimize these defect 
origins [42, 44, 45].

Based on computational calculations, it is identified that oxygen vacancies in 
HfO2 are both the principal trap and main cause of the discussed issues, and its 
formation energy and energy levels were also calculated [44]. Hence, in order to 
reduce the defect densities, experiments regarding deposition and post processing 
conditions were aimed to remove or passivate these defects, with an oxygen-rich 
ambient. However, in many cases, it only worked to some extent and led to new 
issues of excessive oxidation leaving oxygen interstitials and oxygen diffusion to the 
interface [46].

Additionally, due to the low density of states of III-V semiconductors, III-V 
substrates are heavily influenced to border traps that could severely worsen the 
device performance resulting in poor reliability properties. Therefore, not only 
the interface but also the bulk characteristics of HfO2 should be considered in III-V 
MOS studies, and improvement in both qualities is definitely important.

One of the most effective methods to improve the inherent properties of HfO2 is 
the incorporation of nitrogen to passivate oxygen vacancies, and it has been exten-
sively utilized in many recent studies [47–51]. Significant improvement in the elec-
trical characteristics of various high-k gate dielectrics by nitrogen incorporation has 
been demonstrated, and it is found that interfacial layer growth is effectively sup-
pressed [49] and there is lower boron penetration with nitrogen incorporation [51]. 
Also, lower leakage current density in HfOxNy is widely reported due to suppression 
of oxygen vacancy traps [50]. It has been reported that nitrogen incorporation 
in HfO2 can be achieved by several methods mostly by nitrogen ambient plasma-
based nitridation [47, 50] or ammonia (NH3) ambient high-temperature annealing 
treatment [52, 53]. For Si-based MOS studies, the later approach is known to be 
very powerful for achieving good uniformity of nitrogen incorporation and excel-
lent interface quality due to the absence of plasma damage. However, in order to 
successfully apply nitrogen incorporation technology on III-V substrate, the low 
thermal budget of III-V compound semiconductor always has to be considered, and 
high-temperature annealing treatment should be ruled out for nitrogen incorpora-
tion study in III-V MOS. In the other hand, although plasma-based nitridation 
technology offers low thermal budget capacity, most studies generally suffers from 
several issues such as nonuniform nitrogen distribution throughout dielectric, 
plasma-induced damage due to high-power plasma for dielectric penetration, and 
high energy potential nitrogen species substituting well-combined Hf-O bonds. 
Post deposition plasma treatments have recently been suggested for InGaAs MOS 
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Figure 5. 
ALD cycle sequence of the developed HfOxNy processes on InGaAs substrates.

Figure 6. 
Multifrequency C-V responses of (a) O3- and (b) IPA-based HfON/In0.53Ga0.47As MOS capacitors; insets are 
the hysteresis at 1 MHz.
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Figure 7. 
Border trap estimation of HfON/InGaAs MOS capacitors by using the distributed oxide bulk trap model  
(a) O3-HfON and (b) IPA-HfON.

devices [54]; however, no effort was made to improve the nitridation technology 
regarding the discussed issues.

As a result, in order to improve the film quality of HfO2, a cyclic nitrogen low-
power plasma step was added within the ALD cycles to passivate oxygen vacancies 
uniformly without causing damage or surface degradation. Through this technology 
with a combination of IPA oxidant, achievement of improvement in both interface 
and bulk quality of high-k/InGaAs MOS properties is expected. The detailed 
information of the ALD sequence is depicted in Figure 5. Every cycle consisted 
of sequential precursor pulse steps and a gas stabilization step followed by 5 s of 
50 W N2 plasma step with purge steps between pulse steps. It is discovered that 
there is a trade-off relationship of plasma condition. The plasma power should be 
enough for effective passivation although it may degrade the substrate by radiation 
damage. Through the developed ALD sequence, with adequate plasma condition, 
the HfO2 layer is improved without having influence in the substrate.

