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Chapter

Optimization of Manufacturing
Production and Process
YinQuan Yu

Abstract

This chapter mainly introduces production processing optimization, especially
for machining processing optimization on CNC. The sensor collects the original
vibration data in time domain and converts them to the main feature vector using
signal processing technologies, such as fast Fourier transform (FFT), short-time
Fourier transform (STFT), and wavelet packet in the 5G AI edge computing. Sub-
sequently, the main feature will be sent for cloud computing using genetic pro-
gramming, Space Vector Machine (SVM), etc. to obtain optimization results. The
optimization parameters in this work include machining spindle rotation velocity,
cutting speed, and cutting depth, while, the result is the optimized main spindle
rotation speed range of CNC, which met machining roughness requirements.
Finally, the relationship between vibration velocity and machining quality is further
studied to optimize the three operational parameters.

Keywords: machining processing optimization, time domain, short time Fourier
transform, wavelet packet, genetic programming, deep learning

1. Introduction

The International Federation of Information Processing (IFIP) defines a numer-
ically controlled (also commonly called CNC) machine tool as a machine tool
equipped with program control. The difference between CNC machine tools and
ordinary machine tools lies in the working sequence of NC machine tools: according
to the requirements of part processing, CNC language is used to write processing
sequences and parameter programs. After the program is analyzed and processed by
the CNC device, the execution instructions are sent to the servo system to actuate
the motion of the machine tool [1]. Programming controlled movement of the main
spindle and worktable completes the processing that does not exist in ordinary
machine tools. As shown in Figure 1, the mechanical aspects of CNC machine tools
mainly include three major parts: the main shaft component [2], followed by the
support component, and the conveying mechanism [3]. The main shaft is partially
driven by a high-precision stepper motor or servo motor instead of a conventional
motor. The transmission part uses a ball lead screw with less resistance and greater
rigidity without backlash instead of the traditional lead screw. The CNC system
controls the movement of the mechanical structure of the CNC machine tool to
complete the processing of parts. The main component is the MCU. The coordina-
tion between its functions is an important index for evaluating the CNC machine
tool and the CNC system [4].
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The optimization of CNC machine tools mainly includes the following three
aspects:

1.1 Mechanism optimization

Improving machining accuracy of the machine tool must start from the design
stage of the NC machine tool, adopt the drive device with outstanding dynamic
performance, and use advanced control technology to improve anti-interference
ability of the servo system [5–9]. Structural optimization design can calculate the
durability and maintainability of NC machine tools, and design reliability by calcu-
lating the space error model of XYZ CNC machine tools by first-order and second-
order matrices, Monte Carlo method, etc. [10]. By studying the kinematic configu-
ration of CNC machine tools, it is found that it directly affects the nonlinear errors
generated in the process of free-form surface machining [11], and has a direct
impact on processing energy consumption and design of the supporting CNC sys-
tem [12]. The moving parts of CNC machine tools and the mechanism of each feed
axis also have a significant impact on the overall rigidity [13], positioning error
[14], maintainability [15], and other indicators of CNC machine tools, which deter-
mine machining accuracy and work reliability [16]. The spindle of CNC machine
tools can be analyzed and optimized by finite element analysis [17]. The finite
element modeling can appropriately simplify some chamfers, small holes, etc. that
do not affect mechanical properties [18]. The denser and more accurate the finite
element (FEM) mesh division, the longer the optimization calculation time [19].
The method of selecting the appropriate unit division, which is not discussed here,
can be found in ANASYS-related books. In addition to the influence of the spindle
of the CNC machine tool, the deformation of the CNC machine tool due to
insufficient static stiffness [20] causes deviations between the actual position and
the ideal position of the tool and the workpiece, and seriously affects its machining
accuracy. The guide rail has a decisive influence on the accuracy of the machine tool
[21]. The optimized design of the guide rail of the machine tool can significantly
improve the geometric accuracy of the bed rail, thereby significantly enhancing the

Figure 1.
Components of a CNC lathe.
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machining accuracy of the NC machine tool. Furthermore, selecting the right load
rail by speed can optimize the machining quality. In terms of precision machining, a
reasonable milling process should be selected according to different materials [22].
Choosing a suitable processing tool and enhancing the strength of the processing
tool can avoid vibration caused by the high speed of the machine tool spindle during
processing, which will affect processing accuracy [23]. For example, in the process
of boring bar technology processing, strong heat treatment technology can be used
to improve the rigidity and strength of its material. The error of the tool during
manufacturing and machining wear [24] requires us to monitor it in real time to
detect problems in time, check and integrate and summarize these problems, and then
establish an error compensation model through the data system [25]. The influence of
tools and bearings on the accuracy of machine tools is obvious [26]. The machining
process should select the tool based on the cutting degree, depth, and accuracy of the
parts [27], and the bearing selection should use bearings with relatively low friction
resistance and high degree of smoothness and stability. During gear machining, the
accuracy of the machine tool will affect transmission characteristics during gear
machining [28–30]. The machining process can be regarded as the cutter wheel axis
revolving around the center axis of the production wheel. Cogging is processed by 3–7
groups of tools. After each cogging is processed, the workpiece rotates and the next
cogging is processed. Cutting tools installed on the tool turret includes outer blade,
middle-outer blade, middle-inner blade and inner blade. There are three main
methods to check the machining accuracy of CNC machine tools [31]: sample detec-
tion method, indirect detection method [32], and direct detection method.

1.2 Energy consumption optimization

The energy-saving process optimization of CNC machine tools usually divides
the machine tool’s energy consumption into several parts [33]; the auxiliary system,
the main drive system, the feed system, and the process of cutting and load.
Gaussian process regression models are established according to these five parts,
and the differential evolution algorithm is used to optimize the model. According to
the processing requirements, a model of the energy consumption, cost, and time of
the cutting process is established. The dynamic multi-swarm particle swarm opti-
mization algorithm is used for calculation to obtain more diverse and convergent
results [34]. The energy consumption of CNC milling machines can be divided into
three parts, namely fixed energy consumption, no-load energy consumption, and
milling energy consumption [35]. It can analyze the multi-source energy flow of the
machine tool and the energy consumption of the machining process to establish the
power of the machining stage equations and energy consumption estimation
models. The calculation of energy consumption can be carried out from the amount
of cutting, processed gears, cutting tools, cutting fluids of CNC machine tools, etc.
to study carbon emissions [36]. The finished processing time is then established.
The machining surface accuracy and other conditions are based on the reduction of
carbon emissions from the spindle speed and feed rate during machining. A multi-
objective optimization model for optimizing carbon emissions and processing costs
can be established [37], which can be solved by genetic algorithms [38], and the
feasibility of the optimization method of the model is verified by simulation calcu-
lation. On the digital intelligent machine tool, a system for detecting the energy
consumption of the machining process of the CNC machine can be designed based
on the upper computer information interaction unit and the lower computer infor-
mation acquisition element.
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1.3 Process optimization

