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Error Recovery in Production Systems: 
A Petri Net Based Intelligent System Approach

Nicholas G. Odrey 
Department of Industrial and Systems Engineering, Lehigh University 

USA

1. Introduction 

Leading-edge companies require flexible, reliable and robust systems with capabilities 
to adapt quickly to changes and/or disturbances. In order to be adaptable a flexible 
manufacturing systems must possess the ability to (i) reconfigure the existing shop 
floor and (ii) automatically recover from expected and unexpected errors. One of the 
major problems in flexible manufacturing systems is how to effectively recover from 
such anticipated and unanticipated faults. Traditional techniques have addressed the 
error recovery problem from the point of view of defining a set of actions for a pre-
specified set of errors. The main disadvantage of this approach is that not only a huge 
amount of coding is required but also that two undesirable situations still may occur: 
(i) some errors may not occur in a prespecified set during the lifetime of the system 
and (ii) there may be errors that cannot be anticipated. Pre-enumerating a large 
number of error occurrences will not guarantee that the system will not encounter a 
new error situation. Our intent here is to show the genesis of work into intelligent 
control of discrete event dynamic systems to overcome (ii) as exemplified by a Petri 
Net based model for large scale production systems. Petri Nets have been successfully 
used for modeling and controlling the dynamics of flexible manufacturing systems 
(Hilton & Proth, 1989; Zhou & DiCesare, 1993).  Generally, in a Petri net, the 
operations required on a part are modeled with combinations of places and transitions. 
The movement of tokens throughout the net models the execution of the required 
operations. The content of this chapter is multi-faceted. Topics include Petri Net 
modeling, state space representation and associated solution techniques, hierarchical 
decomposition and control, hybrid modeling, multiple agent systems, and, in general, 
issues pertaining to our work on intelligent control of  manufacturing systems. 
Our focus here is on the characteristics of physical error occurrences which impose 
difficult challenges to discrete event control. The majority of our effort has been on 
workstation/cell control within the hierarchical system originally proposed by the 
National Institute of Standards and Technology (NIST) e.g. (Albus, 1997). The 
controller must first handle simultaneously production and recovery activities, and 
second, treat unexpected errors in real-time to avoid a dramatic decrease in the 
performance of the system.  In the following sections we follow the modeling approach 
previously presented by (Odrey& Ma, 1995) which had its origins in the work of (Liu, 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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1993). This previous work included modeling, optimization, and control within the 
framework of hierarchical systems. In particular, the research was focused on efforts 
towards the foundations of a multilevel multi-layer hierarchical system for 
manufacturing control.  The Petri Net formalism can handle the complexities of the 
highly detailed activities of a manufacturing workstation such as parallel machines, 
buffers of finite capacity, dual resources (multiple resources required simultaneously 
on one operation), alternative routings, and material handling devices to name a few. 
Details on the mathematical structure and definitions pertaining to Petri nets can be 
found in numerous sources e.g., (Zhou & Dicesare, 1993; Murata, 1989). The reader is 
referred to this literature for detailed underlying mathematical models. A further 
thrust of our work has been to enhance a multilevel multi-layer model by the 
incorporation of intelligent agents with the purpose of adding flexibility and agility. 
Thus, one objective of our  effort is to determine whether it is possible to integrate 
Petri Nets constructs with object-oriented formalisms and have an “all in one” 
modeling and implementation tool for intelligent agent-based manufacturing systems. 
Several researchers have attempted to combine these techniques. One of the first 
approaches was Object Oriented Petri Nets (Lee and Park, 1993).  
More recent work pertains to addressing the issue of monitoring, diagnostics, and 
error recovery within the context of a hierarchical multi-agent system (Odrey & Mejia, 
2003). The system consists of production, mediator, and error recovery agents. 
Production agents contain both planner and control agents to optimize tasks and direct 
material flow, respectively. Here we address the error recovery agent within a 
hierarchical system at the workstation level in more detail. It is assumed that raw 
sensory information has been processed and is available. When an error is detected, 
the control agent requests the action of a recovery agent through a mediator agent.  In 
return, the recovery agent devises a plan to bring the system out of the error state. 
Such an error recovery plan consists of a trajectory having the detailed recovery steps 
that are incorporated into the logic of the control agent.  In the context of Petri Nets, a 
recovery trajectory corresponds to a Petri subnet which models the sequence of steps 
required to reinstate the system back to a normal state. After being generated, the 
recovery subnet is incorporated into the workstation activities net (the Petri Net of the 
multi-agent system environment). In this research, we follow the designation of others 
(Zhou & DiCesare, 1993) and denote the incorporation of a recovery subnet into the 
activities net as net augmentation. The terms “original net” or “activities net” refer to 
the Petri Net representing the workstation activities (within a multi-agent 
environment) during the normal operation of the system. The net augmentation brings 
several problems that require careful handling to avoid undesirable situations such as 
the occurrence of state explosions or deadlocks. Intelligent agents seem to be a 
promising approach to deal with the unpredictable nature of errors due to their 
inherent ability to react to unexpected situations.  Research on intelligent agents in the 
context of manufacturing have been mostly concentrated on the “production activities” 
e.g. scheduling, planning, processing and material handling (Gou, et al., 1998; Sousa & 
Ramos, 1999; Sun, et al., 1999) However the activities related to exception handling 
such as diagnostics and error recovery have received little attention. Our research aims 
to provide some evidence as to how the performance of a manufacturing system can be 
improved by using intelligent agents modeled with Petri Nets. 
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1.1 Statement of the problem 

The focus in this chapter is on physical error occurrences and is directed towards supporting 
effective procedures for error recovery in an attempt to arrive at a reconfigurable, adaptive, 
and “intelligent “manufacturing system. As such, a hybridization of Petri Nets and 
intelligent agents seem to be a promising approach to deal with the unpredictable nature of 
errors due to their inherent ability to react to unexpected situations. Within this context, we 
investigate system learning with a hybrid Petri net-neural net structure.  The following 
sections of this chapter first discuss the background on architectures for reconfigurable and 
adaptable manufacturing control. Subsequent discussions will be based on the genesis of 
work at Lehigh University on Petri nets from initial modeling and solution approaches to 
more recent work on embedding intelligent agents with Petri Nets. A hybrid nets consisting 
of a Petri Net with a Neural Net approach for the purpose of intelligent control is also 
discussed.  

2. Architectures 

Even though our focus in this chapter is on Petri Net modeling and error recovery , we 
would be remiss to not mention the underlying architecture of the systems being 
investigated, While some performance tests (Brennan, 2000; Van Brussel, et al.,1998) suggest 
that intelligent agent architectures for manufacturing systems outperform other 
architectures, the lack of standards on design methodologies, communication protocols and 
task distribution among the agents makes difficult their introduction to real-life 
applications. Opposed to intelligent agent-based architectures, hierarchical architectures 
have been conceived with the standardization issues in mind. A hierarchical architecture 
groups the elements of the manufacturing system into hierarchical levels, e.g. enterprise, 
factory, shop, cell, manufacturing workstation and equipment levels, with the purpose of 
coping with complexity. The major drawback of hierarchical architectures is that their 
structure is overly rigid and consequently difficult to adapt to unanticipated disturbances 
(Van Brussel, et al., 1998). To increase the functionality of the system, components at the 
same level may be linked. The purpose was to loosen the strict master-slave relationship of 
the proper hierarchical form. This resulted in the so termed, modified hierarchical form. 
Higher flexibility was reported with this architecture; however some problems arose in the 
communication links between entities of the same level mostly caused by the lack of 
development of the technology available at that time (Dilts et al., 1991). 
To overcome the difficulties of the hierarchical architectures a heterarchical (distributed) 
form was proposed (Duffie et al., 1988). In this architecture a single entity did not exist at the 
top level as in the hierarchical scheme. In this architecture there existed a number of parts or 
components which “negotiate” the utilization of scarce resources. As such, a feedback signal 
did not have to go one level up in the hierarchy to find a response and a corrective action. A 
system failure in the context of this architecture meant “lack of communication” between 
two entities. As one communication link failed other resources were capable of establishing 
the linkage. There was not a single information source as the information was distributed 
throughout the system. Ideally the system would have been very flexible and adaptable as 
new elements (software or hardware) could have been “attached” to the existing ones 
without major disruptions. The heterarchical control architectures coped very well with 
disturbances and reacted quickly to changes but the lack of hierarchy led to unpredictability 
in the system. Consequently global optimization was almost impossible because there was 
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neither global information nor a higher-level entity that controlled the overall performance 
of the system. Responses to perturbations that could be assimilated to “quick fixes” or 
expediting could have caused further disturbances. Further developments led to the concept 
of holonic manufacturing (Van Brussel et al., 1999; Valckernaers et al., 1994). The Holonic 
paradigm considers three primary (basic) types of agents: Order agents, product agents and 
resource agents, each with different goals and functionality. The basic agents are assisted by 
other specialized agents namely staff agents which take the role of higher-level controllers in 
a hierarchy (Van Brussel et al., 1999). These staff agents are at fact in a higher level of the 
hierarchy but their role is only to provide expert advice to the basic agents instead of 
enforcing rules. To tackle with complexity and to avoid a large number of low-level agents 
trying to interact, agents are grouped and classified into categories. An agent is dual entity 
that is both a part and an autonomous entity. Related agents form aggregated agents as in a 
hierarchical structure but that structure differs from the traditional approach which aims for 
a fixed structure. The holonic hierarchy is loosely connected. This means that the 
configuration of the system can be changed to adapt to new conditions (Bongaerts, 1999). 
The ease of adaptation implies a high degree of compatibility and ex-changeability between 
the software and hardware elements of the system. The following figure depicts the 
structure of different control architectures. Notice that in the Holonic model, the modules 
can be reconnected and form new hierarchies. The basic elemental structure of the discussed 
architectures is sketched in Figure 1. 

a) Hierarchical    b) Heterarchcal          c) Holonic  
Fig. 1. Basic Control Architectures 

The architecture adopted in our research consists of a multi-agent system inspired by the 
holonic architecture developed in Europe (Van Brussel et al., 1999) and the elementary loop 
function (ELF) modified from the work at NIST for intelligent systems (Meystel & Albus 
2002; Albus & Barbera, 2005). It has been noted that the ELF architecture is common to most 
intelligent systems (Meystel & Messina, 2000). In essence we are attempting to capture and 
implement the flexibility, adaptability, and reconfigurability required for an environment 
(production systems modeled via Petri nets) subject to various disturbances.  A later section 
provides more detail as to the status of this work. 

