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Chapter

Diffusion Theory for Cell
Membrane Fluorescence
Microscopy
Minchul Kang

Abstract

Since the discovery of fluorescent proteins and the development of DNA
recombinant techniques, various fluorescence methods have significantly improved
our understanding of cell biology at a molecular level. In particular, thanks, in large
part, to technological advances in these fields, fluorescence techniques such as
fluorescence recovery after photobleaching (FRAP), fluorescence correlation
spectroscopy (FCS), and single-particle tracking (SPT) have become standard tools
in studying cell membrane structure as well as the diffusion and interaction of
biomolecules in the cell membrane. In this chapter, we will review some topics of
the diffusion theory from both deterministic and probabilistic approaches, which
are relevant to cell membrane fluorescence microscopy. Additionally, we will derive
some basic equations for FARP and FCS based on the diffusion theory.

Keywords: diffusion theory, fluorescence recovery after photobleaching,
fluorescence correlation spectroscopy, cell membranes

1. Introduction

Diffusion is an idealization of the random motion of one or more particles in
space. Since diffusion is a dominant way for biological organisms to transport
various molecules to desirable locations for cell signaling, the role of diffusion
within biological systems is critical [1–3]. Therefore, to quantify the diffusion
coefficient, a measure of diffusion rates, is essential to understand both the physi-
ology and pathology of cells in terms of cell signaling time scales [1–3]. Moreover,
the diffusion coefficients of proteins may also provide information on the landscape
of the membrane environment where diffusion occurs [4–6]. However, quantifying
the diffusion especially in live cell membranes is still challenging although a couple
of tools are available including fluorescence recovery after photobleaching (FRAP)
and fluorescence correlation spectroscopy (FCS) [7, 8]. Diffusion is quantified by
a diffusion coefficient, D, which characterizes the proportionality in a linear
relationship between mean squared displacement (MSD, x2

� �

Þ of a Brownian parti-
cle and time [9, 10]. To determine the diffusion coefficients of biomolecules of
interests, mathematical models for the diffusion process are compared with exper-
imental data in FRAP and FCS analysis. In this chapter, we bridge the gap between
experimental and theoretical aspects of FRAP and FCS by reviewing mathematical
theories for FRAP and FCS.
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2. Diffusion equation

2.1 Diffusion equation from the deterministic point of view

In 1855, Fick [11] published two cornerstone papers on diffusion, in which he
proposed the fundamental laws describing the transport of mass due to the concen-
tration gradient and an associated mathematical model. According to Fick’s first
law, the diffusive flux (J) is proportional to the concentration gradient of diffusants
(du=dx) with a proportionality constant called a diffusion coefficient, D. In one-
dimensional spatial dimension (1), Fick’s law can be represented as

J ¼ �D
du

dx
(1)

where J x, tð Þ is the diffusion flux and u x, tð Þ is the concentration of diffusants at
the location x at time t. The diffusion coefficient can be calculated by the Stokes-
Einstein equation [12, 13]:

D ¼ kBT

6πηr
(2)

where kB is Boltzmann’s constant, T is the absolute temperature, η is the
dynamic viscosity, and r is the radius of the spherical particle. Assuming the
conservation of mass in an infinitesimal interval x, xþ Δxð Þ, we obtain

∂

∂t
u x, tð ÞΔxf g ¼ J x, tð Þ � J xþ Δx, tð Þ;

∂u

∂t
¼ J x, tð Þ � J xþ Δx, tð Þ

Δx
(3)

where u x, tð ÞΔx is the total number of molecules in the interval x, xþ Δxð Þ and
J x, tð Þ � J xþ Δx, tð Þ is the difference of influx and efflux in and out of the interval
(i.e., net change in the total number of molecules in the interval) as shown in
Figure 1.

By combining Eqs. (1) and (3) and by taking the limit in Δx ! 0, we have Fick’s
second law that describes the diffusion process in a form of partial differential
equation:

∂u

∂t
¼ D

∂
2u

∂x2
(4)

Eq. (4) is often referred to as the one-dimensional diffusion equation or heat
equation. Similarly, two-dimensional (2) and three-dimensional (3) can be
derived as

Figure 1.
The change in the number of molecules in an intestinal interval due to diffusion.
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∂u

∂t
¼ D

∂
2u

∂x2
þ ∂

2u

∂y2

� �

∂u

∂t
¼ D

∂
2u

∂x2
þ ∂

2u

∂y2
þ ∂

2u

∂z2

� �

(5)

In a more compact form, the diffusion equations are written using the Laplace
operator, Δ:

ut ¼ DΔu (6)

where Δu ¼ ∂
2u
∂x2 in 

1, Δu ¼ ∂
2u
∂x2 þ ∂

2u
∂y2 in 

2, and Δu ¼ ∂
2u

∂x2 þ ∂
2u
∂y2 þ ∂

2u
∂z2 in 

3.

Importantly, the diffusion equation satisfies the following important properties:

1.Property 1: Translation invariance. If u x, tð Þ is a solution of the heat
equation, then for any fixed number x0, the function u x� x0, tð Þ is also a
solution.

2.Property 2: Derivatives of solutions. If u x, tð Þ is a solution of the heat
equation, then the partial derivatives of u also satisfy the heat equation.

3.Property 3: Integrals and convolutions. If Φ x, tð Þ is a solution of the heat
equation, then Φ ∗ g (the convolution of S with g) is also a solution where
Φ ∗ g x, tð Þ ¼

Ð

∞

�∞Φ x� y, tð Þg yð Þdy provided that this improper integral
converges. The improper integral Φ ∗ g is called the convolution of Φ and g.

4.Property 4: Dilation. Suppose a>0 is a constant. If u x, tð Þ is a solution of the
heat equation, then the dilated function v(x, tÞ ¼ u

ffiffiffi

a
p

x, atð Þ is also a solution.

