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Chapter

Ligands and Coordination
Compounds Used as New
Photosensitized Materials for the
Construction of Solar Cells
Yenny Patricia Avila Torres

Abstract

Ligand with conjugated π systems presents high planar and delocalized elec-
tronic density, which allows it to capture the radiations with an energy interval of
wavelengths between 400 and 600 nm. The ligands can be linked to inorganic
materials favoring the interchange in the system. Lewis acids improve the electronic
distribution between donor and acceptor favoring the optical and electronic
properties, yielding superior efficiencies. In this chapter, the evolution of the
ligands such as Porphyrins, Metal-free organic dyes, and Ruthenium complexes
used, and the construction of solar cells is described. In this context, three different
small-molecule acceptors-donors are reported; o-PDT, m-PDT and p-PDT, based on
phenyldiammine (PD) as spacer, and Thiazole (T) were designed and synthesized.
There were estimated electronic, optical and photovoltaic parameters for these
molecules. The interaction energies of functional groups for PD and T molecules,
with DFT/B3LYP method, gas phase with 6-31g (d, 2p) basis sets, were represented
and computed. The best photovoltaic parameters were described for p-PDT with
PCE 26.18%, Jsc = 14.79 mAcm2 and ΔE = 2.66 eV. The metal ion influences the
electronic properties and decreases the ΔE GAP. The incorporation of the transition
metals into hyperconjugated systems provides rigidity and effects of electronic back
donation.

Keywords: photovoltaic cells, semiconductor, coordination compounds,
dye-sensitized

1. Introduction

The current environmental problems and the energy crisis have led to creating
new technologies. The renewable energies such as: biofuels, biomass, wind, geo-
thermal, hydraulic, solar, tidal, among others become the main source of the energy
generation. The use of solar cells represents an alternative among renewable ener-
gies. The development of new materials goes from inorganic structures until poly-
mers, small molecules as organic photovoltaic (OPV) and photosensitized organic
materials [1].

In this context, the discovery of ultrafast charge transfer between the semicon-
ductor polymer and inorganic semiconductors have allowed that the OPV have
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passed in a decade of values close to 1% of efficiency until exceeding 10% [2]. This
rapid evolution is motivated by its high potential for generating flexible, lightweight
and low cost panels changing the classic concept of panels photovoltaic. In the case
of the traditional polymers, the electrons are highly localized and require great
energy to be excited (>5 eV) converting them into electrical insulators. In contrast,
in conjugated polymer and structures the electrons from Z orbitals form π-type
bonds that are associated with lower energies, corresponding to the range of ultra-
violet and visible radiation. In molecular solids the transition π ! π* that occurs
between the occupied molecular orbital of higher energy (HOMO) and the lower
energy of orbital (LUMO) determine the equivalent to the forbidden band energy
of inorganic semiconductors [3, 4]. On the other hand, they had developed sensi-
tized cell from organic dyes. These are also called Grätzel cells. Photoelectrons that
introduce into the conduction band of TiO2 that works as a semiconductor, under
light illumination [5].

Dye-sensitized cell (DSSC) have been developed as functional biomimetic
models of biological process. In the nature exists dyes with electronic properties that
allows to purpose design news in solar panel. Chlorophyll, constituted an example in
where there is light absorption and charge-carrier transport. The organic molecule is
coupled to semiconductor enhancing the Gap band. This electronic transfer pro-
mote absorption to the visible region, which increase its applications [6].

The researchers in a world context have designed, developed and synthetized
ruthenium complexes, porphyrins, metal-free organic dyes and organic molecules
in this field.

1.1 Ruthenium complexes

The efficiency of DSSC depends on different requirements listed below [7, 8]:

i. Broad and strong absorption, preferably extending from energies greater
than 900 nm.

ii. The dye needs to be photochemically, thermally, and electrochemically
robust within the DSSC in order to withstand the harsh conditions of a
practical module.

iii. Firm, irreversible adsorption to the semiconductor’s surface (TiO2) and
strong electronic coupling between its excited state and the semiconductor
conduction band.

iv. Reduction potential is sufficiently higher than the semiconductor
conduction band Edge in order to enable charge injection.

v. Chemical stability in the ground and the excited states for rapid dye
regeneration and charge-injection processes.