The process design optimization of CNC machine tools has a significant impact
on their precision performance. The design of the machining process of the machine
tool should determine the processing steps and clamping methods of the workpiece
by analyzing the mechanical drawings of the parts; the geometric elements of the
outline of the part, the accuracy requirements of the dimensional tolerances, the
accuracy requirements of the shape and position tolerances, surface smoothness
requirements, material quality requirements, and the number of processes mode
[33]. The feed route, choice of cutting amount, and choice of tool can then be
determined. In order to prevent the tool from colliding with the workpiece during
the machining process, the optimization of the machining process must be carried
out by interference avoidance research [39, 40]. Based on the algorithm of coordi-
nate extremes, the complex surface should be simplified by taking an arc of the
surface [41], and performing measurement on the bisector. The vibration of the
machine tool gravely affects its machining accuracy [42]. The hardness and thick-
ness of the workpiece during the machining process [43] and the force of the
machine tool are taken into consideration [44]. For the movement path [45], the
movement speed [46] is optimized to achieve the machine vibration damping
control. Another vibration reduction method is passive vibration reduction, which
using materials with strong vibration resistance strengthens the stability of CNC
machine tools [47]. Another factor affecting the machining accuracy of CNC
machine tools is thermal deformation. During the working process of the machine
tool, the moving parts of the machine tool will be affected by thermal deformation,
which will cause relative displacement between the tool and the workpiece [48].
The solution is to strengthen cooling and lubrication during the work process to
reduce the displacement [49]. The thermal characteristics, machining environment,
and specific cutting parameters of the machine tool determine the size of the
thermal error by solving the function of the time-varying temperature field under
given conditions [50]. The purpose of the auxiliary heat source is to balance the
temperature field to reduce heat source interference. In short, the errors caused by
structural deformation, vibration, and high temperature in CNC machine tools can
be compensated with the following methods: single error synthesis compensation
technology [51], geometric error direct compensation technology, geometric error
synthesis compensation technology [14], single-term error synthesis compensation
technology by studying the error produced by a certain CNC machine tool, and
geometric error direct compensation technology by measuring the error data to
directly error compensation on the CNC machine tools. Using geometry error
synthesis compensation technology, the unidirectional error information is
decomposed by obtaining the synthetic error value of the CNC machine tool. It is
particularly important to emphasize the tremendous difficulty in accurately mea-
suring the angular error of the spindle during the general process; however, it can
now be solved by a matrix using a laser interferometer [52]. For complex curved
surface processing, multi-step compensation must be adopted as follows: (1) pre-
compensation; (2) error detection; and (3) reverse compensation. For the deforma-
tion of the tool during machining, mirror image anti-deformation compensation
that mirrors the tool position point and the tool axis vector must be adopted [53].

To sum up, the reliability of CNC machine tools is guaranteed by the processing
quality of each part of the CNC machine tools, and the quality of processed parts is
controlled by the quality of the processing procedures. For the analysis of the
machining process of the machine tool, it is necessary to analyze the machining
process of a key part. The optimization parameters of CNC machine tool machining
process are mainly energy consumption during machining, machining efficiency,
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and machining accuracy. Due to the limited space, this chapter only discusses the
influence of optimization parameters on machining accuracy.

2. CNC common processing optimization approach

The Computer Numerical Control (CNC) machine tools lie in the working
principle of CNC machine tools: according to the requirements of part processing
and using CNC language, the processing sequence is written into parameter pro-
grams, and the program is analyzed by Multipoint Control Unit (MCU). After
processing, the execution instructions are sent to the Driving System of step motors
or Servo motors and the machine tool will start machining the work piece. The
position and velocity signals of the machine tool will then be sent back to the MCU.
The schematic of CNC is shown in Figure 2.

From a mechanical point of view, CNC machine includes three main sub-
systems: the main spindle sub-system, followed by the supporting sub-system and
the conveying mechanism sub-system. From a control point of view, it mainly
includes two sub-systems: Data Processing Unit and Control Loop Unit. The
processing of parts action is completed through the numerical control system by
controlling the mechanical structure of the CNC machine tool. The coordination
between their functions is an important index for evaluating the machine tools
under the CNC system. To fully utilize the merits of CNC for precision machining, a
reasonable milling process should be selected according to different materials.
Vibration caused by excessive rotation speed of the machine tool spindle will affect
machining accuracy. The outer ring can be processed after specific processing.
During the process of boring bar technology, thermal stiffness enhancement
technology can be used to improve the rigidity and strength of the material.

Figure 2.
Schematic diagram of CNC.
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2.1 Cutting force monitoring

To obtain the wear and tear errors in the manufacturing and processing of
cutting tools, we need to monitor them in real time to detect problems in time,
check, integrate, and summarize them, and then establish them through the data
system error compensation model. The deformation of the machine tool due to
insufficient static stiffness, which causes deviations between the actual position and
the ideal position of the tool and the workpiece, seriously affects its machining
accuracy. In Precision Machining process on CNC, the cutting force in tangential
and radial directions needs to be predicted based on monitoring signals and
machining process parameters such as cutting depth, cutting width, rotational
speed of the main spindle, and feed speed of the cutting tool. The experimental data
of the cutting forces are shown in Figure 3.

2.2 Processing path optimization

The kinematic configuration of CNC machine tools directly affects the nonlinear
errors generated in the process of free-form surface machining, and has a direct
impact on processing energy consumption and design of the supporting CNC system.

After determining the motion configuration of the CNC machine tool, the
mechanism of each feed axis has a significant impact on the overall rigidity, posi-
tioning error, maintainability, and other indicators of the CNC machine tool, which
determine its machining accuracy and work reliability. For instance, in order to
machine complex surface S12, it needs to be decoupled into surface S1 and S2.
According to the required feed motion of surface S1 and S2, we can get the feed
motion of combined curved surface S12 as shown in Figure 4.

A heuristic algorithm (HA) is one that is designed to solve a problem in a faster
and more efficient fashion than traditional methods at the expense of optimality,
accuracy, precision, or completeness. Although it has the capability of convergence
and obtaining the optimization result efficiently, it depends heavily on initial result
and may only obtain local optimal solution of non-smooth curve functions. More-
over, it occupies a large amount of computing resources and has a poor real-time
performance, which may be incompatible with Computer Aided Manufacturing
(CAM) on CNC. In order to overcome this issue, a discrete tool planning is pro-
posed as follows:

Path ¼ A,Cð Þ1path1 , A,Cð Þ2path2 , A,Cð Þ3path3 , … A,Cð Þmpathm

n o

: (1)

where, A,Cð Þmpathm represents the positions of two rotary feed axes A and C when
the cutting point is on m.

