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Chapter

Diffusion and Quantum Well 
Intermixing
Thamer Tabbakh

Abstract

Diffusion or intermixing is the movement of particles through space. It 
primarily occurs in every form of matter because of thermal motion. Atom dif-
fusion and intermixing can also happen in crystalline semiconductors whereby 
the atoms that are diffusing and intermixing move from one side of the lattice 
to the adjacent one in the crystal semiconductor. Atom diffusion, which may 
also involve defects (including native and dopant), is at the core of processing of 
semiconductors. The stages involved in semiconductor processing are growth, 
followed by post-growth, and then the construction stage comes last. The control 
of every aspect of diffusion is necessary to accomplish the required goals, there-
fore creating a need for knowing what diffuses at any point in time. This chapter 
will briefly summarize the techniques that are in existence and are used to create 
diffused quantum wells (QWs). Also, it will outline the examples of QW semicon-
ductor lasers and light-emitting diode (LED) by the utilization of inter-diffusion 
techniques and give recent examples.

Keywords: intermixing, semiconductors, diffusion, QWI, lasers, LED, intermixing 
techniques, inter-diffusion, fabrication

1. Introduction

The demands of device technology have yielded the primary motivation for 
looking over atomic diffusion, as depicted by a semiconductor lattice. Since there 
has been a shrinking of the devices’ physical dimensions, more problems have 
emerged concerning comprehending features of diffusion in more complex struc-
tures [1]. There is a link between some common problems with the deterioration of 
a doped structure, for instance, a superlattice or p-n junction, diffusion barrier, or 
a metal contact’s endurance [1–4].

Knez pointed out four diffusion situations that are separate from each other, 
which can crop up in the post-processing of the substrate’s surface layer. The layer 
can be thin like mercury telluride (HgTe) or cadmium telluride (CdTe) [4–6]. 
There are four different diffusion situations for the post-processing, which are 
the following:

Firstly, there is components’ lateral diffusion in the surface layer.
Secondly, there is surface component diffusion into the substrate (surface into 

substrate).
Thirdly, there is substrates’ component diffusion into the surface layer (sub-

strate to surface).
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Fourthly is the diffusion barrier stationed between the substrate and surface layer.
The type of diffusion within the crystal lattice is called lattice diffusion, and it 

takes place by either substitutional or interstitial mechanisms. Interstitial lattice dif-
fusion involves a diffusant like carbon in an iron combination diffusing in the middle 
of the lattice structure of one or more crystalline elements. On the other hand, substi-
tutional lattice diffusion involves self-diffusion or inter-diffusion (where self-diffu-
sion takes place in pure metals because atoms exchange location for the same type and 
there is no net mass transport, while inter-diffusion occurred in alloys which have net 
mass transport and atoms diffuse into different metals) whereby the movement of an 
atom is made possible by its substitution with another atom to replace it [6–10]. This 
diffusion is usually made possible by point vacancies’ availability all over the crystal 
lattice. Diffusing particles relocate fast from one vacancy point to another, basically 
by random jumping termed as jump diffusion, as shown in Figure 1. Considering that 
the regularity of point vacancies multiplies in line with the Arrhenius equation, the 
frequency of diffusion crystal solid state improves with temperature [11–15].

The use of inter-diffusion of quantum wells (QWs) is an emerging technology 
that is significant for fabricating semiconductor lasers since it improves devices’ 
optical and electrical properties [16]. Selective inter-diffusion is achievable by 
obscuring into the QW wafer’s desired regions. Since the 1980s, there have been 
extensive investigations regarding inter-diffusion [16, 17]. It comprises disor-
dering or intermixing of heterostructures that are quantum-confined like QWs 
and quantum dots (QDs). The thorough investigations are due to its potential to 
achieve monolithic integration of optoelectronic/photonic devices. Among the 
inter-diffusion techniques, there has been a consideration of impurity-free vacancy 
disordering (IFVD) as the technique that is most promising for device applications 
because of its simplicity and causes lesser residual damage to the sample [17–19].