Different types of dyes have been tested in the DSSC setting, including:
transition-metal complexes, organic dyes, porphyrins and phthalocyanines [9–12];
however, in terms of photovoltaic performance and long-term stability, Ru(II)
complexes comprise the most successful family of DSSCs sensitizers, shown in
Table 1. A study on these champion dyes reveals that majority are derivate of N3.
TheN3 dye represents the first high-performance Ru(II) sensitizer reported in 1993
by Grätzel and co-workers [13], affording power conversion efficiencies of 10.3%.
The chemical modification of N3 and N719 is made possible because only two
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anchoring groups are necessary for electron injection [14, 15] thus various func-
tional groups can be installed to block the electrolyte from interacting with the
surface or absorb more light. Then, the performance of these successful sensitizers
encompasses ligands that combine extended π-conjugated systems, aspiring to
enhance the optical absorptivity of the semiconductor’s surface, along with long
hydrophobic alkyl chains, aiming an increase of tolerance against water attack
(Table 1). Equally importantly N719, which essentially differ only in the proton-
ation state of tetra-protonated parent dye N3, afford a nearly quantitative conver-
sion of incident photons into electric current over a large spectral range. The
improved efficiency of N719, was mainly attributed to the increased cell voltage.
Since 1993, chemical modifications of these early Ru(II) complexes have led to
researchers achieving power conversion efficiencies up to 11.7% (C106 dye)
[16–24], where one of the DCBPy ligands has been replaced with an extended
conjugation using thiophenes and long alkyl chains, lastly, these prevents interfacial
recombination [25].

1.2 Porphyrins

The so-called solar cells sensitized by a dye are a type of hybrid devices that have
reached a higher degree of development so far. Within his field, porphyrins repre-
sent a very interesting alternative because there is efficient model harnessing sun-
light. These systems can be synthetized in bulk heterojunction (BHJ) organic solar
cells. The interaction of macrocycles with metal ions such as: Fe2+, Fe3+, Co2+, Co3+,
Ni2+, Zn2+, Cu2+, Ru2+, Pd2+ and Pt2+ and hydrogen, alkyl, cycloalkyl, cyclohexyl,
cycloheptyl, cyclooctyl, haloalkyl, perhaloalkyl, ether chains have permitted the
stabilizations of promising new collections. In dye-sensitized solar porphyrin-based
push-pull.

photosensitizers have demonstrated their potential as large and rigid planar
conjugated structures, which enhance p-electron delocalization and promote
intermolecular π-π interaction, as well charge transport in devices. A problem that
they can presents is the effect by lack of light-harvesting beyond 850 nm, thus
limiting their cell performance. In the papers, it has been reported that 50% of the
total solar phonon flux is located in the red and near-infrared spectra. Zhu and
colleagues had reported in 2016 that is quite urgent to develop efficient NIR
absorbing molecules for high performance organic solar cells. In the next table, the
authors show different publications about the development of new bioinspired
porphyrin materials (Table 2).

1.3 Metal-free organic dyes

The DSSC free organic dyes are sensitized molecules whose perspective are
aimed at staking, on top of one other in order to obtain panchromatic absorption.
Table 3 shows azo, cyano, thiophene, and carbonyl with highly conjugated. A PCE
value at 14.7 has been reported by Kakiag et al. [49]. The PCE increase with Voc and
Jsc and the best properties were associated with carboxylic group and highly polar-
izability in the presence of nitrile group.

The extension of the conjugated chain and the substitution of the thiophene
groups do not represent a marked difference that allows concluding a relationship
between the photovoltaic properties and the structure.