Based on these properties, we are now ready to solve the following initial value
problem on x∈

1 for0≤ t<∞:

ut ¼ Duxx

u x, 0ð Þ ¼ H xð Þ

(

where H xð Þ ¼
1, x>0

0, x≤0

(

(7)

where H xð Þ is often referred to as the Heaviside function.
By Property 4, any solution (u x, tð Þ) is unaffected by the dilation x ↦

ffiffiffi

a
p

x and

t ↦ at for any a∈
1. Since x

ffiffi

t
p is also unaffected by the dilations ( x

ffiffi

t
p ↦

ffiffi

a
p

x
ffiffiffi

at
p ¼ x

ffiffi

t
p ), we

look for a solution in the form of g α x
ffiffi

t
p

� �

for some constant α. Notice also that

g α x
ffiffi

t
p

� �

is also invariant under these dilations: α
ffiffi

a
p

x
ffiffiffi

at
p

� �

¼ g α x
ffiffi

t
p

� �

. If we let p ¼ α x
ffiffi

t
p

and choose α ¼ 1
ffiffiffiffiffi

4D
p , then by the chain rule, we have

0 ¼ ut �Duxx ¼ � p

2t
g0 pð Þ � κ

4Dt
g00 pð Þ ¼ � 1

4t
g00 pð Þ þ 2pg0 pð Þf g (8)

which reduces to an ordinary differential equation g00 þ 2pg0 ¼ 0. This can be
solved as.

g ¼ C2 þ
ðp

0
C1e

�r2dr where g 0ð Þ ¼ C2 (9)
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for arbitrary constants C1 and C2. Because as t ! 0þ, p ! ∞, for x>0

1 ¼ lim
t!0þ

u x, tð Þ ¼ C2 þ
ð

∞

0
C1e

�r2dr ¼
ffiffiffi

π
p

2
C1 þ C2 (10)

where we used a well-known identity (the error function integral):

ð

∞

�∞
e�ax2dx ¼

ffiffiffi

π

a

r

, (11)

On the other hand, since as t ! 0�, p ! �∞, for x<0

0 ¼ lim
t!0þ

u x, tð Þ ¼ C2 þ
ð�∞

0
C1e

�r2dr ¼ �
ffiffiffi

π
p

2
C1 þ C2 (12)

which implies that C1 ¼ 1
ffiffi

π
p and C2 ¼ 1

2. Putting together, we have a solution

u x, tð Þ ¼ 1
2
þ 1

ffiffiffi

π
p
ðx=

ffiffiffiffiffi

4κt
p

0
e�r2dr (13)

Define Φ x, tð Þ ¼ ux x, tð Þ; then

Φ x, tð Þ ¼ ∂

∂x

1
2
þ 1

ffiffiffi

π
p
ðx=

ffiffiffiffiffi

4κt
p

0
e�r2dr

 !

¼ 1
ffiffiffi

π
p e

x2
4κt � 1

ffiffiffiffiffiffiffi

4κt
p (14)

¼ 1
ffiffiffiffiffiffiffiffiffiffi

4πκt
p e

x2
4κt

By Property 2, derivatives of solutions, the function Φ x, tð Þ ¼ 1
ffiffiffiffiffiffiffi

4πκt
p e�

x2
4κt is also

a solution to the diffusion equation. Φ x, tð Þ is called the (one-dimensional) heat
kernel or the fundamental solution of the heat equation. The graphs of the heat
kernel for different t are shown in Figure 2.

From Figure 2, we can see that the heat kernel Φ x, tð Þ has a “bell curve” graph of
a normal distribution (Gaussian function) with

ffiffiffiffiffiffiffiffi

2Dt
p

as the standard deviation,
which sometimes called the Gaussian root mean square width. Also, 1

ffiffiffiffiffi

4πt
p modulates

the amplitude of the Gaussian curves, and the amplitude blows up to ∞ as t ! 0þ
and approaches 0 as t ! ∞, i.e.:

lim
t!0þ

Φ x, tð Þ ¼
0 if x 6¼ 0

∞ if x ¼ 0

(

: (15)

Also, from the error function integration (Eq. (14))

ð

∞

�∞
Φ x, tð Þdx ¼ 1, for all t≥0

ð

∞

�∞
Φ x� y, tð Þdx ¼ 1, for all t≥0

8

>

>

>

<

>

>

>

:

(16)

4

Fluorescence Methods for Investigation of Living Cells and Microorganisms



Furthermore, it follows that (i) Φ x� y, tð Þ satisfies the heat equation (Property
1: translation invariance) and (ii) Φ ∗ϕð Þ x, tð Þ ¼

Ð

∞

�∞Φ x� y, tð Þϕ yð Þdy satisfies the
heat equation (Property 3: integrals and convolutions).

From the definition (Φ ¼ uxÞ, by differentiating Eq. (7) with respect to x, we see
that Φ x, tð Þ satisfies

Φt ¼ DΦxx

Φ x, 0ð Þ ¼ ux x, 0ð Þ ¼ d

dx
H xð Þ

8

>

<

>

:

(17)

Even though H xð Þ is not differentiable due to discontinuity at x ¼ 0, we can
redefine differentiation in a broad sense (weak derivative) and under this weak
derivative definition:

d

dx
H xð Þ ¼ δ xð Þ ¼

0 if x 6¼ 0

∞ if x ¼ 0

(

(18)

where δ xð Þ is called the Dirac delta function. The Dirac delta function satisfies a
few important properties:

1. lim
t!0þ

Φ x, tð Þ ¼ δ xð Þ

2.
Ð

∞

�∞δ xð Þdx ¼ 1 and
Ð

∞

�∞δ x� yð Þdx ¼ 1

3.
Ð

∞

�∞δ xð Þf xð Þdx ¼ f 0ð Þ and
Ð

∞

�∞δ x� yð Þf xð Þdx ¼ f yð Þ

The third integration property is sometimes called the sifting property of the
Dirac delta function. With these properties, we now can show (heuristically)
u x, tð Þ ¼ Φ ∗ϕð Þ x, tð Þ satisfies the following diffusion equation:

ut ¼ Duxx

u x, 0ð Þ ¼ ϕ xð Þ

8

<

:

) u x, tð Þ ¼ Φ ∗ϕð Þ x, tð Þ

(19)

Figure 2.
The heat kernel graphs for different t.
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To show Φ ∗ϕð Þ x, tð Þ satisfies the initial condition, we apply the sifting property
of the Dirac delta function:

u x, 0ð Þ ¼ Φ ∗ϕð Þ x, 0ð Þ

¼
ð

∞

�∞
Φ x� y, 0ð Þϕ yð Þdy (20)

¼
ð

∞

�∞
δ x� yð Þϕ yð Þdy

¼ ϕ xð Þ

In other words, this result (Eq. (19)) indicates that for any initial value problem,
the solution can easily be found as a convolution of the heat kernel and initial data.