During inter-diffusion, there will be a resultant modification of refractive index 
and electrical conductivity between the regions that are as-grown together with 
disordered ones. The technology allows a homogenous process that leads to the 
enhancement of the sideways electrical and optical restraint of laser semiconductors 
in such a manner that the bottom threshold current, as well as single operation that 
is lateral mode, is obtainable. Moreover, the QW’s shape alters as a result of inter-
diffusion between QWs and barriers that are next to it. In turn, there is a modifi-
cation of the sub-band energy in valence and conduction bands. Eventually, the 
inter-band transition energy is modified. Therefore, the inter-diffusion technique 
could be utilize the fabrication of QW lasers and LED for multiple wavelengths 
without using complicated epitaxial regrowth or etching processes. Other merits 
of utilizing inter-diffusion techniques include one, its simplicity. And there is also 
compatibility with existing semiconductor lasers’ fabrication technologies [20–25].

Figure 1. 
Atomic movement that results in atomic diffusion. (a) Interstitial diffusion, (b) self-diffusion or  
inter-diffusion, (c) vacancy diffusion.
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2. Diffusion mechanism and coefficient

For the vacancy diffusion mechanism, the probability for any atom in a solid to 
move is the product of the probability P of finding a vacancy in an adjacent lattice 
site [25, 26]:

  P = z exp  (−   
 G  f  

 _ 
 K  B   T

  )   (1)

where z is the coordination number (number of atoms adjacent to the 
vacancy), Gf is the free energy necessary to form the defects, T is the absolute 
temperature (K), KB is the Boltzmann constant, and the frequency of jumps 
(probability of thermal fluctuation needed to overcome the energy barrier for 
vacancy motion)

   R  j   = V0 exp  (  
− ∆  G  m  

 _ 
 K  B   T

  )    (2)

where Rj is the probability of such fluctuation or frequency of jumps, V0 is an 
attempt frequency related to the frequency of atomic vibrations, and Gm is the 
activation free energy for vacancy motion.

Therefore, the diffusion coefficient [27] is

  D =  zV  0    a   2  exp  (  
− ∆  G  m  

 _ 
 K  B   T

  )  exp  (−   
 G  f  

 _ 
 K  B   T

  )   (3)

where  a  is the mean distance between atoms in a crystal lattice.
Eq. 3 can be rewritten as

  D =  D  0   exp  (  
− ∆  G  m   −  G  f  

 _ 
 K  B   T

  )    (4)

where D0 is a parameter of material (both matrix and diffusing species).
Thus, the diffusion coefficient is the measure of the mobility of disusing species:

  J = − D (  
 d  C  

 _ 
 d  X  

  )   (5)

where    
 d  C  

 _ 
 d  X  

    is the concentration gradients (negative in the direction of diffusion), 

as shown in Figure 2.

Hence, from Eq. 5

  D =  D  0   exp  (  
−  Q  d  

 _ 
RT

  )   (6)

where D0 is the temperature-independent preexponential (m2/s), Qd is the 
activation energy for diffusion (J/mol or eV/atom), and R is the gas constant  
(8.31 J/mol K or 8.62 × 10–5 eV/atom K).

By taking the logarithm for Eq. 6, we can get

  lnD =  lnD  0     
−  Q    d  

 _ 
RT

    (7)

  logD =  logD  0     
−  Q    d  

 _ 
2.3RT

    (8)

From Eq. 8, Q  d the activation energy for diffusion and D0 independent preex-
ponential can be measured by estimating the logD0 versus 1/T or lnD0 versus 1/T as 
the Arrhenius plots (Figure 3). Figures 1 and 2 and Tables 1 and 2 were taken from 
Porter and Easterling textbook and Smithells Metals Reference Book [1].
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Figure 3. 
Arrhenius plots. Q   d as the function of D0 diffusion temperature dependence [1].

Impurity D0 = (mm2/S−1) Q  d = (kJ/mol)

C in BCC Fe 1.1 87

C in FCC Fe 23 138

N in BCC Fe 0.74 77

N in FCC Fe 0.34 145

H in BCC Fe 0.12 15

H in FCC Fe 0.63 43

Table 1. 
Examples of the temperature-independent preexponential and the activation energy for diffusion of some 
atoms in the case of interstitial diffusion mechanism.

Figure 2. 
The slope of particular point on the concentration gradient.
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In Eq. 7, it seems that the vacancy diffusion mechanism is slower than interstitial 
diffusion, as shown in Figure 4 and Tables 1 and 2 (self-diffusion or diffusion of 
substitutional atoms) [28–31].

From Eq. 6, the big atoms cause more distortion and take more time to diffuse 
than the smaller atoms during the migration process as we can see from Tables 1 
and 2. Also the diffusion is slower in a close direction and lattices.