3. Workstation modeling  

3.1 Workstation modeling with alternative routing 

Earlier research on Petri Net modeling and analysis at Lehigh University was focused on a 
hierarchical structure for automated planning and control of a cellular-based shop. (Liu et 
al., 1997; Odrey and Ma, 1995)  The adopted architecture was a hierarchical structure that 
followed a model developed by Saleh (1988) that was based on the hierarchical model of the 
National Institute of Standards and Technology (NIST) (Jones and McLean, 1986). Saleh’s 
model incorporated both multi-levels and multi-layers. Multi-levels were designed to 



Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 307

partition the complex structure of the shop into smaller decision and control units such as 
shop, cell, workstation and equipment levels. In this research we developed three different 
layers of control, namely the optimization, regulation and adaptation layers. The purpose 
was to develop a near-optimal steady state schedule along with the corresponding 
regulatory actions in the event of disturbances. 
Following Saleh’s work, Liu (1993) constructed a Timed Colored Petri Net (TCPN) model for 
a manufacturing cell. A three attribute coloring scheme was used and is described later. One 
example of a cell contained two workstations; the first workstation was a material handling 
device and the other described a loading/unloading station. This is shown in Figure 2 on 
the next page. For brevity, only a partial description of all places is given. The objectives 
here were (i) the construction of a PN model with rerouting capabilities, and (ii) the 
development a state-space representation to predict and optimize the dynamics of this 
system. To model a flexible manufacturing cell a machine oriented approach was 
undertaken and was based on modular constructs. This approach provided a construct such 
that a sudden addition or reduction of system resources (e.g., machines) required a minimal 
restructuring of the workflow within the production system. It should be noted that it can 
still take a great amount of effort for modeling of a PN based system. The TCPN cell model 
in this earlier research was determined by the system capacity of the cell and the production 
workload. The system capacity included the number of workstation types, the number of 
parallel resources in a workstation, and the material handling system (MHS). The 
production workload included job types, the processing times, and the routing of jobs.  
From a Petri net viewpoint the system capacity dictated the configuration of the cell model 
whereas the production workload determined the number of job tokens and operational 
circuits in the workstation subnets. Figure 2 depicts a TCPN for the system but note that the 
recovery from machine breakdowns is not included in this figure. Two job types were 
modeled in the cell. The two workstation subnets and the load/unload (L/UL) subnet are 
connected in parallel through the MHS subnet. The parallel subconnections subnets fulfilled 
a requirement of a random direction material flow. The interface between cell entities are 
the two sets of places {P4, P7, and P15} and {P27, P25, and P26} which represent the input 
queues and output queues to the L/UL station and workstations W1 and W2, respectively. 
In this model the number of tokens in each closed-loop subnet represented the total 
availability of a particular resource in a cell entity. For example, two tokens in place P9 
represent two identical machine resources in workstation W1, whereas a single token in 
places P6 and P12 represent a single space for the input and output buffer, respectively, of 
workstation W1. In a TCPN cell model, token colors are useful for both visual identification 
and mathematical representation. Consider place p1 in Figure 2. Two job types identified by 
their different token colors (one black dot and a white circle pattern). In the case of parallel 
resources, i.e., two parallel machine tokens in P9, distinctive colors would be used for 
individual resource identification.  
In this modeling approach, a three-attribute coloring scheme (part number, workstation 
number, resource number), was used to differentiate token colors. Part number (pt#) 
represents the job number; Workstation numbers (wks#) indicates the workstation where a 
part is currently being processed or is to be processed; a resource number refers to either a 
buffer number (b#) or a machine number (m#) in a particular workstation, an equipment 
number (e#) in a load/unload station, or a device number (d#) for material handling 
systems. These resource attributes provide a tracking record for the resource assignment 
decisions. Hence, a token color, (i, j, m), indicates that the token is the ith job which uses the 
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mth resource in the jth workstation. The coloring scheme is embedded in the matrix 
representation of the TCPN cell model used in the system dynamic equations. 

 Fig. 2. Time Colored Petri Net for Two Workstations a load/Unload station, and a Material 
Handling System (Liu, et al. 1997; Liu, 1992)

In this research, the modular construct was a convenient restructuring method proved 
adaptable to changes in the production environment. The possible system configuration 
changes were categorized into two types: changes in a physical entity or changes affecting 
jobs. In the event of adding or deleting a physical entity (e.g., a workstation), the 
workstation subnet was connected or disconnected to/from the MHS subnet. In this earlier 
work, if machine breakdowns occurred the corresponding machine resource token was 
simply stopped from circulating in the subnet until recovery. For entity disruption, the 
overall model structure remained relatively the same. Any changes affecting jobs consisted 
of a cancellation of jobs or changes in the job routing information. Job routing changes 
involved the deletion of operation circuits from previous stations and the addition of 
operation circuits to the new stations. Furthermore, in this research, for each physical entity 
considered in a cell there existed a 1-to-1 representation in the TCPN model. As such, each 
operation performed had a corresponding processing time associated with the operation 
circuit in the processing workstation and each system resource corresponding token 
representation. Parallel resources were represented by multiple resource tokens of the same 
color in the cell model. The total number of token types represented the total number of that 
resource types available in the system. This TCPN development methodology provided a 
safe, bounded, and live model.  
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Naturally, an important consideration was the representation of a disruption (error) 
occurring and a possible rerouting strategy. This was approached by noting that machine 
breakdowns can be satisfied by regarding a machine breakdown as an external input (the 
firing of a transition in a Petri net model).  This additional structure provided an immediate 
transfer of tokens from a place (which represents processing) without waiting for the elapse 
of processing time. Figure 3 depicts a TCPN workstation which can be used to represent an 
alternative routing logic for machine breakdowns.   

Fig. 3. A Workstation Petri Net Representation with an Alternative Routing Logic (Liu, 1993)

Firing transition Tb represents the fact that a machine breakdown has occurred. The token in 
place P1 is released to Pul. In such an instance the remaining processing time (t1) is set to 
zero. This unload place may have a queue and waits for an output buffer to unload the part 
from the breakdown machine. In this representation 3 tokens are generated once an output 
buffer is generated. A machine token passes to a repair process Prp whereas a token in place 
Pr signals a service request for the material handling system (MHS). Simultaneously a job 
token is outputted to place Pob (place signifying an output buffer). Other transitions noted 
in Figure 3 consist of Talt (initiate re-rote mechanism to alternative machines) and Tc (to 
indicate recovery of machine from the breakdown). The firing of transition Tc causes the 
machine token to be returned to the common queue (place PQ) and stops the firing of the 
alternate machine transition Talt. At the time this scheme was developed to overcome 
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drawbacks associated with 1) an inhibitor arc approach (Teng & Black, 1990) and, 2) a timed 
Petri net representation by (Barad & Sipper, 1998). An inhibitor arc approach cannot provide 
a systematic mathematical representation in the event of changes in transition firing rules. 
The work here was a modification of the latter TPN approach. 

3.2 Workstation analysis 
The state space representation used to analyze the workstation Petri nets was a modification 
of the traditional state equation (Murata, 1989) with the incorporation of equations for the 
remaining processing times of every timed place. The conventional state space 
representation can be written as: 

M(k+1) = M(k) + L u(k)(1) 

where M(k) is the marking of the Petri Nets in time k, L is the incidence matrix and u(k) is the 
vector of transition firings. The reader is referred to Murata (1989) and Al-Jaar and 
Desrochers (1995) for details on this equation.  
The state space representation developed by Liu (1993) considers operational, precondition, 
post-condition and resource places. Only operational places (those where actions are carried 
out) have associated processing times. The other places, as  
their name suggest, represent conditions (e.g. idle, ready) (Liu et al., 1997). The modified 
structure contains two different “marking” vectors: the first marking vector (Mp(k)) is the 
conventional marking vector (Murata, 1989) that accounts for the number of tokens in each 
place; the second one (Mr(k)) is the remaining processing time vector i.e. a vector containing 
the remaining time for the next transition firing for each place.  
The state space equation is stated as follows (the dimensions of these matrices are omitted 
for simplicity): 

 X(k+1) = A(k) X(k) + B(k)u(k) (2)

u(k) is a control vector that determines which transitions fire at time k. Define uj(k) as the jth 
position of u at time k.  uj(k) = { 1 if transition j fires, 0 if it does not } Mp(k)  is the marking 
vector at after k transition firings; Mr(k) is the remaining processing time vector after k 
transition firings; A(k) is the system matrix and it is partitioned as follows: 

[0]  Zero matrix; 
[I]  Identity matrix  

(k) Time for the next transition firing. 
[P] Diagonal matrix that serves to distinguish operational places from resource, 
precondition and post-condition places.  
Pii = {1 if place pi is an operational place; 0 otherwise} 

Pij = 0 when i j

            Mp(k)  
X(k)=                     (3)
            Mr(k)

                   [I]     [0]
A(k)=                     (4)

            - (k)[P]    [I]
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B(k) is the distribution matrix that transforms the control action u(k) into token evolution i.e. 
addition and removal of tokens when firing a transition represented in vector u(k). 