2.2 Diffusion equation from the stochastic point of view

In many biological systems, passive transports are often described by Brownian
motion or diffusion that is observed in random drifting of pollen grains suspended
in a fluid. Suppose a Brownian particle located at the position x ¼ 0 when time
t ¼ 0 has moved randomly on a straight line during time Δt. Since the movement of
a Brownian particle is random, the location of the Brownian particle at t ¼ Δtwill be
probabilistic. Especially, for smaller Δt elapsed, the Brownian particle will have a
higher chance to be found near the starting location x ¼ 0 similar to a normal (or
Gaussian) probability distribution with zero mean and a small standard deviation.
For this reason, the Brownian motion is often described mathematically by random
variables in time, which is called a stochastic process (time-dependent random
variable).

If we let Xt be a stochastic process in 
1 describing the position of a fluorescence

molecule at time t, i.e., “Xt ¼ x” means that the location of a fluorescence molecule
at time t is x, then the probability of the Brownian particle located within the
interval 0,Δxð Þ at time t will be dependent on both Δx and the previous location:

 Xt ∈ 0,Δxð ÞjX0 ¼ 0f g (21)

assuming the initial location is the origin (X0 ¼ 0). Bachelier [14] explicitly
calculated this probability as

 Xt ∈ 0,Δxð ÞjX0 ¼ 0f g ¼
ð

Δx

0

1
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p exp � x2

4Dt

� �

dx (22)

where D (μm/s2) is a diffusion coefficient. The probability density function (the
integrand) is the fundamental solution of heat equation (Eq. (14)) that is the
normal distribution with standard deviation σ ¼

ffiffiffiffiffiffiffiffi

2Dt
p

: Later, Einstein [12] showed
that the probability density function of randomly moving particles (Brownian
motion) satisfies the diffusion equation with a solution Φ x, tð Þ (Eq. (17)).

If g yð Þ is the probability of a Brownian particle to be found at location y when
t ¼ 0, i.e.,  X0 ¼ yf g ¼ g yð Þ, then the distribution of the Brownian particles can be
determined by solving an initial value problem:

∂u

∂t
¼ D

∂
2u

∂x2

u x, 0ð Þ ¼ g xð Þ

8

>

<

>

:

, (23)
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which has the solution

Φ ∗ gð Þ xð Þ ¼
ð

∞

�∞

1
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p exp � x� yð Þ2

4Dt

 !

g yð Þdy: (24)

as in Eq. (19).

2.3 Mean squared displacement

The spreading rate of diffusing particles is quantified by a diffusion coefficient,
D, which characterizes a linear relationship between mean squared displacement
( x2
� �

Þ of a Brownian particle and time, where MSD is defined as

x2
� �

¼
ð

∞

�∞
x2  Xt ∈ 0,Δxð ÞjX0 ¼ 0f gdx

¼
ð

∞

�∞
x2Φ x, tð Þdx:

(25)

For a diffusion process, MSD increases linearly in time with the rate of the
diffusion coefficient:

x2
� �

¼ 2nDt: (26)

where n is the spatial dimension (n) for a diffusion process. To derive this
relation in 1D (), we consider ∂

∂t x2
� �

∂

∂t
x2
� �

¼ ∂

dt

ð

∞

�∞
x2Φ x, tð Þdx

¼
ð

∞

�∞
x2

∂

∂t
Φ x, tð Þdx (27)

¼ D

ð

∞

�∞
x2

∂
2

∂x2
Φ x, tð Þdx

where we used Eq. (17). Notice that by the product rule

D

ð

∞

�∞

∂

∂x
x2

∂

∂x
Φ x, tð Þ

� �

dx ¼ D

ð

∞

�∞
2x

∂

∂x
Φ x, tð ÞdxþD

ð

∞

�∞
x2

∂
2

∂x2
Φ x, tð Þdx (28)

By solving for D
Ð

∞

�∞x
2 ∂

2

∂x2 Φ x, tð Þdx

D

ð

∞

�∞
x2

∂
2

∂x2
Φ x, tð Þdx ¼ D

ð

∞

�∞

∂

∂x
x2

∂

∂x
Φ x, tð Þ

� �

dx�
ð

∞

�∞
2x

∂

∂x
Φ x, tð Þdx

¼ D x2
∂

∂x
Φ x, tð Þ

	 


∞

�∞
�D

ð

∞

�∞
2x

∂

∂x
Φ x, tð Þdx (29)

¼ 0�D

ð

∞

�∞
2x

∂

∂x
Φ x, tð Þdx
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Next, by integration by parts

�D

ð

∞

�∞
2x

∂

∂x
Φ x, tð Þdx ¼ �D 2xΦ x, tð Þ½ �∞�∞ þD

ð

∞

�∞
2Φ x, tð Þdx (30)

¼ �0þ 2D

Finally, by putting all together

∂

∂t
x2
� �

¼ 2D

x2
� �

¼ 2Dt,
(31)

for 1.

3. Fluorescence recovery after photobleaching

3.1 Principles of FRAP

Fluorescence recovery after photobleaching is a fluorescence-based biophysical
tool developed in the 1970s to investigate the diffusion process in membranes of live
cells. Discovery of the green fluorescent protein (GFP) and the invention of com-
mercial confocal laser scanning microscopes (CLSMs) have broadened the accessi-
bility of FRAP for many researchers in the field, and the applications of FRAP have
become widely extended to the study of intracellular protein dynamics [15–18].
Over the four decades, there have been considerable advances in microscope
technology. However, the basic principle of FRAP remains the same. In FRAP,
fluorescently tagged molecules in a small region of interest (ROI) are irreversibly
photobleached using a high-intensity laser source for a short period of time, and