Therefore, this article reports the bibliographic revision for these compounds,
specifying the following parameters: Chemical name, abbreviation, structure,
power conversion efficiencies (PCE), Jsc (short-circuit-current), Voc (open circuit
voltage) electrolyte used and authors.
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

cis-Bis
(isothiocyanato)bis
(2,20-bipyridyl-4,40-
dicarboxylato)
ruthenium(II)

N3

Ru

N

N

N

N

NCS

NCS

HOOC

HOOC

COOH

COOH 10.3 7.9 660 I3/I
�

Di-
tetrabutylammonium
cis-bis
(isothiocyanato)bis
(2,20-bipyridyl-4,40-
dicarboxylato)
ruthenium(II)

N719

Ru

N

N

N

N

NCS

NCS

R

R

COOH

COOH 11.18 17.73 846 I3/I
�

[(C4H9)4 N]3 [Ru-
(Htcterpy)(NCS)3]
(tcterpy) 4,40,4″-
tricarboxy-2,20,2″-
terpyridine

Black dye

Ru

N

N

N

NCS

NCS

HO2C

CO2

CO2

NCS

3
 
nBu4N

3 10.4 20 720 I3/I
�

cis-Ru (4,40-
dicarboxylic acid-2,
20-bipyridine) (4,40-
dinonyl-2,20-
bipyridine)(NCS)2

Z907

Ru

N

N

N

N

NCS

NCS

C9H19

HOOC

C9H19

COOH 9.5 12.5 730

cis-
Bis(isothiocyanato)
(2,20-bipyridyl-4,40-
dicarboxylato)(4,40-
bis(5-hexylthiophen-
2-yl)-2,20-bipyridyl)
ruthenium(II),
Ruthenate(2�),
[[2,20-bipyridine]-
4,40-dicarboxylato
(2�)-N1,N10][4,40-
bis(5-hexyl-2-
thienyl)-
2,20-bipyridine-N1,
N10]bis(thiocyanato-
N)-, hydrogen (1:2)

C101

Ru

N

N

N

N

NCS

NCS

HOOC

COOH

S

S

C
6
H

13

C
6
H

13

11 17.9 778 I3/I
�
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

TBA(Ru[(4-
carboxylic acid-40-
carboxylate-2,20-
bipyridine)(Ligand-
11)(NCS)2])

CYC-B11

Ru

N

N

N

N

NCS

NCS

HOOC

COO
   

N(C4H9)4

S

S

S

S

C6H13

C6H13

11.5 20.05 743 I3/I
�

— C106

Ru

N

N

N

N

NCS

NCS

HOOC

COOH

S

S

S

S

C
6
H

13

C
6
H

13

11.7% 19.8 758 I3/I
�

— GS3

Ru

N

N

N

N

N

N

HOOC

HOOC

COOH

COOH 2.79 9.78 435 I3/I
�

— NCSU-10

Ru

N

N

N

N

N

N

HOOC

COOH

C S

C S

N

N

8.34 18.2 703 I3/I
�

— Complex

16

Ru

N

N

N

N

N

O

S

O

HO
O

HO

O

CS

1.26 4.53 496 I3/I
�

— [Ru]2

Ru

Ph2P

Ph2P

PPh2

PPh2

N

S

N CN

CO2H

N

6.45 13.48 650 —

— [Ru]3

Ru

Ph2P

Ph2P

PPh2

PPh2

N

S

N

CN

CO2H

N

S

5.23 11.77 598 —

—, it is not mentioned in the article.

Table 1.
Ruthenium complexes for DSSC [26–33].
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On the other hand, in this research also have been reported the theoretical
studies towards the effect the spacer molecule in macrocycles. The linear molecule