[W] = Processing time matrix for operational places.  
[L]= Incidence matrix  [L] =[L]+ - [L]- 
[L]+ = Incidence output matrix that accounts for the addition of tokens in output places. 
[L]- = Incidence input matrix that accounts for the removal of tokens from input places.  
The dimension of these matrices is determined by the number of places, transitions and 
colors in the system. For a detailed discussion and explanation see (Liu, 1993; Liu et al., 
1997). This representation was the basis for an optimal control formulation for scheduling 
optimization. A near-optimal solution was found by using forward dynamic programming 
on the sequence of states (markings) generated by the state equations. 

3.3 Petri Net Decomposition 
In the process of establishing a hierarchical Petri net-based workstation model, issues can be 
categorized into different classes where each class occurs at different levels of the hierarchy.  

Fig. 4. An example of decomposition of a multi-layer Petri net model for an assembly station 
(Ma & Odrey, 1996)

At the Petri net modeling level two decision classes were identified, namely, generation of 
conflict-free sequences and the determination of process steps sequences.  In order to 
facilitate the decision-making and performance evaluation processes, a hierarchical system 

                   [L]
B(k)=                     (5)

              [W]    [L]+
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of state equations for the Petri nets based model was studied.  The general form of the 
hierarchical state equations have previously been state in equations 2 through 5. An 
example of the net decomposition for an assembly workstation is indicated in Figure 4. For 
the top level TCPN model (termed sublevel 1), the state dimension depends on three values: 
(1) the sum of all colors on tokens associated with places which represent the process of 
manufacturing individual parts, (2) the sum of all colors on tokens associated with places 
which represent the process of handling assembled final products, and (3) the sum of all 
colors on tokens associated with the resource places. When decomposing the TCPN model 
to a sublevel 2 TPN model the system can be viewed as a two-level hierarchical Petri net 
with one discolored TPN at the upper level and several subnets, which are also modeled by 
TPNs, at the lower level.  Between upper and lower levels, interface places are added that 
serve as connectors between two levels.  For a state space representation, the discolored 
TPN at the upper level and each detailed subnet at the lower level can be individually 
represented using TPN state equations.  Thus, the system state equations for the sublevel 2 
TPN workstation model are obtained by combining all the TPNs and augmented to 
incorporate the interface places, i.e. all the vectors/matrices in the subnets are become the 
subvectors/submatrices in the sublevel 2 TPN workstation state equation. For example, the 
distribution matrix for the sublevel 2 TPN model would have the form of the matrix given 

below. Li is a distribution submatrix of TPNi .The bottom row denotes the distribution 
submatrices of the interface places and the input/output transitions associated with TPNi.  
Details of this work can be found in (Odrey & Ma, 2001). This multi-level, multi-layer Petri 
net framework establishes layers to provide the linkage between high-level abstract 
information for discrete systems and

1

2

3

1 2 3

0 0 0

0 0 0

0 0 0

0 0 0 J

J

c c c c

L

L

L
L

L

L L L L

 (6) 

low-level numeric data for continuous systems. Different nets are used to represent different 
levels of complexity. Three functional distinct subnets which are the basic building blocks 
for the Petri net workstation model were proposed to represent higher level abstract 
commands such as “move,” “process,” and “assemble”.  These subnets allow basic routing 
information to be incorporated in the model through a bottom-up approach in a systematic 
manner.  The process task can then be decomposed into a Petri net representation of process 
steps which follow a feature-based process plan.  Alternative sequences and resources are 
incorporated in the process task model to provide flexible operation instructions.  Dynamic 
state space equations correspond to each sub-level in the hierarchical Petri net graphical 
representation.  These state equations are used in current research to evaluate various 
control strategies and performance workstation operations in a unifying way. 

4. Intelligent system approaches using Petri nets 

4.1 Intelligent agent approaches
 Current efforts are directed towards the aspects of error recovery associated with intelligent 
agent-based manufacturing systems and has been motivated by the work done at Lehigh 
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University. As noted above, previous work included modeling and optimization and control 
of hierarchical systems. Our focus is to enhance this multilevel multi-layer model with the 
in-corporation of intelligent agents with the purpose of adding flexibility and agility. This 
on-going effort investigates (i) architecture reconfigurations with enhanced capabilities of 
flexibility and adaptability, (ii) the adoption of adequate model-ing techniques and their 
mathematical representation (in particular, modifications to the previous Timed Colored 
Petri Net  models developed),  (iii) modeling the aforementioned intelligent agents with 
Petri Nets, and (iv) model testing.
Our motivation has its origins in the research mentioned in the previous sections in addition 
to  models incorporating intelligent agents for manufacturing operations which appeared in 
the eighties and nineties as an alternative to the shortcoming of hierarchical and 
heterarchical architectures. Some of these additional approaches include Bionic 
Manufacturing (Okino, 1993), Fractal methods (Warnecke, 1993), the MetaMorph 
Architecture (Wang et al., 1998; Maturana et al., 1998). These approaches preserve a 
hierarchy that controls the autonomy of individual agents, but unlike the hierarchical 
architectures, the relation-ship between low and high level controllers (agents) does not 
follow the master-slave scheme. The low level agents have a high degree of autonomy as in 
the heterarchical approach but still have “loose” links with higher-level agents. An 
intelligent agent based approach attempts to preserve the advantages of both hierarchical 
and heterarchical approaches but at the same time avoids their drawbacks.  The 
architectures mentioned present differences primarily in the definitions of the intelligent 
agents, the degree of reactivity versus long-term planning, the degree of adaptation and 
reconfiguration, and the communication methods between agents. For example, in the 
Holonic, Bionic, MetaMorph and Fractal approaches the intelligent agents are loosely 
connected and their structure can evolve over time; the RCS resembles a hierarchical 
architecture whose structure is primarily fixed. In the Holonic, MetaMorph and RCS 
approaches the system has a set of fixed predefined goals. In the Fractal approach the agents 
negotiate their goals (Tharumarajah et al., 1996). Bionic architectures (Okino, 1993) do not 
set long-term goals but seek essentially adaptation to the environment. In the Holonic 
manufacturing approach parts, computers and resources are considered as intelligent 
agents. The other approaches regard schedulers, planners, controllers and resources as 
agents, but exclude parts.
It should be noted that the concept of Intelligent Agents was built around the Object-
Oriented Programming (OOP) paradigm (Tharumarajah et al., 1996). The underlying 
principle of OOP is the encapsulation of attributes and methods into code units called 
classes. The code embedded in a class defines its internal actions and the relationships with 
other classes (Wyns and Langer, 1998). In the intelligent agent approach, each agent 
becomes an object with clearly defined functionality and attributes. Thus these concepts of 
OOP such as instantiation, inheritance, and polymorphism can be applied directly to the 
theory of intelligent agents (Venkatesh and Zhou, 1998). To date OOP platforms are the 
preferred choice for control software development (Gou et al., 1998). Some of its advantages 
over conventional programming include reusability, portability and expandability. OOP 
seems to be the natural approach to implement the control software for intelligent agent-
based architectures (Gou et al., 1998). Venkatesh and Zhou (1998) have pointed out need for 
integration of control and simulation and modeling software to expedite the system 
development. In other words, the control software should not be exclusively dedicated to 
issue commands to the components of the manufacturing systems but to optimize the 
system performance. It should also be noted that all agents are objects but not all objects are 
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agents. Agents are autonomous entities that have choices and control on their behavior; 
objects may be totally obedient (Jennings, 2000). 