Figure 3.
Example of FRAP data. (A) Representative images from a FRAP experiment on Alexa488-CTxB. (B) A
postbleach profile from the image for t ¼ 0 shows a wider spreading radius (effective radius; re) than the
bleaching spot radius (nominal radius; rn) due to diffusion during photobleaching. (C) Mean fluorescence
intensity (N = 13) from the bleaching ROI (∘, FData tð Þ), whole image (•, FWhole tð Þ), and background (□) from
a FRAP experiment of Alexa488-CTxB. The image in the inset shows the locations where FData tð Þ (∘) and
background (□) were measured. (D) In FRAP analysis, prebleach steady-state, postbleach initial, and
postbleach steady-state fluorescence intensities are typically denoted as Fi, F0, and Fi. These parameters can be
used to calculate the mobile fraction (M f ) and the immobile fraction (1�M f ) from the corrected FRAP data
for photofading (FData tð Þ=FWhole tð Þ) as indicated in the boxed equation.
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then the exchange of fluorescence and photobleached molecules in and out of the
bleached region is monitored using low-intensity laser excitation to track fluores-
cence recovery (Figure 3A). Due to the artifacts such as the diffusion during the
photobleaching step (Figure 3B) and the photofading during the imaging step,
FRAP data requires some corrections (Figure 3C). The diffusion during the
photobleaching step can be corrected by using the experimentally measured
postbleach profile as an initial condition for the FRAP model [19–21]. On the other
hand, the photofading during the imaging step can be corrected by diving the raw
FRAP data (FData tð Þ) by the fluorescence intensity from the whole image (FData tð Þ)
(Figure 3D) [19–21]. Since different transport and reaction mechanisms may affect
the curvature and the mobile fraction of a FRAP curve in various manners, kinetic
parameters for underlying mechanisms can be obtained by comparing the FRAP
curve to the corresponding theoretical FRAP models. For example, D can be
measured by comparing a diffusion FRAP model with FRAP data for the best
fitting D [19, 20].

3.2 Derivation of diffusion FRAP equation in 
1

Quantitative FRAP analysis requires a mathematical description of fluorescence
recovery for a given underlying transport/reaction kinetics through two different
modes of CLSMs: photobleaching and photo-illumination. Although CLSMs use
scanning laser for both photobleaching and photo-illumination, it has been reported
for small bleaching spot size (we call this as the nominal radius of the laser); the
scanning profile of CLSMs on a confocal plane is well approximated by a Gaussian
function:

Irn xð Þ ¼
ffiffiffiffiffiffiffi

2I20
πr2n

s

exp � 2x2

r2n

� �

, (32)

where rn is the nominal radius, i.e., radius of a bleaching ROI (the half-width
at e�2 laser intensity). Irn can be regarded as a photobleaching mode of CLSMs
with a maximal laser intensity I0. A bell-shaped profile of Irn xð Þ defines total
laser intensity I0 with

Ð

∞

�∞Irn xð Þdx ¼ I0 resulting from the error function integral
(Eq. (11)). Since the high-intensity mode of laser (Irn xð Þ) causes photobleaching
of fluorophores, for illumination, laser intensity has to be attenuated to a lower
laser intensity level. Therefore, for an attenuation factor ϵ≪ 1, a photo-illumination
mode of CLSMs can be described as ϵIrn xð Þ. If we let u x, tð Þ be the density of
fluorophores (or fluorescent proteins) at a location x at time t, then fluorescence
intensity at the position x at time t will be proportional to both the illumination
laser intensity (ϵIrn xð Þ) and fluorophore density (u x, tð Þ). Assuming the linear
proportionality, f x, tð Þ, the fluorescence intensity at a location x, yð Þ at time t can be
described as

f x, tð Þ ¼ q � ϵIrn xð Þu x, tð Þ, (33)

where the proportionality constant, q, is referred to as a quantum yield or
quantum efficiency. When a CLSM system is used to photobleach fluorophores, its
postbleach profile is not exactly the same as the laser profile in most cases due to
diffusion occurring during the photobleaching step. Assuming the first-order
photobleaching process with a photobleaching rate α, a governing equation for a
photobleaching process of freely diffusing fluorescent proteins can be described as a
reaction–diffusion equation:
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ut ¼ DΔu� αIrn xð Þu

u x, 0ð Þ ¼ u0

(

(34)

where u0 is the prebleach steady-state fluorescence intensity, which is regarded
as a constant. Although the solution to Eq. (34) is hard to find, it is empirically
proven [22] that a confocal postbleach profile can be described as a simple Gaussian
function (constant minus Gaussian):

φ xð Þ ¼ Ci 1� K exp � 2x2

r2e

� �� �

, (35)

Note that different underlying kinetics for u yield a different FRAP equation.
For free diffusion kinetics, the evolution of u x, tð Þ can be described as the diffusion
equation subject to the initial condition from a postbleach profile right after
photobleaching.

ut ¼ DΔu

u x, 0ð Þ ¼ φ xð Þ

(

(36)

where D μm2=sð Þ is a diffusion coefficient and the Laplacian, Δ ¼ ∂
2

∂x2, in 
1.

The solution of the diffusion equation can be found as (Eq. (19))

u x, tð Þ ¼ ΦD ∗φ

¼
ð

ΦD x� x, tð Þφ xð Þdx

¼ Ci
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

exp � x� xð Þ2
4Dt

 !

1� K exp � 2x2

r2e

� �	 


dx

¼ Ci
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

exp � x� xð Þ2
4Dt

 !

dx� CiK
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

exp � x� xð Þ2
4Dt

� 2x2

r2e

 !

dx (37)

¼ Ci �
CiK
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

exp � x� xð Þ2
4Dt

� 2x2

r2e

 !

dx

by Eq. (11) (error function integration).
The total fluorescence intensity from the region of interest can be found by

integrating this local fluorescence intensity over the ROI:

F tð Þ ¼ qϵ

ð

Irn xð Þu x, tð Þdx, (38)

which is called a FRAP equation. To simplify Eq. (38) by using Eq. (37)

qϵ

ð

Irn xð Þu x, tð Þdx

¼ qϵ

ð

ffiffiffiffiffiffiffi

2I20
πr2n

s

exp � 2x2

r2n

� �

" #

Ci �
CiK
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

exp � x� xð Þ2
4Dt

� 2x2

r2e

 !

dx

" #

dx
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¼ qϵCi

ffiffiffiffiffiffiffi

2I20
πr2n

s

ð

exp � 2x2

r2n

� �

dx� qϵCiK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I20
4π2r2nDt

s

ðð

exp � 2x2

r2n
� x� xð Þ2

4Dt
� 2x2

r2e

 !

dxdx

¼ qϵCiI0 � qϵCiK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2I20
4π2r2nDt

s

ðð

exp � 2x2

r2n
� x� xð Þ2

4Dt
� 2x2

r2e

 !