Chemical

name

Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

— YD2

N

N

N

N

Zn
N

C6H13

C6H13

HOOC

t
-
Bu

t
-
Bu

t
-
Bu t

-
Bu

10.9 18.6 770

— YD2-o-C8

N

N

N

N

Zn

OC8H17C8H17O

N

C6H13

C6H13

HOOC

OC8H17
C8H17O

12.3 17.3 965

— GY21

N

N

N

N

Zn

OC8H17C8H17O

N

C6H13

C6H13

OC8H17
C8H17O

NN

S

HOOC

2.5 5.03 615

— GY50

N

N

N

N

Zn

OC8H17C8H17O

N

C6H13

C6H13

OC8H17
C8H17O

NN

S

HOOC

12.75 18.53 885

— SM371

N

N

N

N

Zn

OC8H17C8H17O

N

OC8H17
C8H17O

OC6H13

OC6H13

OC6H13

OC6H13

HOOC

12 15.9 960

6

Stability and Applications of Coordination Compounds



Chemical

name

Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

— SM 315

N

N

N

N

Zn

OC8H17C8H17O

N

OC8H17
C8H17O

OC6H13

OC6H13

OC6H13

OC6H13

NN

S

HOOC

13 18.1 910

— A4

N

N

N

N

Zn N

N

0.05 0.09 330

— A6

N

N

N

N

Zn N

N COOH

0.28 0.83 480

— A7

Ru

N

N

COOH

N

N

N

NZn

NCS

NCS

N

N

COOH

0.38 1.33 450

— A8

Ru

N

N

COOH

N

N

N

NZn

NCS

NCS

N

N

N

N

N

N

Zn

COOH

0.05 0.26 370

— ZnT(Mes)

P(CN-

COOH)
N

N

N

N
Zn

(H3C)3C

C(CH3)3

C(CH3)3

C(CH3)3

Ph

Ph

CN

COOH

3.15 7.8 575
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designed was a benzothiophene derivate (T) and the spacer selected were o-m or p-
diphenyldiamine. The spacer represented the communication channel between lin-
ear chains, denominated T. The stabilization of the macrocycles depends of the
good assembly. The authors reported a study relationship with the photovoltaic
properties for three macrocycles in function of isomeric effect in the spacer. The
calculations were performed using Gaussian 09 16-18, program with B3LYP func-
tional [58–61] and 6-31-6 (d, 2p) as basis set [64] in order to investigate the
molecular geometry, electronic structures, and optical properties of o-PDT, m-PDT
and p-PDT (Figure 1).

The stationary point was estimated with level of theory reported previously for
the authors [64]. Finally, the authors through the Lewis acid incorporation showed
an electronic improvement mechanism. The acid Lewis effect, as evaluated consid-
ering the tetracoordinated mode around metal center (Figure 2).

Chemical

name

Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

— ZnT(4-t-

Bu)P(Ph2)

(CN-

COOH)
N

N

N

N
Zn

CN

COOH

1.72 4.3 580

— ZnPc1

Zn

N

N

NN

N

NN

N
OH

O

O O

O

O

OO

0.73 2.26 530

— TT1

Zn

N

N

NN

N

NN

N
OH

O

1.54 3.98 550

—, it is not mentioned in the article.

Table 2.
Porphyrins for DSSC [34–40].
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

2-Cyano-7-(1,1,6,6-
tetramethyl-10-oxo-
2,3,5,6-tetrahydro-
1H,4H,10H-11-oxa-
3a-aza-benzo[de]
anthracen-9-yl)-
hepta-2,4,6-trienoic
acid

NKX-2586

N O O

CN

COOH

3.5 15.1 470 —

2-Cyano-5-(1,1,6,6-
tetramethyl-10-oxo-
2,3,5,6-tetrahydro-
1H,4H,10H-oxa-3a-
aza-benzo[de]
anthracen-9-yl)-
penta-2,4-dienoic acid

NKX-2311

N O O

CN

COOH

6.0 14.0 600 —

2-Cyano-3-[50-
(1,1,6,6-tetramethyl-
10-oxo-2,3,5,6
tetrahydro-
1H,4H,10H-11-oxa-3a
azabenzo[de]
anthracen-9-yl)-[2,20]
bithiophenyl-5-yl]
acrylic acid

NKX-2677

N O O

CN

COOH

S
S

7.7 14.3 730 —

— D5

N

S

COOH

CN

5.1 11.9 660 —

2-cyano-3-{50-[1-
cyano-2-(1,1,6,6-
tetramethyl-10-oxo-
2,3,5,6-tetrahydro-
1H,4H,10H-11-oxa-
3a-aza-benzo[de]
anthracen-9-
yl)-vinyl]-[2,20]
bithiophenyl-5-yl}-
acrylic acid