Figure 3.
The experimental cutting forces in tangential and radial directions.
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One methodology for positioning error compensation of CNC machine tools is
through interpolation. It produces third-order splines from the coordinates of dis-
crete points measured by Laser Doppler velocimetry (LDV). Between [xi�1, xi], the
interpolation function of splines s(x) can be deduced as

s xð Þ ¼
xi � xð Þ3 ∗Mi�1 þ x� xi�1ð Þ3 ∗Mi

h i

6hi
þ yi�1 �

h2i
6

∗Mi�1

 !

xi � x

hi

þ yi �
h2i
6

∗Mi

 !

x� xi�1

hi
, i¼ 1, 2, …n (2)

In order to obtain Mi-1, let

di ¼
6

hi þ hiþ1

yiþ1 þ yi
hiþ1

�
yi þ yi�1

hi

� �

¼ 6f xi�1, xi, xiþ1ð Þ

ui ¼
hi

hi þ hiþ1
, λi ¼
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¼ 1� ui

8

>

>

<

>

>

:

(3)

Since the binomial multi-order derivative is continuous, Mi satisfies N � 1
equations,

uiMi�1 þ 2Mi þ λiMiþ1 ¼ di i ¼ 1, 2, 3… , n� 1 (4)

The first type of boundary conditions is

S0 X0ð Þ ¼ f 00 ¼ m0, S0 Xnð Þ ¼ f 0n ¼ mn (5)

Then, Eq. (4) can be present as

2 λ0
μ1 2 λ1

… … …

μn�1 2 λn�1

μn 2
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(6)

Figure 4.
The feed motion of S12 obtained from that of decoupled surface S1 and S2.
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2.3 Processing dynamic profile optimization

To prevent CNC machining in normal condition, the acceleration and velocity of
the moving stages have to be monitored and should be less than the maximum
design range of CNC machine.

With the known coordinates of two adjacent track points xnþ1, znþ1ð Þ, xn, znð Þ
and the velocity of the main spindle, the acceleration and velocity of point n are
approximately.

∆t ¼
∆θ

ω
, vn ¼

xnþ1 � xn
∆t

znþ1 � zn
∆t

2

6

6

4

3

7

7

5

, an ¼

_xnþ1 � _xn
∆t

_znþ1 � _zn
∆t

2

6

6

4

3

7

7

5

: (7)

Figure 5 shows the monitored acceleration in x and z directions respectively.
Their values should be within CNC machine design range. NC machining process
usually faces “over cutting” issue, which can be minimized through the commonly
used method of rotating the tool angle as shown in Figure 6.

The extreme value Stand root mean square value Sq of the machining surface
shape are the two major indicators of the machining accuracy and are calculated by
the following equations:

St ¼ max eð Þ � min eð Þ, Sq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
e2i=n

q

: (8)

Figure 5.
Discrete point acceleration of machining trajectory. (a) Acceleration of track pint in x axis and (b) acceleration
of track pint in x axis.

Figure 6.
Machining tool overcutting compensation.
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where e represents the shape tolerance of the machining surface, N represents
the number of the measured point.

Figure 7 shows the implementation of cutting tool compensation to reduce the
machining error. It can be seen that tool compensation can effectively solve
machining errors from 0.8 to 0.5 μm due to overcutting of tools through rotating
cutting tool angle ϑ.

To minimize the value of S_(t)and S_(q), the optimized machining profile
should be conducted as shown in Figure 8. In order to make the movement of the
machine tool smooth and the processing more stable, the concept of “jerk” is
introduced and made as constant. Then, the profile of acceleration is trapezoid. It
can be seen that the speed profile of trapezoid acceleration is smoother than that of
constant acceleration. As we know that the reaction force of the worktable and feed
screw becomes infinite if the acceleration is suddenly changed. As a result, it may
damage some motion transmission parts of CNC, such as worktable, lead screw, or
servo motor.

Usually, in order to obtain high quality of the machining parts and extend the
working life of the CNC machining, the speed of CNC is kept as constant as possible
besides start and end stage of the machining processing.

Figure 7.
Cutting tool compensation to reduce machining error. (a) Machining error before tool compensation and
(b) machining error after tool compensation.

Figure 8.
Distance, velocity, acceleration, jerk vs. time profile in acc/dec process of CNC machining.

9

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



3. Processing tools deflection compensation

Any machining process will induce dynamic reaction forces on the cutting tool.
Cutting tool deflection due to improper clamping, tool wear, and error in machine
accuracy may lead to error in the final product. Hence, the current trend in the
industry is to detect such errors and compensate for them in machining to avoid
scraping the material afterward. In this chapter, we attempt to detect the cutting tool
deflection while machining the workpiece and hence predict error on the workpiece.
To detect the deflection during machining, we use either a contact or a non-contact
sensor. One of the major considerations in choosing the right sensor is cost and ability
to measure the error under harsh environments. In this section, compared to capaci-
tive probe, we finally decide to adopt eddy current gap sensors to detect deflection of
the cutting tool during machining of a simple profile and predict error on the work-
piece. The predicted error was then verified using Coordinate Measuring Machine.

3.1 Displacement sensor for tool compensation

To compensate for the cutting tools or work piece deflection, there are two types
of commonly used displacement sensors to monitor: (1) capacitance gap sensors and
(2) Eddy current type gap sensors.

3.1.1 Capacitance gap sensors

The capacitance of a parallel-plate capacitor is given by

C ¼
εrε0A

d
(9)

where, εr represents electric constant of the insulatingmedium (ε r = 1 for air); ε0
represents permittivity of air or vacuum,which is 8.85� 10�12 F/m; A represents
overlapping area in plates; andd represents varyingdistance between thebottomsurface
of the electrode of capacitive probe and the surface ofmeasured object (tool cutting tip).

The working schematic of the capacitive probe is shown in Figure 9(a). It is
evident that changes in the distance between the capacitive probe and the measured
object (cutting tools) change the capacitance, which in turn changes the current
flow in the sensing element. RF oscillator generates 500 kHz and 1 MHz high-
frequency electric field to focus the sensing field on the cutting tool. Figure 9(b)
shows the relationship between distance d and capacitance c. It shows d decreases as
c increases. Based on this principle, the distance between plates can be determined
by calculating the capacitance value.

Figure 9.
The working schematic and principles of capacitive probe. (a) Schematic of capacitive probe and
(b) capacitance vs. distance.
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3.1.2 Eddy current type gap sensors

The working schematic of eddy current gap sensor is shown in Figure 10. When
a nonmagnetic conductive target material is introduced into the coil field, eddy
currents are induced on the target’s surface. These currents generate a secondary
magnetic field, inducing a secondary voltage in the sensor coil. The result is a
decrease in the coil’s inductive reactance (the coil-target interaction is similar to the
field interaction between the windings of a transformer). By calculating the “effec-
tive impedance” of the sensor coil, the distance to the target can be determined.

Nonmagnetic conductive target materials (e.g., aluminum, copper, brass, gold),
with low resistivity and a magnetic permeability of 1, can provide output sensitivity
in terms of impedance change per unit of target displacement.

The capacitive probe is suitable for measuring any metal surface. Its measuring
accuracy can reach up to several nanometers. However, the dusty working envi-
ronment is not suitable for applying capacitive probe to measure the target, as the
gap between probe and the measured target is contaminated by dust, liquids such as
coolant. As a result, the measuring accuracy of the capacitive probe is affected. On
the other hand, the current gap sensor is suitable for measuring conductive material
except steel. However, it cannot measure thin materials because of insufficient eddy
current generated, thus affecting the measuring accuracy of the gap sensor.

3.2 Tool deflection compensation approach

Figure 11 shows 5G AI Edge computing configuration for CNC cutting tool
deflection compensation. The original signal is collected by sensor and sent to 5G AI
computing for preprocessing such as noise reduction with low-pass filter, com-
pressed data etc. The dimension-reduced data is sent for cloud computing through a
5G network router. The cloud computing device uses genetic programming (refer to
Figure 12) to generate the cutting tool deflection compensation algorithm and
sends it back to the 5G AI edge computing local network. 5G AI edge computing
device then calculates the compensation value and sends it to MCU to compensate
for the cutting tool deflection.