dxdx

¼ Fi � FiK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2π2r2nDt

s

ðð

exp � 2x2

r2n
� x� xð Þ2

4Dt
� 2x2

r2e

 !

dxdx (39)

where Fi ¼ qϵCiI0 is the prebleach fluorescence intensity due to fluorophore
density Ci. If we let x ¼ xþ θχ where θ ¼

ffiffiffiffiffiffiffiffi

4Dt
p

(dx ¼ θdχ), then the integral term
in Eq. (39) becomes

ðð

exp � 2x2

r2n
� x� xð Þ2

4Dt
� 2x2

r2e

 !

dxdx

¼ θ

ðð

exp � 2x2

r2n
� θ2

θ2
χ2 � 2 xþ θχð Þ2

r2e

 !

dxdχ

¼ θ

ðð

exp �
2 r2ex

2 þ r2n xþ θχð Þ2
� �

r2nr
2
e

� χ2

0

@

1

Adxdχ

¼ θ

ðð

exp � 2 r2e þ r2n
� �

x2 þ 2r2nθxχ þ θ2r2nχ
2


 �

r2nr
2
e

� χ2

 !

dxdχ (40)

¼ θ

ðð

exp �
2 r2e þ r2n
� �

x2 þ 2 r2nθ
r2eþr2n

xχ þ θ2r2n
r2eþr2n

χ2
� �

r2nr
2
e

� χ2

0

@

1

Adxdχ

¼ θ

ðð

exp � 2 r2e þ r2n
� �

r2nr
2
e

xþ r2nθ

r2e þ r2n
χ

� �2

� r2nθ

r2e þ r2n

	 
2

� θ2r2n
r2e þ r2n

 !

χ2

( )

� χ2

 !

dxdχ

¼ θ

ðð

exp � 2 r2e þ r2n
� �

r2nr
2
e

xþ r2nθ

r2e þ r2n
χ

� �2

� r4nθ
2 � θ2r4n � θ2r2nr

2
e

r2e þ r2n
� �2

 !

χ2

( )

� χ2

 !

dxdχ

¼ θ

ðð

exp � 2 r2e þ r2n
� �

r2nr
2
e

xþ r2nθ

r2e þ r2n
χ

� �2

� �θ2r2nr
2
e

r2e þ r2n
� �2

 !

χ2

( )

� χ2

 !

dxdχ

¼ θ

ðð

exp �
2 r2e þ r2n
� �

xþ r2nθ
r2eþr2n

χ
� �2

r2nr
2
e

þ 2θ2

r2e þ r2n
χ2

8

>

<

>

:

9

>

=

>

;

� χ2

0

B

@

1

C

A
dxdχ

¼ θ

ð ð

exp
2 r2e þ r2n
� �

xþ r2nθ
r2eþr2n

χ
� �2

r2nr
2
e

0

B

@

1

C

A
dx

2

6

4

3

7

5
exp � 2θ2

r2e þ r2n
þ 1

	 


χ2
� �

dχ

¼ θ

ð ð

exp
2 r2e þ r2n
� �

r2nr
2
e

x2
� �

dx

	 


exp � 2θ2

r2e þ r2n
þ 1

	 


χ2
� �

dχ

¼ θ

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πr2nr
2
e

2 r2e þ r2n

 �

s" #

exp � 2θ2

r2e þ r2n
þ 1

	 


χ2
� �

dχ
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¼ θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πr2nr
2
e

2 r2e þ r2n

 �

s

ð

exp � 2θ2 þ r2e þ r2n
r2e þ r2n

	 


χ2
� �

dχ

¼ θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πr2nr
2
e

2 r2e þ r2n

 �

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π r2e þ r2n

 �

2θ2 þ r2e þ r2n

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2r2nr
2
e 4Dtð Þ

2 8Dtþ r2e þ r2n

 �

s

Therefore

F tð Þ ¼ Fi � FiK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2π2r2nDt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2r2nr
2
e 4Dtð Þ

2 8Dtþ r2e þ r2n

 �

s

¼ Fi � FiK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2e
8Dtþ r2e þ r2n

s

(41)

¼ Fi 1� K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2 þ 2t=τD
p

" #

where γ ¼ rn=re and τD ¼ r2e= 4Dð Þ. If we consider the immobile fraction
(Figure 3D), the FRAP equation for mobile fluorophores is found as

F tð Þ ¼ Fi 1� K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2 þ 2t=τD
p

( )

þ 1�ð ÞF0 (42)

for the mobile fraction,  is defined as (Figure 3D)

 ¼ F
∞
� F0

Fi � F0
(43)

where Fi, F0, and F
∞
are prebleach steady-state fluorescence intensity,

postbleach initial fluorescence intensity (F 0ð Þ), and postbleach steady-state fluo-
rescence intensity, respectively. The calculations for the 1D FRAP model can easily
be extended to higher-dimensional cases. For example, a diffusion FRAP equation
in 2D (2) and 3D (3) is found as

F tð Þ ¼ Fi 1� K

1þ γ2 þ 2t=τD

	 


2Dð Þ

F tð Þ ¼ Fi 1� K

1þ γ2 þ 2t=τDð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2 þ 2t=τD
p

" #

3Dð Þ (44)

4. Fluorescence correlation spectroscopy

4.1 Principles of fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy is a standard bioengineering and bio-
physics technique for the study of molecular movements and interactions [23–25].
For FCS experiments, a laser beam is focused and stationed at a region of interest in
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the specimen (usually live cells). The illumination region formed by the focused
laser is called a confocal volume, which is generally in the femtoliter range. As
fluorescence molecules cross the confocal volume by diffusion or other transporting
mechanisms, they emit fluorescence photons responding to the illumination laser
(Figure 4A), and the fluctuations in the fluorescence signal, F tð Þ, is monitored as a
function of time which is called raw FCS data. Since different FCS measurements
from different cells can be quite different depending on the fluorescent protein
expression level, the raw FCS data is first standardized by

ΔF tð Þ
Fh it

¼ F tð Þ � F tð Þh it

 �

Fh it
(45)

where F tð Þ is the fluorescence fluctuation in the confocal volume and Fh it ¼
1
T

Ð T
0 F tð Þdt is the time average of the fluorescence fluctuation during observation

time T. Notice that the mean of standardized data (ΔF tð Þ= Fh it) is zero. Next, the
autocorrelation function of the standardized data is calculated by multiplying the
standardized data, ΔF tð Þ= Fh it, and the shifted standardized data by τ,
ΔF tþ τð Þ= Fh it, and then taking the average over time:

G τð Þ ¼ ΔF tð Þ
Fh it

� ΔF tþ τð Þ
Fh it

� �

t

(46)

Notice that the autocorrelation has the maximumwhen τ ¼ 0 and converges to 0
as τ increases as ΔF tð Þ= Fh it and ΔF tþ τð Þ= Fh it become independent for a large τ.