NKX-2883

N O O

CN

COOH

S
S

CN

7.3 16.90 580 —

5-[[4-[4-(2,2-
Diphenylethenyl)
phenyl]-1,2,3,3a,4,8b-
hexahydrocyclopent
[b]indol-7-yl]
methylene]-2-(3-
octyl-4-oxo-2-thioxo-
5-thiazolidinylidene)-
4-oxo-3-
thiazolidineacetic acid

D205

N

S

N

O

OH

O

N

S

O

S

9.52 18.7 710 Ionic-
liquid

2-Cyano-3-{50-{2-{4-
[N,N-bis(4-(2-
ethylhexyloxy)-
phenyl)amino]
phenyl}-3,4-
ethylenedi
-oxythiophene-
5-yl}-3,30-di-n-
hexylsilylene-2,20-
bithiophene-5-yl}
acrylic acid

C219

N

O

O

S S

Si

COOH

NC
S

OO

8.9 17.94 770 I3/I
�

— C218

N

O

O

S S

COOH

NC

8.95 15.8 768 I3/I
�
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

2-cyano-3-[50-(1,1,6,6-
tetramethyl-10-oxo-
2,3,5,6-tetrahydro-
1H,4H,10H-11-oxa-
3a-aza-benzo[de]
anthracen-9-yl)-
[2,1,3-
benzothiadiazole]-4-
thiophen-2-yl]-acrylic
acid

HKK-CM4

N O O

CN

COOH

S
S

NS

N
5.97 14.3 580 —

2-cyano-3-[50-(1,1,6,6-
tetramethyl-10-oxo-
2,3,5,6-tetrahydro-
1H,4H,10H-11-oxa-
3a-aza-benzo[de]
anthracen-9-yl)-
[2,1,3-
benzothiadiazole]-4-
(3,4-ethylene
dioxythiopheneyl-5-
yl)]-acrylic acid

HKK-CM5

N O O

CN

COOH

S
S

NS

N

O

O

5.03 13.3 560 —

— C228

N

O

O

COOH

NC

S S

4.7 7.6 830 Co2+/Co3+

— C228

N

O

O

COOH

NC

S S

4.4 7.78 760 I3/I
�

— C229

N

O

O

COOH

NC

S SS S

9.4 15.3 850 Co2+/Co3+

— C229

N

O

O

COOH

NC

S SS S

6,7 15.20 680 I3/I
�

3-{6-{4-[bis (20,40

dihexyloxybiphenyl-
4-yl)amino-]phenyl}-
4,4-di-
hexyl-cyclopenta-[2,1-
b:3,4-b0]dithiphene-2-
yl}-2-cyanoacrylic acid

Y123
O

O

N

OO

S S

CN

COOH

12.3 17.7 935 Co2+/Co3+

— ADEKA-1

N S

S

S
CN

O

N
H

Si

OMe

OMe

OMe

C6H13

C6H13

S

C6H13

C6H13

11.2 19.11 783 I3/I
�

— LEG 4

N

OC4H9

OC4H9

S S

C6H13C6H13OC4H9

C4H9O

O

OH

CN 14.7 9.55 776 I3/I
�
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

— KNS-1

N

S
C6H13

2

S

C6H13

2

COOH

CN

2.01 4.93 600 Co2+/Co3+

— KNS-2

N

S
C6H13

2

S

C6H13

2

N

S

S

COOH

2.95 6.92 650 Co2+/Co3+

— JM-2

N

S

CN

S

S

HOOC
CN

S

6.5 14.4 620 I3/I
�

3-(5-((3,6-bis(bis(4-
methoxyphenyl)
amino)-9H-fluoren-9-
ylidene)methyl)
thiophen-2-yl)-2-
cyanoacrylic acid