3. Fabrication of quantum well intermixing (QWI)

The fabrication of photonic integrated circuits (PICs) by employing an 
integration of lasers and transparent waveguides on a single epitaxially grown 
substrate demands the actual understanding and definition of regions possessing 
different bandgap energy characters. The approach to work out a solution to this 

Impurity D0 = (mm2/S−1) Q  d = (kJ/mol)

Fe in FCC Fe 65 279

Fe in BCC Fe 410 246

Si in Si 180,000 460

Ni in Cu 230 242

Table 2. 
Examples for the temperature-independent preexponential and the activation energy for diffusion of some 
atoms in the case of vacancy diffusion mechanism.

Figure 4. 
Logarithm of the diffusion coefficient versus the reciprocal temperature [1].
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problem can be categorized into intermixing and growth approaches. Among the 
growth approaches, the most popular ones are selective area growth approach 
and use of a plated substrate to etch-and-regrowth approach [29, 30, 32]. The 
former one allows for simultaneous epitaxy employing the use of different growth 
rates, which in turn allows for flexibility toward the growth of quantum wells 
with varying thicknesses [32–34]. In contrast to the former approach, the latter 
approach uses different quantum well thicknesses along with subsequent growth 
of material. Using impurities or vacancies toward the selective partial intermix-
ing of quantum wells provides an alternative approach. The change in the shape 
of quantum well and thus the transition energies associated occur due to the 
intermixing of barrier material and quantum well material, which happens during 
a high-temperature annealing. The capability to identify and define regions that 
are not to be intermixed and which are to be intermixed acts as the key factor to 
the viability of the QWI approach. Intermixing method that does not demand 
epitaxial regrowth is identified to be more cost-effective and potentially simpler 
[35]. This is the main advantage of the intermixing method. In the following, the 
means of patterning non-intermixed and intermixed regions along with several 
QWI approaches are described.

4. Techniques utilized for QW intermixing

There are three techniques of inter-diffusion that are in existence and are widely 
used. These are the inter-diffusion that is impurity-induced disordering (IID), 
vacancy diffusion that is IFVD, and laser-assisted disordering (LAD) laser-induced 
QW intermixing. The first technique uses impurities to accomplish inter-diffusion 
for the considerable alteration in electrical conductivity and refractive index. Its 
common utilization is in achieving sideways optical and electrical confinement in 
semiconductor lasers. In contrast, IFVD does not involve impurities in obtaining 
inter-diffusion such that there is the conservation of the electrical properties of the 
diffused QWs. Its typical use is in fabricating tuning LAD technique that has been 
tested and developed in the last three decades. This method is based on the direct 
writing of the laser beam into the structure [36–38].

5. Intermixing types and history

Impurity-induced layer disordering (IILD) was the first quantum well inter-
mixing technique to be ever demonstrated. In 1981, the affirmation of disorder-
ing of an AlAs-GaAs superlattice employing Zn (Zinc) as the active species was 
carried out by Laidig et al. [33, 34, 39]. In this affirmation, thermal annealing for 
several hours was conducted at a temperature of 600°C. As a result, it was identi-
fied that in a superlattice, different grades of intermixing can occur according to 
the anneal conditions used. The fabrication of lasers with emission wavelength 
(blue shifted) was conducted in 1983 employing this technique [33]. In 1984, it 
was made possible to laterally define the waveguide of a buried heterostructure 
employing stripe geometry QW laser devices using IILD [35, 40]. A year after, 
the first QW laser utilizing transparent facet windows was developed using 
IILD [33, 41, 42]. The refining of the intermixing method has been happening 
since then and has currently transformed into one of the best methods which are 
understood and employed in many commercial products; the most prominent 
of these includes high-power semiconductor lasers integrated with disordered 
facet windows. It should be noted that ion implantation can be utilized instead 
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of incorporating impurities (impurities include Si, Mg, or Zn) into the lattice 
utilizing the process of diffusion. Ion implantation possesses the primary benefit 
of not automatically incorporating heavy p-type or n-type doping while intro-
ducing the reactive species and of having a larger variety of species made avail-
able. On the flip side, high implant energies utilized have been identified to cause 
crystal damage which is not easily removable as in the case with other material 
systems (e.g., Si material systems). Both of the intermixing processes discussed 
above rely on the use of impurity atoms to intensify the Al-Ga self-diffusion 
process by employing different mechanisms. Although discussions and debates 
still exist around the exact nature relating to the process of intermixing, several 
experiments and authors have confirmed the unquestionable role of column-
III vacancies and column-III interstitial types. A decade ago, methods such as 
VED, which are impurity-free intermixing methods, gained their popularity 
since they offered the possibility of intermixing without employing the doping 
process which prevent the absorption of the free carrier and without crystal 
damage created by implantation which would, on the other hand, be responsible 
for scattering loss. An As-rich ambient in a quartz ampoule was employed in 
the first experiments to prevent crystal surface damage by arsenic out-diffusion 
[36, 37]. In 1988, the use of an evaporated SiO2 encapsulant in order to improve 
the intermixing process was first demonstrated [38]. Soon after, the process of 
generating vacancies and thus supporting the process of intermixing became 
possible by employing other dielectrics such as SiON or SiN. In 1993, fluorides 
(such as SrF or AlF) were identified to prevent QWI in a more effective manner 
[39]. Essential for the development of optoelectronic devices and instruments, 
these materials identified allowed for the definition of a certain pattern with 
dissimilar bandgap energies.