4.2 Multi-agent systems with embedded Petri nets 
Our more recent work presents an architecture for control of flexible manufacturing systems 
which is a synthesis of hierarchical and intelligent agent-based systems (Odrey & Mejia, 
2003).  The approach undertaken provides responsive and adaptive capabilities for error 
recovery in the control of large scale discrete event production systems. A major advantage 
of this is the ability to reconfigure the system. The communication links between agents can 
be re-directed in order to form temporary clusters of agents without modifying the internal 
structure of the agent. At the same time, having the hierarchical structure greatly facilitates 
the organization of new groups of agents. In our approach, agents possess the freedom to 
move within their hierarchical level but cannot move out to another level. The approach, 
based on Petri Net constructs is expected to improve the performance of agent-based 
systems because (i) it decentralizes the control activity for complex and unusual failure 
scenarios (ii) provides basic autonomy to resource agents (iii) follows a proved design 
hierarchical design methodology and, (iv) defines clearly the responsibilities of control and 
resource agents. A thrust of this effort was to determine whether it is possible to integrate 
Petri Nets constructs with object-oriented formalisms and have an “all in one” modeling and 
implementation tool for intelligent agent-based manufacturing systems.  
At the time of this investigation the major focus was on the diagnostics and error recovery 
activities in the context of intelligent agent-based architectures for semi-automated or 
autonomous manufacturing systems. Our approach addressed the issue of combining the 
discipline of hierarchical systems with the agility of multi-agent systems. We adopted in-
part the holonic paradigm (Van Brussel et al., 1999) for description of the three primary 
(basic) types of agents: Order agents, product agents and resource agents, each with 
different goals and functionality. The basic agents are assisted by other specialized agents 
namely staff agents which take the role of higher-level controllers in a hierarchy. In 
particular, the focus was on the construction of a re-configurable system having production 
agents, error recovery agents, and a classifier/coordinator/ mediator agent structure 
connecting production and recovery agent hierarchies.  In addition, the relationship to the 
previous work at Lehigh University pertaining to a multi-level, multi-layer hierarchy 
control was established. This latter hierarchy, based on Petri net constructs, serves, in one 
sense, as a retrieval based resource for process planning and generation of re -cover plans to 
the production and recovery agents within the proposed multi-agent system. An objective of 
this effort was to provide a test-bed for comparison of purely hierarchical systems, non-
hierarchical but highly re-configurable multi-agent systems, and a hybrid combination 
which was the focus of the investigation presented here. Our primary efforts are on a 
hierarchical intelligent agent-based system linked to a structure of agents dedicated 
exclusively to diagnosis and error recovery tasks. Our work has focused primarily on error 
recovery strategies at the workstation level in an intelligent-agent based system and is still 
on-going.
Unlike the traditional structure (Albus, 1997) in which the control function is exerted top 
down, our approach provides the agents basic control capabilities that allow them to react to 
common and local disturbances. In addition, specialized control and recovery agents assist 
these production agents on complex diagnostics and recovery tasks. This approach is 
expected to combine the discipline of hierarchical systems, but with the inherent ability to 
react as would be congruent with intelligent agent-based systems. Here we adapt the 
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intelligent agent principles to hierarchical control models. The most significant difference 
lies in the definitions of a workstation controller and a workstation agent. In a broader 
scope, a workstation agent comprises a workstation controller, a number of resources 
(conveyors, machines, tools, fixtures, etc.) and their respective controllers [Van Brussel, 
1998]. The workstation agent acts as a single decision unit when negotiating with higher-
level agents. At the same time a workstation agent is considered as a system when 
controlling and coordinating its components (equipment agents and error recovery agents). 

4.2.1 System structure 
Our approach is based on prior work on hierarchical architectures as outlined in previous 
sections. As such our model shares a number of features with the prior work, namely, 
hierarchical decomposition of activities, sensor strategies, methods for diagnosis and error 
recovery, and modeling techniques. The reader is referred to (Odrey & Mejia, 2003) for a 
more detailed explanation of this section. A sketch of the integrated control architecture is 
shown in Figure 5. The architecture is partitioned into three segments. A mediator agents 
structure is positioned between and separates a production agents architecture and a 
recovery agents architecture. Each of these structures follows a hierarchy and 
communication can be at and among different levels within the hierarchy. To-date, we 
distinguish between cell level and workstation level production agents which communicate 
through mediator agents. In the schema adopted if an error occurs at the shop floor and the 
workstation agent cannot produce a satisfactory recovery plan by itself, such an agent 
requests the actions of the workstation mediator agent. The workstation agent provides all 
the available information pertaining to the error which should include sensor readings, 
location, priority, etc. The mediator agent classifies the error and matches the error with a 
recovery agent at the same hierarchical level. The recovery agent attempts to produce a 
recovery plan and if it succeeds the plan is communicated back to the mediator. At the same 
time, if the error exceeds a pre-determined time threshold, the workstation agent sends a 
message to the cell agent (higher level) informing of the abnormality. The cell agent takes 
this new input and determines whether or not rescheduling pending jobs is necessary. In 
order to keep the system running, the workstation agent adopts a temporary measure e.g., 
dispatching rules. At this point, this is the maximum the workstation agent can do since it 
lacks of the information and methods to perform global optimization. When a new schedule, 
generated by the cell agent, is available, the workstation agent attempts to adapt the new 
plan to the current conditions. In this way, each agent contributes independently to the 
overall optimization of the system. 
The workstation agent requires additional techniques to optimize the realization of the 
process plan of all the current jobs that have been allocated to it. In our approach, the 
workstation agent itself constructs a Petri Net model of the sequence of coordinated 
activities for all current jobs using a multi-level multi-layer Petri Net approach [14]. In this 
approach the sequence of activities at the workstation level and the required resources are 
modeled using several “layers” which represent degrees of modeling abstraction (from 
generic activities to highly specific tasks). As noted in the previous section the highest layer 
is modeled with a Timed Colored Petri Net (TCPN). The TCPN layer is then “unfolded” in 
several layers with different degrees of detail. Lower levels are represented by Timed Petri 
Nets and Ordinary Petri Nets. For each of these nets in order to track the system status state 
equations can be developed. These equations serve to determine the flow of tokens and the 
remaining process times for each operation place provided by a sequence of transition 
firings.
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Fig. 5. Error recovery agents within an intelligent agent hierarchical architecture (Odrey& 
Mejia, 2003) 

The BRIC (Block-like Representation of Interactive Components) was chosen as our initial 
modeling tool in that adoption serves very well to develop control software in that it 
provides the most important features of OOP (Object Oriented Programming). Additionally, 
BRIC provides a graphical representation of the behavior of a multi-agent system. In the 
BRIC approach each agent is modeled by a Petri subnet that comprises an internal net 
representing the agent’s methods and a set of “communication” places. Agents are linked 
together by through external transitions and arcs. Tokens flowing between communication 
places serve as message between agents. The complex data structure is embedded in the 
colored token coloring scheme. For example, a token in an input message interpreted as a 
work order could include several different labels such as sender id, job priority, job 
constraints , etc. Conventional token rules of Colored Petri Nets (CPN)  apply to the 
communication places. A token can go from a conventional place to a communication place 
and vice-versa. For further details the reader is referred to (Odrey & Mejia, 2003). It should 
be noted that the agent interaction/communication structure is an on-going investigation. 
Other techniques are currently being investigated. 

4.2.2 Mediator agent

Mediator agents are the link that connects the production structure with the recovery 
structure. Their function is to facilitate the communication between production and 
recovery agents. The primary functions of mediator agents are: 1) filtering/processing 
sensory information from production agents, 2) classifying errors and performing 
preliminary diagnostics based on feedback information, 3) matching errors that occur on the 
shop floor with error recovery agents, and 4) communicate recovery plans to production 
agents.  A BRIC model of the structure of a mediator agent is shown in Figure 6. Places are 
as defined. In this schema, a mediator agent first receives a request (P11) and classifies the 
error (P12) according to a set of corrective preliminary actions. We adopt here the approach 
of our previous work (Ma, 2000) in which error classification was performed using a Petri 
Net embedded in a neural network linked to an expert system. Next, a matching module 
embedded in the recovery agent attempts to match the error with recovery agents capable of 
generating a recovery plan for the error that occurred (P13). The issue of matching errors 
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with recovery agents is a subject of further research. If a suitable recovery agent is found, the 
mediator sends it a request for recovery (P14).  A token in P15 represents that a recovery 
plan (or a failure to generating a plan) has been received. The mediator agent evaluates the 
received plan (P16) and communicates it to the corresponding production agent (P19). 
Provisions are made should the mediator agents require aid from other mediators (places 
P17 and P18). 

P11: Receiving recovery request message 

P12: classifying errors 

P13: Matching classified error with recovery agents 

P14: Sending request messages 

P15: Receiving responses from recover agents  

P16: Evaluating responses 

P17: Receiving responses 

P18: Sending messages to mediators 

P19: Communicating recovery plans 

Fig. 6. A BRIC model of Workstation Mediator Agent (adapted from Odrey & Mejia, 2003) 

4.2.3 Error recovery agents 

The recovery agents at the workstation level are responsible of three major tasks: (i) 
screening recovery requests sent by mediators, (ii) performing in-depth diagnosis, and (iii) 
generate recovery plans for expected and unexpected errors. The BRIC model of a 
workstation recovery agent and place definitions are shown in Figure 7. Once an error is 
classified a token is placed in P20 and further diagnosis is performed when a marking 

P19

P14

Mediator agent

P12

P13

P11

P17
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reaches P21. When a root cause is known and classified, a plan can be generated (P22) and 
sent to the appropriate agent via P23 and P24. 
Our current efforts here focus on developing an automated reasoning technique for 
generating recovery plans. The recovery plan generation primarily depends on whether or 
not the error has been anticipated. Anticipated and unanticipated errors require two 
different strategies: In the case of anticipated errors, a recovery plan is generated by 
matching the error with a recovery task in a lookup table (Odrey & Ma, 1995). Unexpected 
errors require more complicated (deep) reasoning that implies finding and matching error 
patterns with gross recovery plans or searching alternative paths to return or advance the 
system to an error-free state. Previous work at Lehigh University (Ma, 2000) was 
concentrated on generation of gross recovery plans using Neural Networks. The last stage of 
modeling our proposed architecture consists of linking the agents to form a Petri Net model 
of the control structure and can be found in (Odrey & Mejia, 2003).