G 0ð Þ ¼ ΔF tð Þ
Fh it

� �2
* +

t

>0

G τð Þ ¼ ΔF tð Þ
Fh it

� ΔF tþ τð Þ
Fh it

� �

t

¼ ΔF tð Þ
Fh it

� �

t

ΔF tþ τð Þ
Fh it

� �

t

¼ 0 for a large τ

8

>

>

>

>

<

>

>

>

>

:

(47)

An autocorrelation curve carries two crucial information. Since a large molecule
will move slower than a light molecule, therefore the correlation decays at a longer
time scale. On the other hand, the correlation amplitude is inversely proportional to

Figure 4.
Principles of fluorescence correlation spectroscopy analysis. (A) For FCS analysis for free diffusion, a static laser
beam is focused on a specific region of interest. As the fluorescence molecules diffuse in and out of a certain
domain, commonly called confocal volume (�1 femtoliter), fluorescence intensities from the confocal volume
fluctuate, yielding fluorescence time series. (B) The fluorescence time series data are processed into an
autocorrelation curve by taking the average of the original time series data and the shifted time series data by τ to
get an autocorrelation function (ACF) in τ. The ACF from the FCS data is next fitted to theoretical
autocorrelation functions (ACFs) to determine underlying kinetic parameters, such as a diffusion coefficient.
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the concentration of fluorophores due to the denominator for standardization. The
information on the diffusion coefficient and concentration of fluorophores can be
determined, once a mathematical model for G τð Þ is developed.

Stationarity and ergodicity of the diffusion process play a pivotal role to derive
an FCS equation in a closed, yet simple, form. A continuous-time dynamical system
such as Brownian motion is called ergodic when all the accessible microstates such
as the locations of a Brownian particle are equally probable over a long period, i.e.,
the statistical properties from the time average at a position are same as the ensem-
ble (spatial) average at any moment. On the other hand, a stationary process is a
stochastic process whose probability distribution and parameters are invariant by
shifts in time. Stationary and ergodic properties of a diffusion process were proven
mathematically [26].

If we let n x, tð Þ be the fluorescence molecule density per unit area, the temporal
average of n x, tð Þ at a location x0 and the spatial (ensemble) average of n x, tð Þ can be
defined as

n x0, tð Þh it ¼ lim
T!∞

ðT

0
n x0, tð Þdt

n x, t0ð Þh i ¼  n x, t0ð Þð Þ ¼
ð

∞

�∞
n x, t0ð Þ Xt0 ¼ xf gdx:

8

>

>

>

<

>

>

>

:

(48)

Under stationarity and ergodicity of a diffusion process, we assume

n x0, tð Þh it ¼ lim
T!∞

1
T

ðT

0
n x0, tð Þdt

¼
ð

∞

�∞
n x, t0ð Þ Xt0 ¼ xf gdx Ergodikicity


 �

¼
ð

∞

�∞
n x, 0ð Þ X0 ¼ xf gdx Stationarity


 �

¼ n x, 0ð Þh ix

(49)

where n x, t0ð Þ can be though as a snapshot of all the positions of Brownian
particles at any fixed time t0.

4.2 Derivation of diffusion FCS equation

For the fluorescence molecule density per unit area, n x, tð Þ, if we let f x, tð Þ be the
fluorescence intensities due to photons from fluorescent proteins at the location x at
the time t, then f x, tð Þ is proportional to n x, tð Þ. On the other hand, since more
fluorescence photons can be generated under the higher laser intensity, f x, tð Þ is also
proportional to the laser intensity, I xð Þ. Therefore, f x, tð Þ satisfies

f x, tð Þ ¼ QI xð Þn x, tð Þ (50)

where Q is a proportionality constant for the product of the absorption cross
section by the fluorescence quantum yield and the efficiency of fluorescence, and
I xð Þ is a function describing a Gaussian laser profile:

I xð Þ ¼
ffiffiffiffiffiffiffiffi

2
πω2

r

exp �2
x2

ω2

� �

(51)

14

Fluorescence Methods for Investigation of Living Cells and Microorganisms



where ω is the half-width of the beam at e�2, which measures the size of a
confocal volume (V).

A bell-shaped profile of I xð Þ defines a unit confocal volume (V) with Vj j ¼
Ð

∞

�∞I xð Þdx ¼ 1, resulting from the error function integral (Eq. (11)). Therefore, the
fluorescent intensity (or the number of photons, F tð Þ) from the confocal volume is
determined by

F tð Þ ¼
ð

∞

�∞
f x, tð Þdx

¼ Q

ð

∞

�∞
I xð Þn x, tð Þdx

¼ Q

ð

V
I xð Þn x, tð Þdx

(52)

where we used the fact that the Gaussian laser profile defines the confocal
volume in the last equality to switch the integration domain from V to �∞,∞ð Þ.

Lastly, we will also assume the spatial and temporal independence of fluores-
cence intensities:

f x, tð Þf y, tð Þh it ¼
f x, tð Þð Þ2

D E

t
if x ¼ y

f x, tð Þh it f y, tð Þh itif x 6¼ y

8

>

<

>

:

¼
f x, 0ð Þð Þ2

D E

if x ¼ y

f x, 0ð Þh i f y, 0ð Þh iif x 6¼ y

8

>

<

>

:

:

(53)

This assumption hypothesizes that fluorescence intensities from different loca-
tions are not correlated but independent.