The IILD process makes use of an Ar-based laser beam that is very highly 
focused in nature. To develop the AlGaAs-GaAs DFQW, the beam of laser marking a 
wavelength measurement of 488 nanometers (nm) is used to scan the sample which 
is heterostructure in nature and is also enclosed using a layer of Si-Si3N4, which is 
approximately 90 nm in thickness. The speed of scan employing the laser beam 
could be marked up to the highest value of 85 pds. The area in which the laser beam 
interacts will develop an enhanced cylindrical segment identifiable to the range 
of microns. The process of annealing is then initiated in order to guide the silicon 
into the required crystal, which will result in the local intermixing of the layers of 
crystal. On the other hand, to selectively intermix GaInAs over GaInAsP quantum 
well structure, pulsed photo-absorption-induced disordering (PAID) technique 
is employed, which was deliberated employing the utilization of time-resolved 
photoluminescence of high spatial resolution. As a consequence of the above-said 
process of intermixing, a reduction of approximately two orders of measure in the 
time of non-radioactive recombination was achieved, which was confirmed from 
the measurements conducted.

Impurity-induced, impurity-free (dielectric cap), implantation-induced, and 
laser-induced techniques are some of the QWI techniques that have been advanced. 
Out of these techniques, the use of impurity-free techniques is strongly advised 
since optical absorption occurs as a result of the process that the semiconductor 
waveguide being instituted to dopants which are electrically active in nature. In 
order to develop vacancies on the group III lattice site, the impurity-free vacancy 
disordering (IFVD) technique employs the utilization of dielectric caps, which 
are placed on the semiconductor’s exterior surface [3, 7]. The vacancies happen to 
diffuse through the surface of the semiconductor resulting in solitary atoms bounc-
ing among different lattice sites. Resultantly, it is found that the quantum well 
intermixes with the adjoining barrier material [34].
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6. QW intermixing in industries

From the development of individually addressable laser arrays of higher den-
sity to laser-based products within extreme power ranges, monolithic integration 
platform which is highly innovative and known as quantum well intermixing (QWI) 
is reshaping methods in which laser diodes are used to solve the ever-increasing 
optoelectronic requirements. This is particularly important since laser systems 
which are QWI-enabled are found to deliver far better performance characteristics 
in factors of power output, luminosity, yield, and dependability.

The QWI is utilized to develop passive waveguides to the interior of the laser 
cavities adjoining to each facet. It is identified that excellent electro-optical perfor-
mance is achieved owing to the incorporation of the passive waveguides, especially 
referring to high-power, single-mode function. An idiosyncratic attribute of this 
approach is that it allows for the mass production of huge numbers of lasers in 
parallel, on the very same chip, with very superior efficiency since the passive 
waveguides are adequately long enough to relax mechanical-related cleaving toler-
ances. The QWI technologies can be largely employed in many other applications, 
owing to their farthest versatility. Some of the areas in which the extremely versatile 
nature of the QWI technology could be utilized to its maximum potential include 
monolithic photonic integrated circuits (PICs) and in the comprehension of the 
broad area and stack lasers which provide atypical high-power characteristics and 
dependability. PICs mainly find their application in broadband optical systems, 
optoelectronic signal processing systems, microwave photonics, and biophotonics.