TK-4

N

OCH3

H3CO

S
CN

COOH

NH3CO

OCH3

5.9 13.29 667 —

3-(50-((3,6-bis(bis(4-
methoxyphenyl)
amino)-9H-fluoren-9-
ylidene)methyl)-[2,20-
bithiophen]-5-yl)-2-
cyanoacrylic acid

TK-5

N

OCH3

H3CO

S

NH3CO

OCH3

S

NC
COOH

7.5 17.85 653 —

3-(50-((3,6-bis(bis(4-
(octyloxy)phenyl)
amino)-9H-fluoren-9-
ylidene)methyl)-2,20-
bithiophen-5-yl)-2-
cyanoacrylic acid

TK-6

N

OC8H17

C8H17O

S

NC8H17O

OC8H17

S

NC
COOH

7.8 17.19 663 —

— O4T
S

S

S

SS

OO Oct Oct

n
-
Hex

COOH
NC

5.07 10.7 630 —

— ST4
S

S

S

SS

SS Oct Oct

n
-
Hex

COOH
NC

6.73 14.4 640 —

— P2

N

Cd

N

H2N NH2

CH3COOOOCH3C

NC CN

S

S

O

O

2.18 4.85 680 —

— LS-385
N

S

N

H

NC O

OHO

2.68 6.33 582 I3/I
�

— LS-386
N

S

N

H

NC O

OHS

2.69 6.53 561 I3/I
�
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Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

— LS-387
N

S

N

H

NC O

OHN

5.61 13.26 595 I3/I
�

— TA1

N

N

N

NC
COOH

2.56 5.40 662 —

— TA2

N

N

N

O

O

NC
COOH

3.45 6.83 704 —

— TA3

N

N

N

NC
COOH

S

3.69 7.81 654 —

— TA4

N

N

N

O

O

NC
COOH

S

4.78 9.92 662 —

(Z)-2-cyano-3-(5″-
((E)-2,4,6-
trimethoxystyryl)-
[2,20 :50,2″-
terthiophen]-5-yl)
acrylic acid

MR-5
N

SN

S

NC

COOH

S

O

O

O

6.03 15.27 610 —

2-((Z)-4-oxo-2-
thioxo-5-((5″-((E)-
2,4,6-
trimethoxystyryl)-
[2,20 :50,2″-
terthiophen]-5-yl)
methylene)
thiazolidin-3-yl) acetic
acid

MR-6
N

SN

S

S

O

O

O
S

N

O

S

COOH

3.2 8.7 560 —

— D6

NN

Br

S

COOH

CNC6H13O

C6H13O 4.7 8.6 793 Co2+/Co3+

— D7

NN

S

C6H13O

C6H13O

S

CN

COOH

4.0 8.2 768 Co2+/Co3+

— SP1

NN

O

O

N

Ph

Ph
N

Ph

Ph

0.86 2.59 625 —

— SP3
N

N

N

Ph

PhS

NC

HOOC

0.43 2.31 532 —

— SP4
N

N

N

Ph

PhS

N

S

HOOC
O

S

N

S

O

0.58 0.78 290 —

— BD-3

S S

S S

O O

COOH

NCN
S

N

N

5.46 12.21 680 I3/I
�
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2. Material and methods

2.1 Method theoretical

To explore and understand the electronic and optoelectronic properties of
photosensitized materials with application in OPV technology, many theories
have emerged. One of the most important and common theories is the theory of
functional density (DFT), which is a tool that allowed to establish any property
used in photosensitized materials, quantum state of atoms, molecules and solids,
making modeling and simulation possible of complex systems with millions of
degrees of freedom. At present, DFT has grown tremendously and has become one
of the main tools in theoretical physics and molecular chemistry. Modeling in the
framework of computational chemistry of photosensitized systems made up of
electron donors and electron acceptors ultimately influences photo induced
electron transfer and energy reactions. Numerous studies using the Density Func-
tional Theory (DFT) methodology to design, evaluate and predict photovoltaic
properties of photoactive materials with application in OPV have been published.
The approximation of the theory of functional density (DFT) implemented was
Gaussian 09 together with the functional correlation (B3LYP) and the base set 6-31g
(d, 2p). This calculation allows optimization of geometry without symmetry
restrictions for stationary points. In addition, it provided information on the
harmonic frequency analysis, which allows the optimized minimum to be
verified. The local minimum is identified when the number of imaginary 32fre-
quencies is equal to zero.