In FCS, to analyze the fluorescence fluctuations from the confocal volume (V),
an autocorrelation function (ACF) of the variations in F tð Þ is considered. The
variations in the number of photons from the mean number of photons in a confocal
volume (ΔF) are calculated by ΔF tð Þ ¼ F tð Þ � Fh it where F tð Þ and Fh it are the
fluorescence intensity in the confocal volume at time t and the mean fluorescence in
the confocal volume, respectively. Therefore, by Eq. (52)

ΔF tð Þ ¼ F tð Þ � Fh it

¼
ð

∞

�∞
f x, tð Þdx� lim

T!∞

1
T

ðT

0
f x, tð Þdt

¼ Q

ð

∞

�∞
I xð Þn x, tð Þdx� lim

T!∞

1
T

ðT

0
Q

ð

∞

�∞
I xð Þn x, tð Þdx

	 


dt

¼ Q

ð

∞

�∞
I xð Þn x, tð Þdx�Q

ð

∞

�∞
I xð Þ nh itdx

¼ Q

ð

∞

�∞
I xð ÞΔn x, tð Þdx

(54)

where Δn x, tð Þ ¼ n x, tð Þ � nh it, we used the identities
Ð

∞

�∞I xð Þdx ¼ 1.
Next, the autocorrelation function of the standardized fluorescence fluctuations,

ΔF= Fh it, is computed by
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G τð Þ ¼ ΔF tð Þ
Fh it

ΔF tþ τð Þ
Fh it

� �

t

Fh i2tG τð Þ ¼ lim
T!∞

ðT

0
ΔF tð ÞΔF tþ τð Þ½ �dt

¼ ΔF tð ÞΔF tþ τð Þh it (55)

¼ Q

ð

∞

�∞
I xð ÞΔn x, tð Þdx

� �

Q

ð

∞

�∞
I xð ÞΔn x, tþ τð Þdx

� �� �

t

¼ Q2
ð

∞

�∞

ð

∞

�∞
I xð ÞI yð Þ Δn x, tð ÞΔn x, tþ τð Þh it dxdy

where we used Eq. (50).
Notice that n x, tð Þ satisfies the diffusion equation (Eq. (19)).

Therefore, Δn x, tþ τð Þ also satisfies a diffusion equation in τ and x with initial
time at t (τ ¼ 0):

∂

∂t
Δn x, tþ τð Þ ¼ D

∂
2

∂x2
Δn x, tþ τð Þ

Δn x, tð Þ ¼ n x, tð Þ � nh it

8

>

<

>

:

(56)

Consequently, the solution Δn x, tþ τð Þ is found as (Eq. (21))

Δn x, tþ τð Þ ¼
ð

∞

�∞
Δn x, tð Þ 1

ffiffiffiffiffiffiffiffiffiffiffi

4πDτ
p exp � x� xð Þ2

4Dτ

 !

dx (57)

¼
ð

∞

�∞
Δn x, tð ÞΦ τ, x� xð Þdx:

Next, we use the ergodicity of a diffusion process to derive some essential
properties of the double integral. Because diffusion is an ergodic process, the time
average can be replaced by the ensemble average.

Δn x, tð ÞΔn y, tþ τð Þh it ¼ Δn x, tð Þ
ð

∞

�∞
Δn x, tð ÞΦ τ, y� xð Þdx

� �

t

¼
ð

∞

�∞
Δn x, tð ÞΔn x, tð Þh itΦ τ, y� xð Þdx

¼
ð

∞

�∞
Δn x, 0ð ÞΔn x, 0ð Þh iΦ τ, y� xð Þdx (58)

¼
ð

∞

�∞
Δn x, 0ð Þð Þ2

D E

δ x� xð ÞΦ τ, y� xð Þdx

¼ σ2Φ τ, y� xð Þ

where σ2 ¼ Δn x, 0ð Þð Þ2
D E

is the variance of n x, 0ð Þ, or the mean square

fluctuations of the fluorescence molecules, and δ x� xð Þ is the Dirac delta
function defined as Eq. (18). In Eq. (58), the stationary and ergodic
assumptions were used in the third line to convert the time average to the spatial
average at t ¼ 0.
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Δn x, 0ð ÞΔn x, 0ð Þh i ¼
Δn x, 0ð Þð Þ2

D E

if x ¼ x

Δn x, 0ð Þh i Δn x, 0ð Þh iif x 6¼ x

8

<

:

(59)

¼
σ
2if x ¼ x

0 if x 6¼ x

(

¼ σ2δ x� xð Þ

By plugging Eq. (58) back into Eq. (55)

Fh i2tG τð Þ ¼ Q2
ð

∞

�∞

ð

∞

�∞
I xð ÞI yð Þ Δn x, tð ÞΔn x, tþ τð Þh it dxdy

¼ Q2
ð

∞

�∞

ð

∞

�∞
I xð ÞI yð Þσ2Φ τ, y� xð Þdxdy (60)

¼ Q2σ2
ð

∞

�∞

ð

∞

�∞

2
πω2 exp � 2 x2 þ y2ð Þ

ω2

� �	 


1
ffiffiffiffiffiffiffiffiffiffiffi

4πDτ
p exp � x� yð Þ2

4Dτ

 !" #

dxdy

¼ Q2σ2
2

πω2 �
1
ffiffiffiffiffiffiffiffiffiffiffi

4πDτ
p

� �
ð

∞

�∞

ð

∞

�∞
exp � 2 x2 þ y2ð Þ

ω2 � x� yð Þ2
4Dτ

 !

dxdy

If we substitute y ¼ xþ
ffiffiffiffiffiffiffiffiffi

4Dτ
p

η (dy ¼
ffiffiffiffiffiffiffiffiffi

4Dτ
p

dη), then

Fh i2tG τð Þ ¼ 2Q2σ2

πω2
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ð

∞

�∞

ð

∞

�∞
exp �

2 x2 þ xþ
ffiffiffiffiffiffiffiffiffi

4Dτ
p

η

 �2

� �

ω2 � η2

0

@

1

A

ffiffiffiffiffiffiffiffiffi

4Dτ
p

dηdy

¼ 2Q2σ2

π
ffiffiffi

π
p

ω2

ð

∞

�∞

ð

∞

�∞
exp �

2 x2 þ xþ
ffiffiffiffiffiffiffiffiffi

4Dτ
p

η

 �2

� �

þ ω2η2

ω2

0

@

1

Adηdx (61)