By using the proposed nitridation technology, HfOxNy/InGaAs MOS capacitors 
are fabricated showing promising results as shown in Figure 6 [41]. A significant 
suppression of the frequency dispersion was observed upon nitrogen incorpora-
tion in every gate bias range. The inversion humps and flat band voltage shift were 
effectively reduced for all samples, which imply that the defective interface states 
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near the mid-gap level can be treated with nitrogen incorporation. It is hypoth-
esized that oxygen diffusion through the oxygen vacancies of HfO2, which results 
in the formation of As-Ga anti-sites, was greatly reduced, as oxygen vacancies were 
effectively passivated with nitrogen [17]. Therefore, nitrogen may block further 
oxygen diffusion, thereby preventing surface oxidation, which could occur not only 
during but also after dielectric deposition. Furthermore, the frequency dispersion 
in the accumulation region greatly reduced to 2.1 and 3.2% per decade for O3- and 
IPA-based ALD, respectively. These values are comparable to suppressed dispersion 
values in low-EOT gate stacks, which imply excellent reliability quality of dielectric 
stacks on III-V substrate [55]. As the proposed nitridation technology is aimed to 
treat inferior bulk qualities of HfO2, it showed greater impact on IPA-based HfO2. 
The inversion behavior was observed for the IPA-based ALD HfO2 which has not 
been reported from the former HfO2/InGaAs MOS studies, and it will be further 
discussed (Figure 7).

3.  Characterization of IPA-based ALD HfO2 on n- and p-type InGaAs 
substrates

Based on the n-type MOS results, the Dit was extracted using the conductance 
method as shown in Figure 8. The combination of IPA oxidant and PA-ALD 
HfOxNy with standard interface treatments resulted in a reduced Dit level of 
4.5 × 1011 eV−1 cm−2 at Ec − Et = 0.3 eV. Based on the Dit distribution, it is evident 
that the inversion behavior observed in the C-V curves is due to the significant mid-
gap Dit decrease, which is consistent with the previously reported studies. As the 
mid-gap Dit is known to correlate to the As-Ga anti-site defect and the ozone-based 
HfOxNy lacked inversion characteristics with high mid-gap Dit, these defects might 
be the reason why the inversion behavior is difficult to be achieved in most studies. 
Also, these defects might be formed in the initial ALD steps through the oxidant 
exposure. Also, in Figure 9, we have benchmarked our results, comparing them 

Figure 8. 
The Dit distribution of the fabricated III-V MOS capacitors showing great reduction in the mid-gap Dit with 
the IPA-based HfOxNy.
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to the best results ever reported in the field of III-V MOS device studies [56–61]. 
Extraordinary mid-gap Dit values are achieved with low CET values with the 
proposed technology. Especially, while other studies mostly suffer from insufficient 
dielectric constant of the IL, our work employs HfO2 as an IL, which has merit in 
terms of the EOT scaling.

In addition, with conductance method in the measurement frequency range of 
1 kHz–1 MHz, the n-type MOS capacitor results can only provide information of 
Dit distribution near the conduction band. In order to estimate the total Dit distribu-
tion throughout the bandgap in InGaAs, p-type InGaAs MOS was fabricated and 
analyzed. The p-type InGaAs MOS capacitors are fabricated in the same process 
flow of n-type MOS capacitors.

The multifrequency C-V measurements of IPA-based PA-ALD HfOxNy/n-
In0.53Ga0.47As MOS capacitors compared to the HfO2 (O3) sample is presented 
in Figure 10. Compared to the reference, the optimized HfON process exhibits 
significant frequency dispersion suppression with steeper C-V slope. This result is 
comparable to the previously reported high-quality p-type InGaAs MOS results. 
It is assumed that the interface improvement mechanism is similar to the previous 
n-type MOS analysis.

Based on the results, the Dit distribution within the InGaAs bandgap is extracted 
with the conductance method shown in Figure 11. The Dit level at the exact mid-gap 
energy level (Eg/2 = 0.375 eV) is around 8 × 1011 eV−1 cm−2. This value is still low for 
reported III-V MOS interface, and it is suggested that based on the Dit distribution, 
the accumulation mode n-channel III-V devices are favorable than the inversion 
mode p-substrate III-V devices because the overall Dit levels are much lower at the 
conduction band area.

Moreover, temperature-dependent conductance method was performed in 
order to analyze the mid-gap Dit level thoroughly. High-temperature (350, 400 and 
450 K) multifrequency C-V analysis was conducted on HfON/InGaAs MOS capaci-
tors. The C-V results of each measurement temperature are shown in Figure 12.

As the measurement temperature increases, the inversion response gets stronger 
at higher frequencies compared to the room temperature-measured results. Also, 

Figure 9. 
Benchmarking the mid-gap Dit values of the proposed high-k ALD compared to the best results in the field of 
III-V MOS. The filled circles represent C-V curves with inversion behavior.
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while the dispersion at the accumulation region seems to be similar, there was a 
significant impact on the inversion hump phenomenon which is the interface trap 
characteristic. The measurement noise at higher temperature and lower frequencies 
was also noted. When the measurement temperature reaches around 450 K, the 
strong inversion response occurs even at 1 MHz, and it interferes with the interface 
trap-related conductance peak making the deconvolution process impossible.