The analysis of the changes in electron density for a given electronic transition
was based on the electron density difference maps (EDDMs) constructed using the
GaussSum suite of programs. Gásquez and co-workers had proposed two different
electronegativities (X) for the charge transfer process: one that describes fractional

Chemical name Author’s

designation

Structure PCE

(%)

Jsc
(mA/cm2)

Voc

(mV)

Electrolyte

— BD-5

S

S

S

S

O

O

COOH
NC

N

S

S

S

S

O

O

HOOC
CN

5.34 12.23 680 I3/I
�

— Dendrimer

1
S

NO

S S
N

O O

N

5.19 13.00 675 I3/I
�

— 4a N
S

N

S CN

COOH
SS

0.95 2.60 500 —

— 4b N
S

N

S CN

COOH
N

4.51 9.36 630 —

— N, N0-

PABA
N

N

COOH

1.00 2.72 537 I3/I
�

—, it is not mentioned in the article.

Table 3.
Structures associated with metal-free organic dyes [41–63].
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Figure 1.
Chemical structure for (a) p-PDT, (b) m-PDT and (c) o-PDT.
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negative charge donation X� whereas the other gives the fractional negative charge
acceptance Xþ, Eqs. (1) and (2):

X� ¼ 0:25 3I þ Að Þ (1)

Xþ ¼ 0:25 I þ 3Að Þ (2)

Thus, the construction of a so-called donor-acceptor map (DAM) has been
suggested. A DAM graphic can be constructed by plotting the values of (y-axis) and
Xþ (x-axis) for each molecule of interest.

The photovoltaic properties are calculated according to the Scharber model,
which is an empirical model for predicting the PCE of organic cell solar. HOMO-
LUMO as orbital border under solar irradiation with AM 1.5 G (ASTM G173). The
PCE was expressed by the following Eqs. (3) and (4), in where Voc is the open
circuit voltage, and Jsc is short circuit current.

PCE ¼ FF Jsc
Voc

Pinc

� �

(3)

where FF is a fill factor of 0.75, Eq. (4):

Jsc ¼ q
ðλmax

λmin
EQE ϕAM 1:5 G λð Þdλ (4)

(q = elementary charge, EQE = external quantum efficiency, ϕ = irradiation flow
with AM 1.5 G, and λ = wavelength), and Pinc (incident light power).

On the other hand, the valor corresponding ΔEGAP was calculated as, Eq. (5):

ΔE ¼ E ðLUMOÞ � E ðHOMOÞ (5)

LHE (light capture efficiency determinate), (f = oscillator strength) and Es1 =
Excitation energy for λmax, Eq. (6).

LHE ¼ 1� 10�f (6)

3. Results and discussion

3.1 Optical properties of macrocycle molecules

The excitation energies (Es1) presented in Table 4 were relatively small for the
PDT molecule ligand, which indicate a shift to visible region in relationship with
λmax. The p-PDT showed the lowest value for Es1, which is directly correlated with
the conversion energy (PCE). On the other hand, the cycle size generated for o-PDT

Figure 2.
Geometry optimization for (a) T and (b) TZn.
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and m-PDT systems is smaller, but this does not guarantee a better transfer. On the
contrary, there is less efficient in the electronic transport.

The LHE values were 2.0217, 2.8755 and 0.07 for o-PDT, m-PDT and p-PDT,
respectively. This indicates that o-PDT and m-PDT had a similar sensitivity to
sunlight and will reflect higher values of LHE compared to p-PDT.