3.3 Algorithm adopted in tool deflection compensation

Genetic programming (GP) is adopted in this study to conduct tool deflection
compensation. It evolves from computer programs that are traditionally
represented in memory as tree structures. Trees can be easily evaluated in a recur-
sive manner. Every tree node has an operator function and every terminal node has
an operand, rendering mathematical expressions easy to evolve and evaluate. Thus,
traditionally GP favors the use of programming languages that naturally embody
tree structures.

Figure 10.
The working schematic of eddy current gap sensor.
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GPLAB is a genetic programming toolbox for MATLAB® initially developed by
Sara Silva. The main modules of GBLAB are GENPOP, GENERATION, and
SETVARS. GENPOP module generates the initial population and calculates its
fitness based on default or user defined fitness function. Terminal set:

Terminal set: “X1,” “rand,” and “100”.
Terminal condition: Maximum generation reached.
Function set: plus (+), minus (�), times (*) and other protected function in.
Fitness function: Fitness function is defined as the minimum value between

actual value and predicted value. During the programming calculation process, the
new population should be superior to the previous population. In other words, the
new fitness value will be lower than previous one.

Figure 11.
5G AI edge computing for CNC cutting tool deflection compensation.

Figure 12.
Schematic of genetic programming for tool deflection compensation.

12

Smart Manufacturing - When Artificial Intelligence Meets the Internet of Things



Fitness ¼ min abs predicted result� expected resultð Þð Þ: (10)

The schematic of genetic programming for tool deflection compensation is
shown in Figure 12. The optimal tool deflection compensation algorithm is obtained
through hundreds of generation selection, crossover, and mutation operation until
set fitness function is reached.

3.4 Tool deflection compensation experiment

The material of cutting tools includes high-speed steel, ELMAX chromium-
molybdenum-vanadium alloy steel, or nickel-chromium alloy steel. However, the
cutting chip will reduce the capacitive probe measurement sensitivity and accuracy
and damage the capacitive probe. Therefore, the eddy current gap sensor will be
adopted in this working environment. The deflection signal is sent to 5G AI edge
computing for signal pre-processing, before sending for computing through genetic
programming. The computing results are sent back to MCU of the CNC to control
the movement of the main spindle and the worktable.

The cutting surface error compensation with and without cutting tool deflection
compensation are shown in Figure 13. It shows that the maximum machining error

Figure 13.
Cutting surface error with/without tool deflection compensation.

Figure 14.
The deviation distribution of the machining with/without tool deflection compensation.
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is reduced from 0.053 to 0.032 mm, which is 40%. The deviation distribution of
machining with/without tool deflection compensation is shown in Figure 14 in
three dimensions. It can be seen that at almost all measured points, the machine
error on a curved surface without tool deflection is larger than that on a machining
curved surface with tool deflection compensation. Moreover, the error is largest at
the bottom area of inflection of the curved surface, reaching 0.053 mm. This may be
due to two reasons. First, the cutting tool suffered the largest reaction force and
induced the largest deflection. Second, the stiffness of the machining tool is smallest
at the tip.

4. Processing error feedback compensation

4.1 Experimental setup of error feedback compensation

In order to further reduce the machining error after cutting tool compensation,
the error feedback compensation strategy is selected as shown in Figure 15. Two
accelerometers are attached to the side of the stator of the main spindle and the side
of the workpiece to measure their vibration signals respectively. The vibration of
the accelerator attached to the main spindle in idle and working conditions is
monitored and feedback to CNC, then, the CNC control the main spindle rotation
speed to obtain minimum vibration signal. The vibration sensor attached to the
workpiece monitored the dynamical performance of the workpiece and the signal is
sent back to the control unit for processing. A servo actuator is attached to the
bottom surface of the workpiece to compensate for the machining error, which is
based on control signal received from control unit. An acoustic emission sensor is
attached near the workpiece to monitor the acoustic noise and the fault processing
condition. The original signal is sent to control main server for processing and
pattern and status recognition. Lastly, the control command is sent from the main
server to CNC machine to minimize the machine error.

Figure 15.
Schematic of error feedback compensation.
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4.2 Signal processing in error feedback compensation

Figure 16 shows error feedback compensation signal noise filter and recon-
struction processing. The original time domain signal is obtained from the vibration
sensor and converted into frequency domain through fast Fourier transform (FFT)
algorithm. The bandpass filter is applied to filter out high frequencies and low-
frequency and DC component. Interesting frequencies that include useful informa-
tion are obtained after applying a signal technology to find peaks of the FFT in the
range. The final step is to reconstruct the signal to control the actuator in order to
compensate for machining error.

4.3 Experimental results of error feedback compensation

Figure 17 shows the cutting surface error without tool deflection compensation,
with tool deflection compensation, and with error feedback compensation. It can be
seen that the maximummachining error is reduced by 35% from 0.032 to 0.021 mm
when the error feedback compensation is applied. Therefore, the total machining
error is reduced by 60% from 0.53 to 0.021 mm. However, the error feedback
strategy does not work at measurement point 40. Moreover, in two ranges (point
20–28, point 45–55), machining error is larger than that with tool deflection com-
pensation strategy only.

The deviation distribution of machining without compensation, with tool
deflection compensation, with error feedback compensation is shown in Figure 18.
It can be seen that the deviation distribution of the machine curved surface with
feedback compensation is minimal. On the other hand, the deviation distribution of
the machine curved surface without tool deflection and error feedback compensa-
tion is largest. In other words, in order to achieve good machining quality product,
the tool deflection compensation and error feedback compensation strategy should
be adopted.

Figure 16.
Error feedback compensation signal noise filter and reconstruction processing.
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5. Processing parameter optimization compensation

An experienced operator can significantly reduce machining error by applying
cutting tool deflection and error feedback compensation when the optimized oper-
ation parameter is known. However, the process obtaining optimized operation
parameter by try and error is time-consuming for new operator. Therefore, this
section will introduce the parameter base optimization operation strategy. 5G AI
edge computing and cloud computing strategy will be applied to obtain optimized
operation parameter automatically.

5.1 Network configuration for processing parameter optimization

Figure 19 shows the cloud-based intelligent manufacturing configuration with
5G AI edge computing, which is also known as smart manufacturing configuration.
The company data center managed by the IT department acts as a data transfer

Figure 17.
The machining surface error without tool deflection compensation, tool deflection compensation, error feedback
compensation.