QWI gains its importance since it is an integration technique that permits the 
tampering of the properties of a semiconductor quantum well structure, after its 
growth. The quantum well intermixing technique combines active and passive 
components on the very same chip. To manufacture complex laser diodes, laser 
diode array systems, and photonic integrated circuits (PICs) in a manufacturing 
environment, intense proprietary QWI technology is utilized. The result of this 
process is the development of next-generation laser technology which can easily be 
utilized for a variety of applications [31, 41, 42].

The evolution of the next-generation systems is driven today by the latest inno-
vations in laser diode technology. Intense is providing laser products with far better 
brightness, improved lifetimes, and increased dependability by employing modern-
ized semiconductor design and patented QWI technology. The ways in which lasers 
are providing viable solutions to mission-critical problems are revolutionized by 
the quantum well intermixing method developed by the company, innovatively by 
producing integrated chips at efficient levels and yields which was unidentified in 
the industry before.

7. Real applications and fabrication using QWI

In this section, we will summarize some of the laser and light-emitting diode 
(LED) QWI applications that have been fabricated and tested by our group at the 
University of Central Florida (UCF) cleanroom facility [14, 43]. These experiments 
will show the important role of the intermixing and how it can be used for the 
integrated devices. We will start with the laser followed by the LED.

7.1 Laser diodes

When quickly heated at higher degrees and topped using SiNx and SiOyNx films 
of various constitutions, quantum well frameworks InGaAsP are interlinked to 
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different degrees. Laser diodes are fabricated with shifted samples of both blue and 
red, and their output is recorded.

Selective area mixing of semiconductor-based multiple quantum wells (MQWs) 
could be considered a crucial strategy toward the development of consolidated 
optoelectronic circuits and instruments. The bandgap energy of the substance can 
be controlled with stability over a wide spectral range by monitoring the intensity 
of the intermixing process. The lasers generated on a single monolithic substra-
tum may, therefore, have wavelengths of output which differ widely. The correct 
combination of the encrusted films may vary the wavelength to either blue or red. 
The narrow-field semiconductor regrowth procedures have not been very successful 
in repeatedly producing high-yielding optoelectronic products. Others have docu-
mented many techniques for the after-growth combination of QW. In the analysis, 
we selected a method of induced disorder by impurity-free vacancy that works by 
rapid thermal annealing (RTA) of QW specimen coated by SiNx or SiOyNx. The 
range of intermingling could be precisely controlled by changing the dielectric layer 
capping constitution. Employing this method, we were able to manufacture mul-
tiple lasers using a single sample of the InGaAsP multiple quantum well framework, 
which has been covered by various SiOyNx configurations in different parts and 
annealed at 800°C for 30 s. Slope efficiencies, threshold currents, and laser diodes 
that are manufactured in the separate section are then carefully defined based on 
their lasing wavelengths. Such output properties are then juxtaposed with that of 
the laser diode made employing the primary as-grown multiple quantum well speci-
men as shown in Figure 5 [14, 17, 32, 40, 41].

7.1.1 Result

Increasing the ratio between NH3 and SiH4 to N2O during the SiOyNx film growth 
has been found to result in a higher refractive index. It is noted that wavelengths (las-
ing) of the instruments manufactured on intermixed specimens are identified to be 
shifted to lower frequencies (red shift). At the same time, the capping film refractive 
index throughout RTA is higher than the value of 1.95 (refractive index). In compari-
son, the instruments covered with films having a refractive index lower than 1.95 in 
value show lasting wavelengths changed blue to higher frequencies. Accordingly, the 
absolute value of the laser spectrum is experiencing a red shift with a larger ratio in 
SiNx film and blue shift with a smaller ratio in SiOyNx film as shown in Figure 6.

Laser diode made from an as-grown multiple quantum well specimen acted as a 
base standard and is identified to have a lasing wavelength of 1556 nm. In Figure 7, 
all the fabricated laser diodes are shown with the accompanying spectra. The 

Figure 5. 
Schematic of the InGaAsP MQW laser diode with InP substrate as substrate layer and InGaAs as capping 
layer.
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Figure 7. 
Laser spectrum of all fabricated devices. It shows the blue and red shifted from the as-grown ones. This figure is 
taken from [14].

highest blue-shifted wavelength of laser noted is 1392 nm (164 nm change com-
pared to as-grown laser), and 1687 nm (131 nm change as compared to as-grown 
laser) is the most excellent noted red-shifted wavelength of the laser. Throughout 
this review, it is discovered that the laser light is not emitted by a system manufac-
tured utilizing a noncapped RTA manufactured multiple quantum well sample. 
Thus, uncapped regions of the MQW specimen were found to have sustained 
irreparable harm during thermal annealing [14].