Fig. 7. Workstation Recovery Agent Structure (Odrey & Mejia, 2003)

5. Error recovery approaches 

Error recovery is the set of actions that must be performed in order to return the system to 

its normal state (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). The key 

concept is that there should exist at least one sequence of actions to bring the system to its 

normal operation. The purpose of error recovery is to find the best actions that minimally 

disrupt the system while down-time is minimized.  Our work presented here follows 2 

approaches: 1) the first section used an augmented Petri Net approach and 2) a subsequent 

section was an attempt to provide a hybrid net by joining Neural Nets with Petri Nets. This 

was done for a workstation level controller with in a hierarchical system following the work 

done at NIST. Both of these approaches are discussed in subsequent sections.  

P20: Evaluating classified error 

P21:Diagnosing errors ( in-depth Diagnosis) 

P22: Generating recovery plan 

P23: Sending recovery plan to mediator agents 

P24: Receiving recovery requests messages 

   P23

Recovery agent

P20

P21

P24

P22
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5.1 Definitions for diagnostics and error recovery 

An error occurs when the observed behavior conflicts with the desired behavior of the 

system (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). Similarly, (Chang 

et al. 1991) defined that an error occurs when a resource reaches an undesired state. 

(Kokkinaki & Valavani, 1996) define errors as manifestations of faults. A fault is the cause of 

an error (Chang et al., 1991). As long as the error is not detected or does not produce a 

failure, it remains latent. A failure occurs when a re-source does not deliver a service. For 

example a worn gear in an automated fixture prevented a part to be accurately positioned 

on a machine tool. Because of this, the part could not be correctly machined and resulted in 

a bad assembly. The worn gear is the fault that generated the errors and failures. The error is 

a positional error (the undesired state) and the failure is the wrong assembly (a service that 

could not be delivered).  Diagnostics is the activity in which the source fault(s) is (are) 

determined and isolated (Odrey and Ma, 1995). When a failure is detected, the operation 

that failed is not necessarily the source of the failure. A source fault is propagated through 

the system generating errors and failures. Diagnostics involves backtracking the failed 

operations to the source fault. The failure propagation tree is the tool that serves the 

backtracking actions by linking operations until the one that failed is found (Chang et al., 

1991). In our research incorporating a multi-agent approach faults are considered as 

inconsistencies in the behavior or status of an agent or inconsistent interactions between 

agents and between agents and the environment. The environment is everything outside the 

boundaries of the intelligent agents. For example, a broken gear that produces paralysis in 

the machine spindle is an abnormal behavior of a resource agent; an out-of-tolerance part is 

an abnormal state of a part agent; failure to grasp a part is an inconsistent interaction 

between the robot agent and the part agent and blocking a robot agent by an external entity 

is an undesired interaction between the robot agent and the environment. When faults occur 

the workstation controller agents and the low level agents that depend on the workstation 

controller, namely machine and part, investigate the reasons of the failure. The low level 

agents investigate their own internal failures and the workstation controller investigates its 

own internal faults and the interactions between the part and machine agents and between 

those two and the environment. For now, the work has been focused on Petri net 

approaches.

5.2 Augmented Petri net approach for error recovery  

The approach taken here was based on integrating Petri subnet models within a general 

Petri net model for a manufacturing system environment, and, in particular, a workstation 

controller. In essence, the error recovery plan consists of a trajectory (Petri subnet) having 

the detailed recovery steps that are then incorporated into the workstation control logic. The 

logic was based on a Timed Petri Net (TPN) model of the total production system. The Petri 

subset models consist of a sequence of steps required to reinstate the system back to a 

normal state. Once generated, the recovery subnet is incorporated into the Petri net model of 

the original expected (error free) model. The workstation controller is the entity responsible 

for the coordination, execution and regulation of the activities at the physical workstation. 

The workstation controller receives a higher level command, generally form a higher level 

controller that issues a set of operations to be performed by the workstation with desired 
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start and finish times. The workstation controller decomposes such a command into a lower 

level set of coordinated activities. In addition to executing activities, the workstation 

controller should also provide a reactive and adaptive response to errors and other 

disturbances (Odrey and Ma, 1995). In this work we followed the modeling approach 

discussed in previous sections. The following discussion is a summary of (Odrey and Mejia, 

2005).

5.2.1 Relationship to previous work  

The characteristics of physical error occurrence impose difficult challenges to the 

workstation controller. The controller must first handle simultaneously production and 

recovery activities, and second, errors that appear unexpectedly must be treated in real-time 

to avoid a sudden decrease of performance. Examples of automated reasoning systems for 

error recovery procedures, such as neural nets include the work of (Seabra-Lopes et al., 

1996; Kokkinati and Valavanis, 1996) and our work discussed in section 5.3. As previously 

discussed (section 4), work addressing the issue of monitoring, diagnostics, and error 

recovery within the context of a hierarchical multi-agent system consisted of production, 

mediator, and error recovery agents. Production agents contain both planner (scheduler) 

and control agents. In this section we address the error recovery agent within the 

hierarchical system at the workstation level in more detail. It is assumed that raw sensory 

information has been processed and is available. When an error is detected, the control 

agent diagnoses the error and requests the action of a recovery agent via mediator agents 

discussed in section 4.2.2. In return, the recovery agent devises a plan to bring the system 

out of the error state. Such an error recovery plan consists of a trajectory having the detailed 

recovery steps that are incorporated into the control agent logic. A forward trajectory is the 

most desirable, but at the same time it is the most difficult to implement with automated 

reasoning systems (Fielding, et al., 1987). In the context of Petri Nets, a recovery trajectory 

corresponds to a Petri subnet which models the sequence of recovery steps required to 

reinstate the system back to a normal state. A schematic of error recovery trajectories is 

given in Figure 8 as follows: 

Fig. 8. Error recovery trajectories from a disrupted state (Odrey and Mejia, 2005) 

Figure 8 illustrates a view of the issue of “match-up” state in a manufacturing system and 

shows a desired “trajectory” constructed out of normal states, a disrupted state and the 

Final state

Initial state 

State Space 

Steady-state trajectory  
Normal (planned) states 
Error recovery trajectory 

Normal (planned) states 
Disrupted states  
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possible transient trajectories (dotted lines) to return to the original trajectory. The disrupted 

state is reached involuntarily. After being generated, the recovery subnet is incorporated 

into the workstation activities net (the Petri Net of the multi-agent system environment). In 

this research, we followed the designation of others (Zhou and DiCesare, 1993), and denoted 

the incorporation of a recovery subnet into the activities net as net augmentation. Zhou and 

DiCesare developed a formal description of these three possible trajectories in terms of Petri 

net constructs, namely input conditioning, backward error recovery, and forward error 

recovery. This prior work on error recovery strategies was intended to model the specifics of 

low level control typified by the equipment level of a hierarchical control system. The terms 

“original net” or “activities net” refer to the Petri Net representing the workstation activities 

(within a multi-agent environment) during the normal operation of the system. In the work 

presented here, the three recovery trajectories are applied to the workstation level within a 

hierarchical model. The enormous number of errors and the corresponding ways to recover 

that can occur at the physical workstation implies unlimited possibilities for constructing 

recovery subnets. The important issue is that any error and the corresponding recovery 

steps can be modeled with any of the three strategies mentioned above. Without loss of 

generality, this research limited the types of errors handled by the control agent to errors 

resulting from physical interactions between parts and resources (e.g. machines and 

material handling devices). The reason for this assumption was to facilitate the simulation of 

generic recovery subnets. Backward recovery suggests that a faulty state can become a 

normal state if an early stage in the original trajectory can be reached. The forward recovery 

trajectory consists of reaching a later state which is reachable from where the error occurred. 

5.2.2 State equations and recovery subnets 

The state space mathematical description was briefly described in section 3.2.In general that 

work consisted of a cell level timed, colored Petri nets (TCPN) state space representation for 

systems with parallel machining capability.  This TCPN state representation extended 

Murata's generalized Petri net (GPN) state equations by modifying the token marking state 

equations to accommodate different type of tokens.  In addition, a new set of state equations 

was developed to describe time-dependent evolution of a TCPN model.  As a result, the 

system states of a cell level TCPN model were defined by two vectors:  

System marking vector (M
p

): This vector indicates the current token positions.  A token 
type may consist of a job token, a machine token, or a combined job-machine token. 

Remaining processing times vector (M
r
) : This vector denotes how long until a specific 

job, machine, or job-machine token in an operation place can be released (i.e. an 
operation is completed) 

The TCPN workstation state equations provide a mathematical evaluation of the 

workstation performance at a higher level. After evaluation, a decomposed Timed Petri net 

(TPN) can then be constructed according to the evaluation results along with more detailed 

workstation operations. This was illustrated in section 3.3. As previously noted, subnets are 

viewed as alternative paths to the discolored TPN. The alternative path approach taken here 

is more flexible than a substitution approach in the sense that changes in subnets can be 

made without changing the configuration of the discolored TPN. The TPN workstation state 
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equations provide a mathematical evaluation of the workstation performance at a lower 

level where primitive activities are coordinated to achieve desired task assignments.  