Figure 18.
The deviation distribution of the machining without compensation, with tool deflection compensation, with
feedback error compensation.
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bridge connecting each department of the company such as CAD center, CAM
center, sales department, supply department, warehouse, maintenance department
etc. It also acts as a data communication buffer linked to cloud computing centering
out of the company. The designer can access the local data center to download the
CAD drawing in order to modify the existing drawing, save the new CAD
drawing, or update drawing to local data center. In the CAM center, every client
computer is connected to a CNCmachine. The CNCmachine processing monitoring
signal and the corresponding machine number information are sent to the company
data center and to the cloud computing data center if necessary. All information
needed for CAM center to produce the machining parts is sent through company
data center as well. For instance, the production manager can download the CAD
drawing from company data center and convert it to CAM file format. The
technical person from the company then sends a file with control command or a
file with the new compensation algorithm trained by cloud computing to the client
PC in the CAM center. Cloud computing center receives request and the training
data set from the company and sends back the proposed processing optimized
parameters or processing control algorithm. In the cloud data center, the data
received from the company will be stored in a database. It utilizes GP, MNNR, or
other deep learning algorithm to obtain the optimized parameters through the
expert system.

Figure 20 shows the cloud-based intelligent manufacturing configuration in the
CAM center. The whole system configuration includes CNC real-time machining
status monitoring, real-time environmental monitoring, CNC cutting tool deflec-
tion compensation, error feedback compensation as well as CNC machining opera-
tion process optimization through a combination of cloud computing and 5G AI
edge computing. Unlike traditional standalone CNC machining, all CNC machines
(refer to Figure 21) are connected through a local network client PC with cable or
wireless in intelligent manufacturing environment. CAD drawing is sent to a local
client instead of programming. The signals from sensors monitoring the CNC
machining status are sent to 5G AI edge computing devices to pre-process.
Processed data and corresponding machine no. are sent to the company data center
through the client PC.

Figure 19.
The cloud-based intelligent manufacturing configuration.
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5.2 Data collection for processing parameter optimization

Figure 22 shows a CNC machine connected to the local network. In order to
obtain vibration signal to train the GP, Neural Networks (NNR), and Support
Vector Machine (SVM) algorithm, two wireless accelerometers, Sensor 1 and
Sensor 2, are attached to the cutting tool. Their signals will be sent to the cloud for
GP, NNR, and SVM base computing. Specimen (Nylon) is clamped into three-jaw
chuck. Vibration signal is sent to cloud server through 5G AI Edge computing
device and 5G router. In order to find optimized operational rotational speed of
main spindle, three groups of specimens (30 pcs) are machined with varied
rotational speed as shown in Tables 1–3.

In order to get reliable data, the three groups of specimens must have the same
experimental condition; the diameter and length of all experimental specimens are
25 and 30 mm respectively.

Figure 20.
The cloud-based intelligent manufacturing configuration in CAM center.

Figure 21.
A group of CNC machines connected through local networks.
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When the rotating speed of themain spindle of CNCmachine is the same, the same
feed rate is selected as well. The feed rate is increased with increasing rotating speed.

Figure 23 shows three groups of specimens labeled as A1–A10, B1–B10, and
C1–C10 respectively. Group A specimens are used as training data set while group B
and C specimens are used as testing data set.

5.3 Signal processing technologies for processing parameter optimization

There are various signal processing technologies for analyzing the monitoring
machine working condition and product processing. The commonly used technolo-
gies are: time domain signal processing; FFT; wavelet technology; and short-time
Fourier transform (STFT). Normally, time domain data are the original data
recorded by the sensor, FFT is the technology developed to convert time domain

Figure 22.
Real-time monitoring of the CNC process in a production environment.

Table 1.
Group A specimens with varied machining parameters.
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data to frequency domain data. The wavelet technology is commonly used to
decompose a complex signal to sleeve sub-level simple signals. STFT is the signal
processing technology developed to overcome the drawbacks of FFT. In most cases,
it is used to monitor the transition signal. In this section, each signal technology will
be discussed based on experimental data. The purpose is to find out the most
suitable signal processing technology to develop process parameter optimization.

Sensor 1 is attached to the tip of the cutter to monitor the cutting dynamic force-
induced vibration. The sensor is a wireless accelerometer and powered by a built-in
battery. As shown in Figures 24 and 25, time domain signal is repeatable with signal
noise. However, we cannot trace enough useful information from the signal in time
domain.

Due to lack of useful information from time domain data, frequency domain
data are converted from time domain data by employing FFT technology. In
machine fault diagnosis application, the fault frequencies can be found when the
machine is under faulty working condition such as bearing wear and tear.

Figures 26 and 27 show the frequency domain data of Sensor 1 in X and Y
directions, respectively. The domain frequency is the 1x order signal frequency,
which is around 31.67 Hz. The second contribution signal is around 263 Hz.
The third and fourth ones are that of 2x order and 3x order signal respectively.

Table 3.
Experimental specimen group C with varied machining parameters.

Table 2.
Group B specimens with varied machining parameters.
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Wavelet technology is originally developed to decompose complex signal. It may
be used in the processing application to trace useful information. Figure 28 shows
wavelet spectrum in sensor 1 in X and Y directions; it can be seen that the signal is
decomposed. However, only first two domain signals can be displayed. Moreover,
the frequency of each signal cannot be recognized, which means this signal tech-
nology may be not suitable for processing optimization application. Other signal
technologies should be further studied to be applied in this application field.

Figure 29 shows short-time Fourier transform spectrum in sensor 1 in X and Y
directions. It can be seen that the dominant signal is the low-frequency component.
However, it cannot provide any useful information for optimizing processing
parameters. In Figures 26 and 27, we know that the dominant frequency is the 1x
order of main spindle rotating frequency. Waterfall technology is used to apply FFT
in several steps of the main spindle’s rotational speed in order to trace any changes
due to change in rotating frequency.

Figure 24.
Time domain signal in Sensor 1 in X direction.

Figure 23.
Experimental specimen groups with varied machining parameters.
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Figure 25.
Time domain signal in Sensor 1 in Y direction.

Figure 26.
Frequency domain signal in Sensor 1 in X direction.

Figure 27.
Frequency domain signal in Sensor 1 in Y direction.
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5.4 Experimental results of processing parameter optimization

The useful information is tracedwhen thewaterfall of speed spectrum is developed.
Sensor 1 is attached to the tip of the cutting tool to monitor the cutting dynamic

force-induced vibration. Figures 30 and 31 show the vibration in X and Y directions

Figure 28.
Wavelet spectrum in Sensor 1 in X and Y directions.

Figure 29.
Short-time Fourier transform spectrum in Sensor 1 in X and Y directions.

23

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



respectively. In Figure 30, it can be seen that the dominant frequency components
are 1x, 2x, and 3x. Moreover, the maximum value is 0.12 mm/s at 31.6 Hz and the
vibration spectrum is increased with increasing rotating speed. The lowest reso-
nance frequency of the CNC machine is 263 Hz. Therefore, the machine rotating
speed has to deviate far away from 15,780 rpm.

In Figure 31, the maximum value is 0.08 mm/s at 31.6 Hz. Under 1900 rpm, the
maximum value is smaller at 31.6 Hz, as the cutter bears bigger cutting force due to
removal of material by cutter in X direction.

Sensor 2 is attached to the base of the cutting tool to monitor the cutting dynamic
force-induced vibration. Figures 32 and 33 show the vibration in x and y direction
respectively. It can be seen that the maximum vibration of Sensor 2 is 0.025 and
0.16 mm/s in x and y direction respectively, both smaller than that of Sensor 1.
Therefore, the vibration signal of Sensor 1 is more sensitive and is a better candidate
than Sensor 2 for monitoring the CNC machine working status. Furthermore, only
the frequency domain dominates frequencies and their amplitudes are selected to be
sent to the cloud in order to reduce data size and increase data transmission rate.