¼ 2Q2σ2

π
ffiffiffi

π
p

ω2

ð

∞

�∞

ð

∞

�∞
exp �

2 x2 þ xþ
ffiffiffiffiffiffiffiffiffi

4Dτ
p

η

 �2

� �

þ ω2η2

ω2

0

@

1

Adηdx

where we used the fact

ð

∞

�∞

ð

∞

�∞
exp �

2 x2 þ xþ
ffiffiffiffiffiffiffiffiffi

4Dτ
p

η

 �2

� �

ω2 � η2

0

@

1

Adηdy

¼
ð

∞

�∞

ð

∞

�∞
exp � 4x2 þ 4

ffiffiffiffiffiffiffiffiffi

4Dτ
p

xηþ 2 4Dτð Þη2 þ ω2η2

ω2

� �

dηdy (62)

¼
ð

∞

�∞

ð

∞

�∞
exp �

4 x2 þ 2
ffiffiffiffiffiffi

Dτ
p

xηþ
ffiffiffiffiffiffi

Dτ
p

η
� �2

� �

þ 4Dτ þ ω2½ �η2

ω2

0

@

1

Adηdy

¼
ð

∞

�∞

ð

∞

�∞
exp �4 xþ ffiffiffiffiffiffiffiffi

Dτη
pð Þ2 þ 4Dτ þ ω2½ �η2

ω2

 !

dηdy
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Now, we can evaluate the inner integral in Eq. (46) using a substitution
z ¼ xþ

ffiffiffiffiffiffi

Dτ
p

η for x

ð

∞

�∞
exp � 4 xþ ffiffiffiffiffiffiffiffi

Dτη
pð Þ2

ω2

 !

dx ¼
ð

∞

�∞
exp �4z2

ω2

� �

dz (63)

¼ ω
ffiffiffi

π
p

2

where we used Eq. (11). Back to Eq. (61)

Fh i2tG τð Þ ¼ 2Q2σ2

π
ffiffiffi

π
p

ω2

ð

∞

�∞

ð

∞

�∞
exp �4 xþ ffiffiffiffiffiffiffiffi

Dτη
pð Þ2

ω2

 !

dx

( )

exp � 4Dτ þ ω2ð Þη2
ω2

� �

dη

¼ Q2σ2

ωπ

ð

∞

�∞
exp � 4Dτ þ ω2ð Þη2

ω2

� �

dη (64)

¼ Q2σ2

ωπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2π

4Dτ þ ω2

r

¼ Q2σ2

ω
ffiffiffi

π
p 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ=τ_D
p

by the error function integration (Eq. (11)), where τD ¼ ω2= 4Dð Þ, which is a
diffusion time.

If fluorescence molecules undergo Brownian motion, then the number of pho-
tons in a confocal volume changes in time due to random movements of fluores-
cence molecules in and out of the confocal volume. In FCS analysis, the number of
photons (or fluorescence molecules) from a confocal volume at any moment t is
assumed to follow a Poisson distribution, in which the probability for k fluorescence
molecules (or photons) to be found in the confocal volume is

 F tð Þ ¼ kð Þ ¼ e�λλk

k!
(65)

where λ ¼ Fh it is the average number of fluorescence molecules (or photons) in
the confocal volume. This assumption is reasonable for a diffusion process since the
arrival process of infinitely many identical independent diffusion processes was
shown to be a Poisson process [27]. Importantly, the mean (or expectation) and
variance of a Poisson random variable are known to be equal

 F tð Þð Þ ¼
X

∞

k¼0

k F tð Þ ¼ kf g ¼ Fh it

σ2 ¼  F tð Þ � Fh it
�

�

�

�

2
� �

¼ Fh it

8

>

>

>

<

>

>

>

:

: (66)

Since we assumed that F tð Þ follows the Poisson statistics that has equal variance
and mean

Fh i2tG 0ð Þ ¼ ΔF tð ÞΔF tþ 0ð Þh it (67)

¼ ΔF tð Þð Þ2
D E

t
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¼ σ2

¼ Fh it

by Eq. (66). On the other hand, by Eq. (64)

G 0ð Þ ¼ Q2σ2

ω
ffiffiffi

π
p (68)

which indicates that

1
Fh it

¼ Q2σ2

ω
ffiffiffi

π
p (69)

By replacing the bulk parameters in Eq. (47) with 1= Fh it

G τð Þ ¼ 1
Fh it

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ=τD
p (70)

As we saw, with a Poisson distribution assumption on F tð Þ, we can readily
determine the average density of fluorescence molecules as well as the average
number of fluorescence molecules in the confocal volume. Similar to FRAP
equations, FCS equations in higher spatial dimensions can be found by similar
calculations

G τð Þ ¼ 1
Fh it

1

1þ τ=τDxy

� � 2Dð Þ (71)

G τð Þ ¼ 1
Fh it

1

1þ τ=τDxy


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ=τDz

p 3Dð Þ

where τDxy ¼ ω2
xy= 4Dð Þ and τDz ¼ ω2

z= 4Dð Þ with ωxy = the half-width of the beam

at e�2 in x/y� direction and ωz = the half-width of the beam at e�2 in z� direction.

5. Conclusion

Diffusion plays a crucial role within biological systems in many different tem-
poral and spatial scales from various perspectives. It is a dominant way for biolog-
ical organisms to transport multiple molecules to desirable locations for cell
signaling. However, to quantify the molecular diffusion, especially in live cells, is
still challenging although a couple of tools are available, including fluorescence
recovery after photobleaching and fluorescence correlation spectroscopy. Although
FRAP and FCS were originally developed to study biological diffusion processes,
they are now being applied not only to a diffusion process but also to a broad range
of biochemical processes, including binding kinetics and anomalous diffusion. Since
the derivation of FRAP and FCS equations for many biochemical processes shares
many common steps with the diffusion FRAP and FCS equations, it is essential to
understand the mathematical theory behind the diffusion FRAP /FCS equation
[18, 22, 25, 28–32]. In this study, we provide a simple and straightforward deriva-
tion of FRAP/FCS equation for free diffusion based on calculus-level mathematics,
so that FRAP/FCS equations and its applications are accessible to a broad audience.
Although the applications of these FRAP and FCS equations to cell membrane
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biophysics from experimental perspectives can be a very important topic, it is
beyond the scope of this chapter and therefore will not be covered here. These
topics are well documented in various references, and interested readers are
referred to [20, 31, 33], and references therein. We hope that this tutorial is under-
standable as well as gives readers a solid theoretical foundation for FRAP and FCS,
bridging the gap between experimental and theoretical aspects of FRAP and FCS.
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