In the event of disruptions, the original activity plan devised off-line by the workstation 

controller may require adjustments. The question that arises is how to re-construct the 

activity plan. A first alternative would be to build a completely new plan to execute the 

pending jobs. The other extreme would be waiting until the disturbance is fixed and 

continuing with the original plan. This would be partially constructing a new plan to a point 

where the original plan can be resumed. In terms of the Petri Nets this corresponds to find a 

marking (state) in the original plan reachable from the disrupted state and the question to be 

answered is the selection of a marking that should be reached. From there, a number of 

possibilities exist to return to the original plan. Details on performance optimization are 

given in a companion paper (Mejia & Odrey. 2004). 

In terms of the Petri Nets, an error occurs when a transition fires outside a predetermined 
time frame. When a transition fires earlier or later (if the transition fires at all) than expected, 
an alarm is triggered and an error state is produced. After the error is acknowledged and 
diagnosed, a recovery plan is generated. This is accomplished by linking an error recovery 
subnet to the activity net. This linking produces an augmentation of the original net. At this 
stage the controller must devise a plan to reach the final marking Mf  based on the status of 
the augmented net. Reaching the final marking Mf is accomplished by constructing a plan to 
reach some pre-defined intermediate marking Mint from previously determined List 
markings and then firing the pre-determined sequence of transitions from such an 
intermediate marking to the final marking. If a path to the intermediate marking can be 
found, then the original execution policy (sequence of transition firings) can be employed 
from the desired intermediate marking Mint to reach the final marking Mf.  The issue of 
selecting the appropriate intermediate marking can be found in companion article (Mejia 
and Odrey, 2004). Our focus at this juncture is to demonstrate the construction of recovery 
subnets. 

5.2.3 Construction of recovery subnets for error recovery 

Perhaps the most complete descriptions of error recovery trajectories were developed by 
(Zhou and DiCesare, 1993). They proposed three possible trajectories. These consisted of 
input conditioning, forward error recovery, and backward error recovery. Input 
conditioning notes that an abnormal state can transform into a normal state after other 
actions are finished or some conditions are met. Forward error recovery attempts to reach a 
state reachable from the state where the error occurred. Backward error recovery suggests 
that a faulty state can become a normal state if an earlier stage in the trajectory can be 
reached. Obviously, not all trajectories are applicable in all cases due to logical or 
operational constraints. An example demonstrating backward error recovery is presented 
here but note that a similar approach can be applied to the other types of trajectories. Figure 
9 illustrates the events during an error occurrence and the corresponding recovery in terms 
of Petri Net constructs. Figure (9a) represents the Petri Net during the normal operation.  
Places are defined in Figure10. The error is represented by the addition of a new transition tf

and a place pe  representing the error state in (9b). Firing tf removes the residing token in p2,
resets the remaining process time corresponding to the place p2, and puts a token in the new 
place pe. The error recovery subnet and procedure are discussed in more detail in the 
following section. 
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Remarks:
pe represents an error state.                                                            pr1 and pr2 represent recovery 

steps
tf is the transition that represents the initiation of the failure tr1 to tr3 represent the start

and end of the recovery step  
 p0 to p3 represent arbitrary operational places;       t0 to t2 are changes of events 

in the original net 

Fig. 9. Construction and Deletion of Recovery Paths (from Odrey and Mejia, 2005). 
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5.2.4 Incorporating a recovery subnet into the original Petri net 

The incorporation of the recovery subnet into the original net by the recovery agent is 
the first step. In the preceding example (see Figure 9), such a subnet trajectory consists 
of two places (pr1 and pr2) and three transitions (tr1 to tr3). Place pr1 represents the 
recovery action “find part” and place pr2 the recovery action “pick up part”.  
Transitions tr1 to tr3 represent the change of states of these two recovery actions. With 
the recovery trajectory incorporated into the original net, the workstation control agent 
is required to execute the recovery actions. In (9.b), returning to the normal state 
requires the firing of transitions tr1,tr2 and tr3. After firing tr3 the scheduled transition 
firings in the original net resume. The augmented net now contains an Operational 
Elementary Circuit (OEC) = {p2, tf, pe, tr1, pr1, tr2, pr2, tr3, p0, t0,  p1, t1, p2} that has only 
operational (timed) places. 
One difficulty that arises is the potential that the operational elementary circuits 

constructed can result in infinite reachability graphs which make a search strategy 

difficult. Our approach to overcome this problem consisted of a sequential methodology 

which eliminates arcs and transitions from the combined original net and error/error 

recovery subnet. Every time that a transition on the recovery subnet fires, such a 

transition, its input places (except those places belonging to the original net) and the 

connecting arcs are eliminated from the augmented net. As noted in Figure 9, the 

elementary circuit which would be created during the generation of the recovery subnet 

will only be partially constructed. For example, in (9b), as soon as the transition tf fires, 

the transition tf and the arc I (p2, tf ) are removed from the net. Subfigures (9c) to (9f) 

illustrate the sequence of firings and elimination of transitions, places and arcs from the 

net. The original net is restored when the last transition (tr3) of the error recovery subnet 

has been fired. After firing tr3, the part token returns to the original net and the resource 

token to the resource place. The workstation control agent records the elements (places, 

transitions and arcs) that belong to the original net and recovery subnets, respectively.  

A record is kept by the workstation controller such that for every time that a transition 

of the augmented net fires the controller searches for such a transition on the agenda. If 

the transition is found, it means that the transition belongs to a recovery subnet and all 

the transition input places and all its input and output arcs are deleted from the 

recovery agenda and from the augmented net (with the exception of arcs and places 

belonging only to the recovery subnet and not to the original net). 

The next step relates to resuming the normal activities after an error is recovered. In terms 
of Petri Nets this implies finding a non-error state where the activities net and the 
recovery subnet are linked. The desired non- error state may not the same as the state 
prior to the occurrence of the error. For example, the state (marking) in subfigure (9f) is 
not the same as the state shown in subfigure (9a). The example described illustrates a 
possible trajectory (backward trajectory) which “started” (according to the arc directions) 
at p2. Defining the non-error state is the task of the recovery agent and depends primarily 
on the characteristics of the error and its recovery. In the event of an input-conditioning 
strategy, the corresponding net originates and terminates at the same place (Zhou and 
DiCesare, 1993). Our investigations assume that any part token that goes through either a 
backward or a forward recovery trajectory is placed in a storage buffers after an error is 
fixed. Figure 10 illustrates an example for backward error recovery.    
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Description of places and transitions 

p0: part available 

p1: part in buffer 1 

p2: part being moved to resource 1 

p3: part being processed by resource 1 

p4: part processed 

r1: resource 1 available 

b1: buffer 1 available 

tr1 and tr2: Recovery transitions 

Fig. 10.  Example of backward recovery trajectory with buffer 

5.2.5  Handling resources and deadlocks  

The work presented here assumes that, when an error occurs, all resources involved in the 
operation that failed and the part that was being process or manipulated become 
temporarily unavailable. Consider an example where two recovery actions are required to 
overcome an error. This could correspond to a situation of a robot dropping a part. To 
recover the part the part must first be found and then a command for the robot to “pick up 
part” must be given.  Vision systems have been used for the first action of finding the part. It 
should be noted that during the execution of recovery actions both the resource and the part 
remain unavailable for other tasks. This differs from our previous work (Liu, 1993) which 
considered machine breakdowns in which only the machine that failed remains unavailable 
during the failure and repair period.  The actual manipulation of a part during the failure 
states is considered in the logic of a workstation control agent. If the selected trajectory is an 
input conditioning subnet, the resources that intervened in the operation that failed remain 
unavailable until the operation is successfully completed. For backward and forward 
recovery the procedure is more complex in that all resources required to execute the 
operation that failed may need to be released at some point (to be determined by the 
recovery agent) in the recovery trajectory. Another issue is the possible occurrence of 
deadlocks in net augmentation. The policy adopted was to maneuver out of such deadlock 
states by temporarily allowing a buffer overflow. An example of maneuvering out of the 
deadlock situation using a Petri Net model is given in Figure 11. In the Petri net illustrated, 

Backward Recovery Subnet 

p3

p4

b1

r1
tr1

tr2

p2

p1p0
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the transition tr will be allowed to fire even if no tokens are available at place b1 (i.e, the 
buffer b1 is full). In that case, the place p1, representing the “parts in buffer” condition, 
would accept a token overflow (two tokens instead of one) only for the case of tokens 
coming from recovery subnets. The advantage of this policy is that clears the deadlock 
situation in an efficient way that addtionally can be automatically generated in computer 
code. It should be note that if this policy is not feasible in a real system due to buffer 
limitations, human intervention may be required. 

Fig. 11. Deadlock Avoidance by Allowing Temporary Buffer Overflow (Odrey and Mejia, 
2005)

Another issue considered was the situation where firing t1 twice would put two tokens in 
place b1 and the original buffer capacity would be permanently doubled. In a Petri net this 
overflow condition was modeled with negative tokens. Negative tokens for Petri Nets have 
previouusly been proposed for automated reasoning (Murata and Yamaguchi, 1991).To
compensate for an overflow situation our procedure was as follows: when a token coming 
from a recovery net arrives to a buffer, one token is substracted from the buffer place (in this 
case, the place b1 that represents the buffer availability) even though the buffer place has no 
available tokens. If the buffer place has no tokens available then a buffer place will contain a 
“negative” token representing the temporary buffer overflow. In the approach taken 
negative tokens indicated that a pre-condition of an action was not met but still the action 
was executed. The overflow is cleared when transitions, which are input to the buffer place, 
are fired as many times as ther are negative tokens that reside in the buffer place. The 
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storage buffer remains unavailable for other incoming parts from the original net until both 
the overflow is corrected and one slot of the buffer becomes empty. In terms of the Petri net 
of Figure 10, the buffer will be available again only when there is at least one   token in the 
“buffer” place b1. 