After the speed spectrum is obtained, the frequencies and their peak value can be
obtained by applying data mining methodology. Figure 34 shows the tracing peak

Figure 30.
Vibration signal in X direction of Sensor 1.

Figure 31.
Vibration signal in Y direction of Sensor 1.
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Figure 32.
Vibration signal in X direction of Sensor 2.

Figure 33.
Vibration signal in Y direction of Sensor 2.

Figure 34.
Tracing peak values of group a specimens in frequency domain.
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values of group A specimen in frequency domain with interesting 1x, 2x, and 3x data.
The peak values of specimen A, B, and C are shown in Tables 4–6 respectively.

The experimental parameters such as material, dimensions, temperature, reac-
tion forces, vibration data, and machining quality such as tolerances will be sent to
the Multilayer Artificial Neural Network (MANN) to train the optimized operation
parameters. The MANN is shown in Figure 35.

Figure 36 shows results of MANN training based on training data, the training
correction is about 99%. If more training data are adopted, the trained MANN
should be more accurate.

Figure 37 shows general data classification results based on deep learning; there
are four types of results: (a) The machining result is linearly classified into two

Table 4.
Vibration speed spectrum of group A specimen.

Table 5.
Vibration speed spectrum of group B specimen.

Table 6.
Vibration speed spectrum of group C specimen.
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groups: one that met the quality requirements and one that failed to meet the
quality requirements. (b) The result is linearly classified into three groups as low,
medium, and high rotation speed range. In low and high rang, the machining
quality cannot meet the quality requirement. Sometimes, the machining quality
classification is not linear as shown in (c). The classification quality is not only
based on deep learning technology but also depends on the quantity of parameters
and the machining material. The matching quality can be further classified into
grades of quality such as grade A, B, and C, as shown in Figure 36, based on
machining tolerances.

Figure 35.
Multilayer artificial neural network (MANN).

Figure 36.
Results of multilayer artificial neural network (MANN) training.
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Figure 38 shows classification results of machining Nylon with variable speed of
CNC based on deep learning. If the machining roughness threshold is set as
0.02 mm, the spindle speed of CNC should be more than 900 rpm and less than
1800 rpm.

6. Conclusions

This chapter presents our research studies on a parameter optimization method
of product processing procedure for CNC machine tool with three common sys-
tematic errors compensation approaches.

In Section 1, we introduced mechanism optimization, energy consumption opti-
mization, and processing optimization of a CNC machine tool. Mechanism optimi-
zation is mainly used to optimize the CNC machine tool to reduce machine

Figure 37.
Data classification results based on deep learning. (a) Two classes linear classification, (b) multi-classes
classification, (c) two classes no-linear classification, and (d) multi-classes no-linear classification.

Figure 38.
Classification results of machining nylon with varied speed of CNC.
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systematic errors. On the other hand, due to huge electrical energy consumption of
CNC machine tool under operational mode, energy consumption optimization
should be considered. There are tremendous researches on the first two aspects but
less on the last one. Therefore, in the next section, our studies focus on the
processing optimization approach.

In Section 2, we briefly introduced the working principle of CNC machine tools.
In order to reduce machining error, the cutting force has to be monitored con-
stantly. The machining of the complex surface can be decoupled into simpler ones
for path optimization in order to minimize speed fluctuation-induced machining
error. For the same purpose, machining tool overcutting compensation and two
major indicators St and Sq of the machining accuracy are introduced and an opti-
mized profile is proposed.

In Section 3, we studied tool deflection issue during machining. The merits and
drawback of two commonly used displacement sensors, capacitive probe and eddy
current gap sensor, are compared and recommended for different scenarios. In this
section, 5G AI edge computing technology for signal pre-processing and genetic
programming for control algorithm parameters optimization are proposed. The
experimental results with tool deflection compensation are reduced by 40%.

In Section 4, we studied error feedback compensation approach. The CNC and
servo actuator are in the close loop for error feedback compensation. A bandpass
filter is adopted to reduce the noise in order to reconstruct the control signal. The
experimental result is reduced by 60%.

In Section 5, we studied processing parameter optimization. The cloud-based
intelligent network configuration for processing parameter optimization is pro-
posed. In this section, the method is mainly based on deep learning approach such
as GP, MANN, and SVM to identify the product processing optimized parameters.
Before deep learning approach is employed in cloud computing with expert system
and database, all the information in the train data instance such as raw material type
and dimensions, CNC machine tool systematic parameters, and machining opera-
tional conditions and vibration outputs of the CNC machine tool must be sent to a
cloud-based computing center. The amplitudes and frequencies of the CNC
machine tool outputs are determined by the waterfall of FFT after the signal is pre-
processed through 5G AI edge computation. The functionality and performance of
the proposed technique are verified with simulations as well as with the experi-
mental data and results, which proves the effectiveness of the proposed scheme.

Acknowledgements

First and foremost, I would like to thank East China Jiao Tong University for
providing the research funding (No: 2003419018) for this study. I would like to
express my gratitude to Dr. Yang Yang, Director of Engineering Experiment
Teaching Center of East China Jiao Tong University, for his invaluable support, Mr.
wang Guorong and Ms. Zhang han for their meaningful experimental setup in this
study.

I would like to thank for all the help I received from my colleagues, Dr. Liu
Yande, Dr. Hu Guoliang, Dr. Zhou Jianming, Dr. Chen Qiping and Dr. TuWenbing,
from School of Mechatronics & Vehicle Engineering in East China Jiao Tong Uni-
versity, who helped me one way or another.

Finally, I would like to thank my son, Mr. Yu Shi Jie, for improving the writing
of this document and my family for their unwavering support.

29

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



Author details

YinQuan Yu
East China Jiao Tong University, Nan Chang, Jiang Xi Province, China

*Address all correspondence to: yu_yinquan@ecjtu.edu.cn

©2020TheAuthor(s). Licensee IntechOpen.Distributed under the terms of theCreative
CommonsAttribution -NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/),which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited. –NC

30

Smart Manufacturing - When Artificial Intelligence Meets the Internet of Things



References

[1] Shukun C, Heng Z, Xiangbo Z,
Qiujuan Y, Changsheng A. Software and
hardware platform design for open-
CNC system. In: 2008 IEEE
International Symposium on Knowledge
Acquisition and Modeling Workshop;
21–22 December 2008; Wuhan. New
York: IEEE; 2008. pp. 139-142. DOI:
10.1109/KAMW.2008.4810444

[2] Prado Y, Valiño G, Blanco D,
Suárez CM, Álvarez BJ. Models for
stiffness characterization of the spindle-
chuck system in a CNC lathe for
prediction of deflections in CAPP. In:
2010 IEEE 15th Conference on
Emerging Technologies & Factory
Automation (ETFA 2010); 13–16
September 2010; Bilbao. New York:
IEEE; 2010. pp. 1-7. DOI: 10.1109/
ETFA.2010.5641361