The Dit distribution was estimated from the temperature-dependent conductance 
technique as shown in Figure 13. As the measurement temperature increases, the 

Figure 10. 
C-V characteristics of IPA-based PA-ALD HfOxNy (left) and O3-based HfO2 (right) on p-type In0.53Ga0.47As 
substrates.

Figure 11. 
The total Dit distribution within the In0.53Ga0.47As bandgap, which is extracted from the n- and p-type MOS 
capacitors.
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deeper energy range could be measured. Similar Dit profile was observed showing 
a peak energy level around the exact mid-gap level (~0.375 eV). The peak Dit value 
is slightly higher than the previously estimated value which would be the effect of 

Figure 12. 
C-V characteristics of IPA-based PA-ALD HfOxNy on n-type InGaAs substrate measured at (a) 350 K,  
(b) 400 K, and (c) 450 K.
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enhanced thermal broadening of trap response in higher temperatures. The differ-
ences between the Dit profile estimation can be summarized as follows: While using 
p-MOS capacitors, a larger energy level range is observable with no thermal broaden-
ing of the trap response due to the fixed measurement temperature. On the other 
hand, using a temperature-dependent  method has a thermal broadening issue but 
only requires one sample for characterization.

It was noted that the inversion behavior of IPA-based HfOxNy ALD is attributed 
to the mid-gap Dit level decrease. However, in order to verify true inversion 
characteristics, more analyses must be investigated. In Figure 14, the conductance 
profile of sample O3-based HfO2 and IPA-based HfOxNy InGaAs MOS capacitors are 
depicted.

Both C-V profiles have shown inversion-like behavior in the negative bias region. 
However, clear difference is observed between the conductance profiles. While 
huge and Gaussian conductance profiles in the negative bias regions are observed 
for O3-based HfO2, smaller Gaussian conductance peaks are observed in depletion 
region, and distinct from these peaks, saturated conductance profiles are observed 
for IPA-based HfOxNy. Therefore, it is concluded that the inversion-like behavior in 
O3-based HfO2 is attributed from the huge and broad conductance peaks that reflect 
high mid-gap Dit levels, while inversion behavior in IPA-based HfOxNy might be 
attributed from real true minority carrier inversion.

In Figure 15, to verify true inversion characteristics of IPA-based HfOxNy, the 
minority carrier response was investigated based on the extraction of the transition 
frequency, wm, which is known to be a characteristic of a strong inverted surface for 
III-V MOS capacitors [62]. It is known that at the transition frequency, the –wdC/
dw and Gm/w share the same peak magnitude in the strong inversion gate bias. 
Notably, –wdC/dw and Gm/w share the same peak magnitude at the same transition 
frequency of 4 kHz which suggests that IPA-based HfOxNy exhibits true inversion 
behavior. The true inversion behavior of hafnium oxide-based dielectrics on InGaAs 
substrate has not been reported yet which implies significant potential.

Figure 13. 
The total Dit distribution within the In0.53Ga0.47As bandgap, which is extracted from the temperature-
dependent conductance method.
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Figure 15. 
–wdC/dw and Gm/w profiles for IPA-HfON/InGaAs MOS.

Figure 14. 
The conductance profiles for (a) O3-HfO2 and (b) IPA-HfON ALD.
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4. Conclusions

In order to achieve both low EOT and low Dit, a highly advanced gate stack, 
prepared by using an IPA oxidant in the PA-ALD of HfOxNy on In0.53Ga0.47As 
substrates, was proposed and showed the most outstanding results. A cyclic 
nitrogen low-power plasma step was added within the ALD cycles to passivate 
the oxygen vacancies uniformly without causing damage or surface degradation 
in comparison to the post deposition nitridation technology. Remarkable mid-
gap Dit levels with strong inversion characteristics were achieved which has not 
been reported in the previous HfO2/InGaAs interface studies. The improved 
interface characteristics can be attributed to both low surface oxidation ability 
of IPA and suppression of oxygen diffusion by effective nitrogen passivation to 
oxygen vacancies in HfO2. The proposed ALD HfOxNy was fully characterized by 
investigating different dopant types and measurement temperatures. The results 
show comprehensive understanding on the interface defect density distribution. 
It is suggested that not only surface treatments but also the development of an 
advanced HfO2 ALD process has a great impact on the quality of the III-V MOS 
interface and the IPA-based HfON interfacial layer might have great potential in 
future technology node.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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