5.3 A combined neural net - Petri net approach for diagnostics 

In an attempt to investigate an “intelligent” manufacturing workstation controller an 
approach integrating Petri net models and neural network techniques for preliminary 
diagnosis was undertaken. Within the context of hierarchical control, the focus was on 
modeling the dynamics of a flexible automated workstation with the capability of error 
recovery.  The work-station studied had multiple machines as well as robots and was 
capable of performing machining or assembly operations.  To fully utilize the flexibility 
provided of the workstation, a dynamic modeling and control scheme was developed which 
incorporated processing flexibility and long-term learning capability. The main objectives 
were (i) to model the dynamics of the workstation and (ii) to provide diagnostics and error 
recovery capabilities in the event of anticipated and unanticipated faults. A multi-layer 
structure was used to decompose complex activities into simpler activities that could be 
handled by a workstation controller. At the highest layer a TCPN represented generic 
activities of the workstation. Different color tokens served to model different types of 
machines, robots, parts and buffers that are involved in the system operation. This TCPN 
model is based on modules which model very broad workstation activities such as “move”, 
“process” or “assemble”. A processing sequence is built by linking some these modules 
following the process plan. Then the resources needed to execute these activities are linked. 
Figure 3 shows an example of the move and assemble modules. If changes are required, the 
designer only needs to re-assemble the activity modules. 
Our goal was to provide responsive and adaptive re-actions to variation and disruption 

from a given process plan or assembly sequence.  Specifically, three subproblems were in 
this research :  (1) a workstation model was constructed which allowed a top-down 
synthesis and integration of various control functions.  The proposed workstation model 
had several levels of abstraction which decomposes operation commands requested by a 
higher cell level into a sequence of coordinated processing steps. These processing steps 
were obtained through a hierarchical decomposition process where the corresponding 
resource allocations and operations synchronization problems are resolved.  The motion 
control function is incorporated at the lowest level of the hierarchy which has adequate 
intelligence to deal with uncertainties in real-time,  (2) a model-based monitoring scheme 
was developed which includes three functions : collecting necessary information for 
determining the current state of the actual system, checking the feasibility of performing the 
current set of scheduled operations, and detecting any faulty situation that might occur 
while performing these scheduled operations. A Petri net-based watch-dog approach was 
integrated with a neural network to perform these monitoring functions, and (3) an error 
recovery mechanism was proposed which determines feasible recovery actions, evaluated 
possible impacts of alternative recovery plans, and integrates a recovery plan into the 
workstation model (Ma, 2000; Ma & Odrey, 1996) . Our focus here is on the integration of 
Petri Net based models and neural network techniques for preliminary diagnostics. 
Diagnostics determines the fault or faults responsible for a set of symptoms. A diagnosis 

may require a complete knowledge of the physical structure of the present devices and their 
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functionality (deep knowledge) and a short series of pre-established actions (shallow 

knowledge) for pre-defined faults. The diagnostics activity, as structured by Ma (2000), can 

be divided into two main types: (i) Preliminary diagnostics and (ii) deep reasoning. The 

neural network architecture for preliminary diagnostics is shown in Figure 12. 

Preliminary diagnostics is the first subtask of the diagnostic subfunction and is used to 

facilitate the diagnostic process. The approach taken here contains three different neural 

networks as shown in Figure 12. Neural net 1, termed NN I, generates the expected 

system status by converting a Petri net representation into a neural network structure for 

real-time control. The second neural net NN2 implements a sensor fusion and/or logical 

sensors concept (Henderson & Shilorat, 1984) to provide NN3 with the actual system 

status such that a sensory-based control system can be realized. NN3 is a multilayer 

feedforward neural network for classifying data obtained from NN1 and NN2 into 

different categories for preliminary diagnostics. Preliminary diagnostics provided a 

scheme to reduce efforts for further diagnostics by classifying conditions for recovery into 

four categories: (i) shut down the system, (ii) continue operation, (iii) call operator or (iv) 

invoke proper operation. The purpose of the deep reasoning module was to isolate the 

failure(s) and report to the error recovery module. Ma (2000) investigated a neural 

network model for preliminary diagnostics using an input-output technique for shallow 

knowledge. A Petri Net embedded in a neural network was used to classify errors. These 

errors were linked to a rule-based expert system containing pre-defined preliminary 

corrective actions (Ma and Odrey, 1996). The neural network was trained and tested with 

examples drawn from combinations of PN states and sensory data. Deep reasoning was 

not considered in Ma’s work and is a subject of on-going research. 

A top-down Petri net decomposition approach was performed to construct a hierarchical 
PN model for the given work-station example. High level Petri nets such as TCPN and 
TPN are included to enhance the modeling capability and the hierarchical concept 
provided the necessary task decomposition. The first (highest) sublevel was a timed-
colored Petri net (TCPN) which is a general PN with two additional parameters: 1) a time 
factor to represent the operation time for each operational place, and 2) color tokens to 
distinguish between parts. This is decomposed into the second sublevel which is a timed 
Petri net (TPN) where color tokens are not required because different parts (color tokens) 
are modeled separately. The third decomposition (sublevel) of the model further 
decomposes the operations at the assembly table into detailed processing steps such as 
"pick up", "transport", and "place". This final decomposition allows the Petri net to be 
more easily analyzed. 
The approach taken in this research embedded a Petri net model in a neural network 
structure and was termed Petri Neural Nets (PNN). The purpose of a PNN is to facilitate 
the process of obtaining state evolution information (the expected system status) by 
taking advantage of the parallel computational structure provided by neural networks 
and utilizing the T -gate threshold logic concept proposed by (Ramamoorthy & Huang, 
1989). The state evolution of a system modeled by Petri nets can be expressed using the 
following matrix equation:  

 M(K+1) = M(K) + UT(K)A, K=1,2,… (7) 
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M(K) is a (lxm) row vector representing the system marking at the Kth stage. U(K) is a (n 
x 1) column vector containing exactly one nonzero entry "I" in the position corresponding 
to the transition to be fired at the Kth firing. The matrix A is a (nxm)  transition-to-place 
incidence matrix. A schematic of the NN1 architecture is indicated by Figure 13. 

Fig. 12. Neural Network architecture for preliminary diagnosis 

Based on the state equation, a three-layered PNN with an embedded T -gate threshold logic 
which simulated the state evolution of a general PN from M(K) to M(K+I) was developed as 
follows for the different layers: 1) an input vector Ik = [ I1, ...,Im]  ( m = number of places) is 
set equal to M(K). The expected output vector Oi (i= 1,…,m) is M(K+I).  The second layer of 
the PNN contains three vectors: (i) VJ (i=1,2 ,... , m) representing M(K), (ii) Gr (r= 1,…n) 
where n = number of transitions representing UT(K) which is determined by execution rules 
for Petri nets, and 3) Hh (h=l, …, m) which  represents  UT(K)A. For a decision-free PN, the 
execution rules can be implemented using AND T -gate threshold logic. The T -gate 
threshold logic is a neural network with fixed weights and can be used to implement a rule-
based expert system for time-critical applications as noted by (Ramamoorthy and Huang, 
1989). The weights in the PNN are hard weights and are assigned according to specified 
rules. Details can be found for theses weights and the output function for each layer in (Ma 
& Odrey, 1996). 

Fig. 13. NN1 Neural Network architecture incorporating T-gate threshold logic gates (Ma & 
Odrey, 1996) 
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The purpose of preliminary diagnostics was to classify operation conditions occurring in the 
workstation into several categories, each one associated with a preliminary action. The input 
vector of NN3 is portioned into two sets of nodes. The first set represents the expected 
system status and is obtained from the output of NNI (i.e. M(K.+I) of the corresponding 
sublevel-TPN model).  The second set of nodes [S1, S2, ... . Sn] represent categories of sensor 
information which are obtained from NN2. The output vector of NN3 represents the four 
preliminary actions: shutdown (O1), call operator (O2), continue operation (O3), and invoke 
further diagnostics (O4). The value of these output are either “0” representing not activated, 
or "1" representing activated. An outline of the system is given in Figure 13. Training and 
testing data are obtained using diagnostic rules based on common knowledge about the 
system. In general, the actua1 operation status of a system at any instant is the set of 
readings of all the sensor outputs. However, the actual system status information given by 
the sensor outputs is not sufficient for determining preliminary actions. Both the actual 
system status and the expected system status are required. The determination of a 
preliminary action for operations can thus be stated for the example of Figure 14 as follows:

         IF "the expected system status" = [p1,p2.p3,p4,p5] AND “the actual system 
status" = [s1.s2.s3.s4]  

        THEN ''preliminary action" = Oi  (i = 1,2,3,4)  

Fig. 14. Generation of preliminary actions in a neural network incorporating T-gate 
threshold logic 

Based on a sublevel TPN model, NN1 generates different outputs corresponding to possible 
expected system status M(K). Different fault scenarios were used as the basis for simulation 
of actual system status and for generating diagnostic rules.  Details of the simulation and 
results can be found in (Ma and Odrey, 1996). In general a neural network for preliminary 
diagnostics was investigated. For NN3 (classification for preliminary diagnostics) different 
3-layer perceptron networks with different hidden nodes were simulated and it was found 
that a 19-15-4 perceptron network gave the lowest percent classification. Note that this work 
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did not construct the NN2 network and only simulated data was used to test the proposed 
neural network NN3.   We plan to continue this approach which incorporates a hybrid 
neural – Petri net in future research.  