[3] Yang Y et al. Geometric error
modeling and compensation of the dual-
driving feed worktable. In: 2019 6th
International Conference on Systems
and Informatics (ICSAI); 2–4 November
2019; Shanghai. New York: IEEE; 2020.
pp. 86-91. DOI: 10.1109/
ICSAI48974.2019.9010391

[4]Gang L, He X. Analysis on the basic
application technology of CNC machine
tools. China New Technology &
Products. 2019;23:94-95. DOI: 10.1590/
S0100-73862002000300009

[5] Chen G, Liang Y, Sun Y, Chen W,
Wang B. Volumetric error modeling and
sensitivity analysis for designing a five-
axis ultra-precision machine tool.
International Journal of Advanced
Manufacturing Technology. 2013;68:
2525-2534. DOI: 10.1007/s00170-013-
4874-4

[6] Gabriel S, Raul C. Gouveia R.
designing a novel feeding system for
CNC turning machines. Procedia
Manufacturing. 2018;17:1144-1153. DOI:
10.1016/j.promfg.2018.10.020

[7] Lin Z, Guo R, Chen L, Geng C,
Wang F. Design and development of the
self-adaptive tool path decision-making
CNC platform. In: 2012 International
Conference on Biomedical Engineering
and Biotechnology; 28–30 May 2012;
Macao. New York: IEEE; 2012.
pp. 135-137. DOI: 10.1109/
iCBEB.2012.126

[8] Lapsomthop O, Wongsirirax N,
Kititeerakol A, Sawangsri W. Design
and experimental investigation on 3-
component force sensor in mini CNC
milling machine. Materials Today:
Proceedings. 2019;17(4):1931-1938.
DOI: 10.1016/j.matpr.2019.06.232

[9]Moreira LC, Li WD, Lu X,
Fitzpatrick ME. Supervision controller
for real-time surface quality assurance
in CNC machining using artificial
intelligence. Computers and Industrial
Engineering. 2019;127:158-168. DOI:
10.1016/j.cie.2018.12.016

[10] Cheng Q, Zhao H, Zhao Y, et al.
Machining accuracy reliability analysis
of multi-axis machine tool based on
Monte Carlo simulation. Journal of
Intelligent Manufacturing. 2018;29:
191-209. DOI: 10.1007/s10845-015-
1101-1

[11] Xie C, Zhang WM, He XY.
Kinematic analysis and post-processing
algorithm research for 5-axis CNC
machine tools with a universal head. In:
2009 IEEE International Conference on
Industrial Engineering and Engineering
Management; 8–11 December 2009;
Hong Kong. New York: IEEE; 2009.
pp. 2309-2313. DOI: 10.1109/
IEEM.2009.5373031

[12] Cortina M, Arrizubieta JI, Ruiz JE,
Ukar E, Lamikiz A. Latest developments
in industrial hybrid machine tools that
combine additive and subtractive
operations. Materials (Basel). 2018;
11(12):2583. DOI: 10.3390/ma11122583

31

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



[13]Wang K-C. Optimal high-rigidity
structure design for CNC machine tools
using CAE technique. Engineering
Computations. 2014;31(8):1761-1777.
DOI: 10.1108/EC-11-2012-0296

[14] Yang J, Mayer JRR, Altintas Y. A
position independent geometric errors
identification and correction method for
five-axis serial machines based on
screw theory. International Journal of
Machine Tools and Manufacture. 2015;
95:52-66. DOI: 10.1016/j.ijmachtools.
2015.04.011

[15] Zhu X, Bao J, Wang J, Chen F, Li X,
Zhang X. A comprehensive
maintainability evaluation methods for
subsystems of CNC machine tools.
Journal of Physics: Conference Series.
2018;1074:012144. DOI: 10.1088/
1742-6596/1074/1/012144

[16] Zhaojun Y, Dong Z, Chuanhai C,
et al. Reliability modelling of CNC
machine tools based on the improved
maximum likelihood estimation
method. Mathematical Problems in
Engineering. 2018;2018:1-11. DOI:
10.1155/2018/4260508

[17] Li C, Zhang X, Zhang Q, Li H.
Numerical simulation analysis of
temperature field for motorized spindle
of high-grade CNC machine tool based
on ANSYS. Key Engineering Materials.
2010;455:33-36. DOI: 10.4028/www.
scientific.net/KEM.455.33

[18] Vicente García J. Development of
Valid Models for Structural Dynamic
Analysis [thesis]. South Kensington,
London, United Kingdom: Imperial
College London; 2008

[19] Bonte MHA, Fourment L, Do T,
et al. Optimization of forging processes
using finite element simulations.
Structural and Multidisciplinary
Optimization. 2010;42:797-810. DOI:
10.1007/s00158-010-0545-3

[20] Erfei L, Xinghua N, Yiguang S,
Guo Y. Study on the reason of static

stiffness of the whole machine in non-
circular phenomenon when vertical
machining center milling circle. IOP
Conference Series: Materials Science
and Engineering. 2018;452:042038.
DOI: 10.1088/1757-899X/452/4/042038.
15–16 September 2018; Melbourne

[21] Bosetti P, Bruschi S. Enhancing
positioning accuracy of CNC machine
tools by means of direct measurement of
deformation. International Journal of
Advanced Manufacturing Technology.
2012;58:5-8. DOI: 10.1007/s00170-011-
3411-6

[22] Kumar V, Kumar BJK, Rudresha N.
Optimization of machining parameters
in CNC turning of stainless steel (EN19)
by Taguchi’s orthogonal array
experiments. Materials Today:
Proceedings. 2018;5:11395-11407. DOI:
10.1016/j.matpr.2018.02.107

[23] Shaoke W, Xiaoliang J, Kumar MN,
Jun H. Effect of vibration assistance on
chatter stability in milling. International
Journal of Machine Tools and
Manufacture. 2019;145:103432. DOI:
10.1016/j.ijmachtools.2019.103432

[24] Lee K, Lee T, Yang M. Tool wear
monitoring system for CNC end milling
using a hybrid approach to cutting force
regulation. International Journal of
Advanced Manufacturing Technology.
2007;32:8-17. DOI: 10.1007/
s00170-005-0350-0

[25] Zhang C, Guo S. Error
compensation model considering tool
wear in milling difficult to cut materials.
International Journal of Computer
Integrated Manufacturing. 2017;30(8):
822-838. DOI: 10.1080/
0951192X.2016.1210232

[26] Andrew W. An Early Warning
Monitoring System for CNC Spindle
Bearing Failure [thesis]. Tigerprints:
Clemson, South Carolina, United States:
Clemson University; 2011

32

Smart Manufacturing - When Artificial Intelligence Meets the Internet of Things



[27]Oral A, Cakir MC. Automated
cutting tool selection and cutting tool
sequence optimisation for rotational
parts. Robotics and Computer-
Integrated Manufacturing. 2004;20:
127-141. DOI: 10.1016/j.
rcim.2003.10.006

[28]Han J, Wu L, Yuan B, Tian X, Xia L.
A novel gear machining CNC design and
experimental research. The
International Journal of Advanced
Manufacturing Technology. 2017;88:5-8.
DOI: 10.1007/s00170-016-8883-y