Figure 8 shows the output power curve (L-I curve) for all intermixed laser devices. 
The laser that fabricated using the most intermixed MQWs had the lowest output 
power, while the as-grown laser diode has the highest output power. Therefore, as we 
intermixed more, we create more losses that affect the device efficiency.

7.2 LED and modulators on InGaAsP

Using a controllable technique for the red and blue shifting of bandgap energy 
of the quantum well, we were able to develop LED sources that reach a broad 

Figure 6. 
The absolute values of all lasers’ spectrum as a value of the refractive index of the film for different capping 
layer combinations. The blue shift is associated with SiOyNx films, while the red shift is associated with SiNx.
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frequency spectrum along with all-optical modulator intensity instruments. 
Through using an impurity-free vacancy diffusion method, they show bandgap 
adjustment of multiple quantum well structures of InGaAsP. By utilizing SiO2, 
SiOyNx, and SiNx capping layers, and by regulating the related oxygen and nitrogen 

Figure 8. 
The fabricated lasers diode as function of threshold current L-I curve.

Figure 9. 
Measured absolute value of the PL shift of the RTA-treated samples from that of the as-grown wafer for 
different dielectric film capping, in respect to the refractive index of the film. The blue shift is associated with 
SiOyNx films for different ratios of NH3/N2O, while the red shift refers Si-rich compositions. The inset shows the 
absolute PL spectrum for selected data points. This figure and caption were taken from [43].
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Figure 10. 
Schematic for the integrated LED with MZI intensity modulator [43].

Figure 11. 
The output power as function of injected current for the integrated device.

content, a significant modification of the bandgap energy toward the red and blue 
portions of the spectrum is identified. The subsequent degree of tuning, with band-
to-band wavelength emissions of up to 120 nm red shift and 140 nm blue shift, was 
analyzed using photoluminescence at room temperature, following the emission 
spectra acquired from LED semiconductor instruments manufactured on this 
framework. The intensity modulator instruments are made along with compatible 
LED sources for the chosen frequency, designed to achieve minimal material losses 
and modulation of residual amplitude as shown in Figure 9 [43].

The fabricated LED has been integrated with transparent intensity modula-
tor as shown in Figure 10. The intensity modulator is based on a Mach-Zehnder 
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interferometer (MZI) where the phase control is achieved by injecting electrons 
into the core of the waveguide.

As the light source from the LED passes through the MM-MZI device, the 
outpower changes. The result has been recorded and evaluated as the function of 
the passing current as shown in Figure 11.

8. Conclusion

In this chapter, we have studied and compared the different methods for diffu-
sion of atoms into both surface and internal layers. Also, we have shown the variety 
of QWIs that change and modify the refractive index and energy bandgap of QW’s 
structures. There are several QWI techniques accessible, and each technique has 
specific characteristics that are useful under various circumstances. Very likely, 
more than one process will be used to produce a semiconductor chip. Among the 
techniques used for this purpose, owing to their capacity to preserve the electrical 
properties of the QW structure and its strong selectivity throughout the spatial 
domain, triggered disordering of MQWs by using impurity-free vacancy diffusion 
process gained much interest. A selective area QWI procedure is used that includes 
vacancy diffusion via the fast-thermal strengthening of the sample which is capped 
by silicon dioxide or different silicon oxynitride coatings. Prior to the fast-thermal 
annealing of the specimen, it is identified that the bandgap energy of the inter-
mixed QW system can be efficiently managed by varying the dielectric capping 
film composition. As an illustration, for laser, we displayed the implications of 
intermixing of laser diodes based on InGaAsP QWs. By adjusting the proportion of 
mixed films, it was possible to adjust the lasing wavelength to the red or blue shift 
regions. Using an impurity-free vacancy diffusion method, we illustrated bandgap 
adjustment of several quantum well structures of InGaAsP, which was then used 
for the LED applications. By utilizing SiO2, SiOyNx, and SiNx capping films and 
by regulating the corresponding oxygen and nitrogen levels, a significant altera-
tion of the bandgap energy toward the red and blue segments of the spectrum was 
achieved. The resultant level of adjustment was noted, red shift up to 120 nm and 
band-to-band blue shift of 140 nm.
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