5.3.1 Advanced diagnostics and error recovery 
Preliminary diagnostics, as noted in the previous section, provides a scheme to reduce 
efforts for further diagnostics by classifying conditions to be diagnosed into four categories, 
each one associated with a preliminary action. The preliminary actions separate the 
diagnostic conditions which require knowledge about the physical structure of the devices 
and/or their functional descriptions (i.e., deep knowledge). from the conditions which need 
only a short series of inferences but fast responses (i.e. shallow knowledge). Shallow 
knowledge which usually appears in the form of direct input-output association can store 
patterns of predefined instructions from designers and/or experts was considered more 
desirable at the preliminary diagnostics stage in this research.  

5.3.2 Further diagnostics 

Fig. 15. A general framework for error recovery in a Petri net based system   

Further (advanced) diagnostics is initiated to consider two possible situations: either a 
preplanned error(s) has occurred or an unanticipated error(s) has occurred. Regardless 
of error type, a recovery plan is needed to construct a recovery trajectory to bring the 
system back to a normal condition (nominal trajectory). For preplanned errors, the 
corresponding error causes and/ or sources can be established in a failure reason data 
structure. With such a database structure, one can then obtain the failure reasons 
associated with a particular operation. In this research, an integrated approach which 
utilizes both knowledge-based systems and neural networks is proposed for 
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unanticipated errors. Neural networks are used to provide additional information 
about unanticipated situations through learning. The same neural network used in the 
preplanned error is used to get as much information as possible about unanticipated 
errors. The research effort is directed toward using preplanned errors as training data 
and a multilayer, feedforward network as the initial test structure. A knowledge-based 
system then takes this information as inputs to automated processes. The modeling 
process is based on the feasibility of using Petri nets with negative tokens (Murata and 
Yamaguchi, 1990). Our current efforts focus on developing an automated reasoning 
technique which can draw conclusions from unknown errors in a workstation 
environment. To develop an automated reasoning scheme, a corresponding Petri net is 
established from information gathered by the neural net approach to model the reasoning.  
A schematic of the general framework for error recovery is given in Figure 15. 

5.3.3 Error recovery strategies 
After diagnostics, the workstation controller needs to generate a recovery plan to 
return the system back to a normal state and to continue the remaining tasks. The 
generation of recovery plans involves determining recovery strategies, constructing 
recovery activities, synthesizing a recovery sequence, and establishing a recovery 
plan. To determine recovery strategies, general and specific rules may be selected as 
constraints in the generation of recovery plans. In particular, preplanned errors and 
unanticipated errors usually have different sets of rules to be followed. In the case of 
preplanned errors, the construction of recovery activities can be easily done by 
recalling from computer memory. For unanticipated errors, however, an intelligent 
task planning system is required, and at least one feasible set of recovery activities 
needs to be constructed. In the approach taken recovery activities are synthesized with 
the planned activities to form a sequence of coordinated primitive activities. Finally, a 
complete recovery plan is established which includes not only the recovery actions but 
also other information or commands. In the research done to-date the most important 
issues in the generation of recovery plans was to develop an intelligent task planning 
system and to synthesize Petri nets corresponding to the recovery activities and to the 
planned activities. The purpose of an intelligent task planning system is to select and 
sequence processing steps that will change the current state of the system into a 
desired system state. 
A Petri net based processing step representation to establish error recovery trajectories 
through a neural network based learning mechanism was undertaken. The processing steps 
modeled by Petri nets were categorized into two classes, namely, an action-class and a 
condition-class. Processing steps such as “move”, “ process”, and “assemble” that execute a 
task and usually have time associated with them are considered as an action-class.  The 
condition-class processing steps represent the preconditions and/or post-condition of an 
action-class processing step.  Examples of condition-class processing steps include “part in 
IB” and “part finished processing”.  Every action-class processing step is followed by 
condition-class processing steps.  Similarly, a condition-class processing step can trigger one 
or more action-class processing steps.  Based on the relationship between action-class and 
condition-class processing steps, two sets of problems are defined: 

P1: Action-Condition Problem (ACP), i.e. given an action-class processing step, find a (pre) 
condition-class processing step   

    P2: Condition-Action Problem (CAP), i.e. given a (post) condition-class processing step, 
determine an optimal action-class processing step  
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The recovery plan generation problem then involves solving ACP and CAP iteratively 
which then generates a sequence of processing steps until a desired system state is reached. 
When the error recovery module is initiated by the monitoring and diagnostics module, the 
expected system state is compare with the actual system state to obtain the discrepancy 
(error) of the system.  If the error state is at an action-class processing step, the ACP problem 
is solved (through the Action Neural Network) and the result is compared with the normal 
trajectory to see if any of the normal state can be reached.  If not, the error recovery routine 
continues by feeding the results from the ACP problem into the CAP problem which is 
solved through the Condition Neural Network.  The ACP and CAP problems are invoked 
iteratively until a state in the normal trajectory can be reached.  Similarly, if the error state is 
at a condition-class processing step, the CAP problem is invoked first and the results are fed 
into the ACP problem, if necessary. 
To solve ACP and CAP problems, it was necessary to consider the interactions between 
action-class processing steps and condition-class processing steps.  In a workstation 
environment, many different processing steps can be constructed.  It would be difficult to 
consider all the interactions among all the processing steps.  The basic elements for 
constructing a processing step, however, are limited and thus manageable. We term these 
individual steps as primitive elements.  Our approach consisted of action-class processing 
steps being composed of three different elements: the action element, the object element, and 
the location element.  For example, in the “move part A to m1 using robot 1” processing 
step, the action element is “move”, the object elements are “part A” and “robot 1”, and the 
location element is “m1”.  Similarly, the condition-class processing steps have the object 
element, the location element, and the status element.  For example, the processing step, 
“part A finished at m1”, has “part A” as an object element, “m1” as the location element, 
and the status element is “finished”. Various action-class and condition –class elements can 
be constructed. In an industrial setting such steps could be constructed from basic Method-
Time-Measurement (MTM) data already available. Each processing step is represented in 
terms of different elements using binary vector representations.  An action-class processing 
step, “move part A to machine 1 with robot 1”, can then be represented as an action –class 
vector PSA 

PSA =[1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0] 

where the “1” designation refers to the primitive element considered and “0” is interpreted 
as an element not considered from the action-class set. Similarly, a vector PSC can be 
defined to represent a condition-class processing step. An example of  
a  condition-class processing step, “part A at machine 1”, could   be represented by a vector PSC 
as follows: 

PSC = [1 0 0 0 0 1 0 0 0 0 0 0 0 0] 

The elements within the vector are interpreted as active or inactive. This representation has 
the advantages of being able to represent many combinations of actions, objects, locations, 
and status.  In addition, the vector-based representation allows one to apply neural network 
techniques that provide learning capability in the generation of recovery plans for 
unanticipated errors.  In this research, in order to capture the relationship among processing 
steps and to generate error recovery plans, a Boltzmann machine neural network was 
investigated. 
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5.3.4 Boltzmann machine neural network structure 
The Boltzmann Machine is a particular class of neural networks that consists of a network of 
simple computing elements.  The states of the neurons are binary, i.e. 0 and 1.  The neurons in the 
network are connected by synapses with different (real) weights, which represent a local 
quantitative measure for the desirability that the two connected neurons are on.  Similar to 
backpropagation neural networks, Boltzmann machines can be trained on test data to associate 
input and output values.  In addition, one can use Boltzmann in optimization problems where 
the state of an individual neuron is iteratively adjusted to achieve minimal cost objective.  The 
ability of doing both association and optimization makes Boltzmann machines very appealing in 
the application of workstation recovery plan generation.  In this research, the Boltzmann machine 
is used at two different stages, namely a learning stage and an optimization stage.  At the 
learning stage, the objective is to capture the relationships among various elements of the 
processing steps through weights adjustment.  The relationships among various elements of the 
processing steps should be the same throughout the operations.  Therefore, the learning stage is 
performed off-line.  Once the relationships (weights) are established, the desired output is found 
at the second stage, on-line, through solving an optimization problem. In this research, in order 
to capture the relationship among process steps ant to generate error recovery plans, a Boltzman 
machine neural network was used. Details of this investigation are beyond the scope of this 
chapter and are currently being submitted for publication. Details can also be found in (Ma, 
2000).

6. Conclusions 

The work presented above essentially summarizes past and on-going work within the 
Industrial & Systems Engineering department at Lehigh University on “smart” systems. The 
research undertaken indicates a variable architecture and approach for such systems. 
Extensions to this work will incorporate stochastic implications, communications and 
negotiation strategies between agents, and further work on control nets and strategies. 
Hybrid nets such as the Petri –Neural Net are of particular interest. The techniques 
integrated into this work in the future will  be directed toward development of robust, 
reconfigurable, adaptable large scale systems. Applications are currently in production and 
logistic systems. Other applications are being pursued.
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