The visible light absorption ability may benefit from absorbing more photons
and generating high photocurrent, which is a strong advantage of T derivatives. In
the previous reports, PD spacers that cannot absorb visible light were observed. It is
necessary that T derivate linked to the PD fragment enhances the electronic cou-
pling in the excited state, which operates as a gated wire in π-conjugated systems, as
is observed for o-PDT, m-PDT and p-PDT (Figure 3). The isomeric effect is greatly
correlated to geometric distortion o-PDT and m-PDT molecules, which were dra-
matically affected in relationship to its planarity. The cavity between linear mole-
cules is small, but the torsion affects the electronic properties.

3.2 Geometry study for macrocycles with Lewis acid.

The effect of Lewis acid on macrocycle stabilization is shown below. The geo-
metric environment of the metallic center was tetrahedral, considering two posi-
tions to the electro donator atoms corresponding to linear and macrocycle molecule;
and two water molecules. The incorporation of the metal into the linear chain (ZnT)
generates a decrease in the value for GAP around 1.72 eV, a value located in the
visible region. However, the effect is more severe when incorporated into the
macrocycle, in where; its addition generated a decrease in GAP still 1.55 eV (p-
ZnPDT). The DAM graphic for these systems indicated a significant improvement
in donor capacity. These criteria are important to electronically activate the photo-
voltaic cell (Figure 4).

The spectra in Figure 5 showed a similar profile for TZn, and p-ZnPDT with the
incorporation of Lewis acid in the structure, which have an intense main band to
568 nm, and 516 nm respectively. This band corresponds to the dominant electron
transition from HOMO to LUMO, that is, from the π molecular orbital (chromo-
phore fragments-π-linker) to the π* orbital (acceptor fragment), and this process
can be ascribed to the intramolecular charge transfer.

3.3 Photovoltaic properties of macrocycle molecules

The results showed in Table 5 suggested decreased the ΔEGAP in relationship
with PCE. These results are congruent with the optical, and electronic properties
observed previously. The p-PDT presented the best photovoltaic properties. The
metal ion generates a symmetrical tension in the system, and this could explain its
behavior. The Jsc increased in function of decreased the ΔEGAP, concluding that the
preferential isomer for the construction of this family macrocycles is the p-PDT,
considering theoretical models in the gas phase.

Molecule Wavelength

λmax

Es1 (eV) F LHE

o-PDT 432.68 2.874 2.0217 0.9905

m-PDT 425.37 2.923 2.8755 0.9987

p-PDT 465 2.67 0.07 0.14

Table 4.
Optical properties for (a) o-PDT, (b) m-PDT and (c) p-PDT.
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Figure 3.
Theoretical spectra electronic for (a) o-PDT m-PDT.

Figure 4.
DAM graphic for T, p-PDT, ZnT and p-ZnPDT.
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4. Summary and future perspectives

The purpose of this review of DSSC materials was to compile the information
reported to: synthetized ruthenium complexes, porphyrins, and metal-free organic
dyes. For researchers, it is important to know parameters such as: PCE, Jsc, and Voc;
which help you to diffuse between structures, and propose synthesis strategies that
make possible new materials in this field application. Principles for the future
development of newmolecules can be analyzed and likewise it is interesting support
to follow up structure families as a function of time. Although many structures are
shown here, there is still a need to optimize the chemical, and physical properties to
promote improved solar cells. On the other hand, in this work, the best photovoltaic
parameters were described for p-PDT with PCE 26.18%, Jsc = 14.79 mA/cm2, and
ΔE = 2.66 eV such as macrocycle. The metal ion influences the electronic properties,
and decreases the ΔEGAP. The incorporation of Lewis acid in the structure
macrocycle to increase of the optical properties, which allows rigidity that can
benefit planarity.
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Figure 5.
Theoretical spectra electronic for TZn and p-ZnPDT.

Molecule ΔEGAP (eV) Jsc (mA/cm2) Voc (V) FF PCE (%)

T 3.07 5.36 2.77 0.75 11.12

p-PDT 2.66 14.79 2.36 0.75 26.18

ZnT 1.72 21.52 1.42 0.75 22.92

p-ZnPDT 1.55 11.76 1.25 0.75 11.02

Table 5.
Photovoltaic parameters for T, p-PDT, ZnT and p-ZnPDT.
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