[29] Yang X-Y, Tang J-Y. Research on
manufacturing method of CNC plunge
milling for spur face-gear. Journal of
Materials Processing Technology. 2014;
214:3013-3019. DOI: 10.1016/j.
jmatprotec.2014.07.010

[30] Xing Y, Wang T. Accuracy
enhancement in manufacture of spiral
bevel gear with multi-axis CNCmachine
tools by a new compensation method.
In: 2011 International Conference on
Consumer Electronics, Communications
and Networks (CECNet); 11–13 March
2005; Xianning. New York: IEEE; 2011.
pp. 3891-3894. DOI: 10.1109/
CECNET.2011.5768862

[31] Lee S-Y. In-process tool condition
monitoring systems in CNC turning
operations [Thesis]. Ames, Iowa, United
States: Iowa State University; 2006

[32] Smith GC. Using microwave
Doppler radar in automated
manufacturing applications [Thesis].
Ames, Iowa, United States: Iowa State
University; 2004

[33] Renn JC, Hsu WJ, Liao WC. Energy
efficient lathe turret design using load
sensing control scheme. In: 2014
International Symposium on Computer,
Consumer and Control. 10–12
June 2014, Taiwan. New York: IEEE;
2014. pp. 51-54. DOI: 10.1109/IS3C.
2014.26

[34] Altıntaş RS, Kahya M, Ünver HÖ.
Modelling and optimization of energy
consumption for feature based milling.
International Journal of Advanced
Manufacturing Technology. 2016;86:
3345-3363. DOI: 10.1007/s00170-016-
8441-7

[35]Guoyong Z, Chunhong H,
Jianfang Q, Cheng X. Energy
consumption characteristics evaluation
method in turning. Advances in
Mechanical Engineering. 2016;8(11):1-8.
DOI: 10.1177/1687814016680737

[36] Lv L, Deng Z, Liu T,Wan L,
Huang W, Yin H, et al. A composite
evaluation model of sustainable
manufacturing in machining process for
typical machine tools. Processes. 2019;7
(2):110. DOI: 10.3390/pr7020110

[37] Liu ZJ, Sun DP, Lin CX, Zhao XQ,
Yang Y. Multi-objective optimization of
the operating conditions in a cutting
process based on low carbon emission
costs. Journal of Cleaner Production.
2016;124:266-275. DOI: 10.1016/j.
jclepro.2016.02.087

[38] Jianmai S, Zhong L, Luohao T,
Jian X. Multi-objective optimization for
a closed-loop network design problem
using an improved genetic algorithm.
Applied Mathematical Modelling. 2017;
45:14-30. DOI: 10.1016/j.apm.2016.
11.004

[39] Böllinghaus T et al. Manufacturing
Engineering. Springer Handbook of
Mechanical Engineering. Berlin/
Heidelberg: Springer; 2009. pp. 523-785

[40]Makhanov SS. Adaptable geometric
patterns for five-axis machining: A
survey. International Journal of
Advanced Manufacturing Technology.
2010;47:1167-1208. DOI: 10.1007/
s00170-009-2244-z

[41]Wasif M, Iqbal SA, Ahmed A, et al.
Optimization of simplified grinding
wheel geometry for the accurate

33

Optimization of Manufacturing Production and Process
DOI: http://dx.doi.org/10.5772/intechopen.92304



generation of end-mill cutters using the
five-axis CNC grinding process.
International Journal of Advanced
Manufacturing Technology. 2019;105:
4325-4344. DOI: 10.1007/s00170-019-
04547-8

[42]Mou W, Jiang Z, Zhu S. A study of
tool tipping monitoring for titanium
milling based on cutting vibration. The
International Journal of Advanced
Manufacturing Technology. 2019;104:
3457-3471. DOI: 10.1007/s00170-019-
04059-5

[43]Umbrello D, Jawahir IS. Numerical
modeling of the influence of process
parameters and workpiece hardness on
white layer formation in AISI 52100
steel. International Journal of Advanced
Manufacturing Technology. 2009;44:
955-968. DOI: 10.1007/s00170-008-
1911-9

[44] Reyes Uquillas DA, Yeh S. Tool
holder sensor design for measuring the
cutting force in CNC turning machines.
In: 2015 IEEE International Conference
on Advanced Intelligent Mechatronics
(AIM); 7–11 July 2015; Busan. New
York: IEEE; 2015. pp. 1218-1223. DOI:
10.1109/AIM.2015.7222705

[45] Fountas NA, Vaxevanidis NM,
Stergiou CI, et al. A virus-evolutionary
multi-objective intelligent tool path
optimization methodology for 5-axis
sculptured surface CNC machining.
Engineering with Computers. 2017;33:
375-391. DOI: 10.1007/s00366-016-
0479-5

[46]Du X, Sun Y. Dynamic transmission
error analysis for CNC machine tools
under variable speed condition. In: 2018
IEEE 4th Information Technology and
Mechatronics Engineering Conference
(ITOEC), 14–16 December 2018;
Chongqing. New York: IEEE; 2018.
pp. 113-120. DOI: 10.1109/
ITOEC.2018.8740694

[47] Patil RS, Jadhav SM. Boring
parameters optimization for minimum
surface roughness using CNC boring

machine with passive damping material.
In: 2017 2nd International Conference
for Convergence in Technology (I2CT),
7–9 April 2017; Mumbai. New York:
IEEE; 2017. pp. 300-303. DOI: 10.1109/
I2CT.2017.8226140

[48]Nie X. Application of neural
network for thermal error compensation
in CNC machine tool. In: 2011 IEEE 2nd
International Conference on
Computing, Control and Industrial
Engineering, 20–21 August 2011;
Wuhan. New York: IEEE; 2011.
pp. 211-215. DOI: 10.1109/
CCIENG.2011.6007995

[49] Bobyr MV, Abduldaiem AN,
Abduljabbar MA. Cooled cutter control
algorithm based on fuzzy logic. In: 2017
International Conference on Industrial
Engineering, Applications and
Manufacturing (ICIEAM), 16–19 May
2017; St. Petersburg. New York: IEEE;
2017. pp. 1-5. DOI: 10.1109/
ICIEAM.2017.8076168

[50] Liu J et al. Thermal boundary
condition optimization of ball screw
feed drive system based on response
surface analysis. Mechanical Systems
and Signal Processing. 2019;121:471-495.
DOI: 10.1016/j.ymssp.2018.11.042

[51] Jie G, Agapiou JS, Kurgin S. Global
offset compensation for CNC machine
tools based on Workpiece errors.
Procedia Manufacturing. 2016;5:
442-454. DOI: 10.1016/j.
promfg.2016.08.037

[52] Béres M, Paripás B. Measurements
of vibration by laser doppler method in
the course of drilling. In: Jármai K,
Bolló B, editors. Vehicle and
Automotive Engineering. Lecture Notes
in Mechanical Engineering. Vol. 2.
Cham: Springer; 2018. DOI: 10.1007/
978-3-319-75677-6_16

[53] Li X et al. Monocular-vision-based
contouring error detection and
compensation for CNC machine tools.
Precision Engineering. 2019;55:447-463.
DOI: 10.1016/j.precisioneng.2018.10.015

34

Smart Manufacturing - When Artificial Intelligence Meets the Internet of Things


