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Chapter

Applications of Machine Learning 
in Healthcare
Christopher Toh and James P. Brody

Abstract

Machine learning techniques in healthcare use the increasing amount of health 
data provided by the Internet of Things to improve patient outcomes. These 
techniques provide promising applications as well as significant challenges. The 
three main areas machine learning is applied to include medical imaging, natural 
language processing of medical documents, and genetic information. Many of 
these areas focus on diagnosis, detection, and prediction. A large infrastructure 
of medical devices currently generates data but a supporting infrastructure is 
oftentimes not in place to effectively utilize such data. The many different forms 
medical information exist in also creates some challenges in data formatting and 
can increase noise. We examine a brief history of machine learning, some basic 
knowledge regarding the techniques, and the current state of this technology in 
healthcare.

Keywords: machine learning, healthcare, big data, medicine, genetics, disease

1. Introduction

The advent of digital technologies in the healthcare field is characterized by 
continual challenges in both application and practicality. Unification of disparate 
health systems have been slow and the adoption of a fully integrated healthcare 
system in most parts of the world has not been accomplished. The inherent nature 
and complexity of human biology, as well as the variation between individual 
patients has consistently shown the importance of the human element in diagnos-
ing and treating diseases. However, advances in digital technologies are no doubt 
becoming indispensable tools for healthcare professionals in providing the best care 
for patients.

The improvement of data technologies, including storage size, computational 
power, and data transfer speeds, has enabled the widespread adoption of machine 
learning in many fields—healthcare included. Due to the multivariate nature of 
providing quality healthcare to an individual, the recent trends in medicine have 
emphasized the need for a personalized medicine or “precision medicine” approach 
to healthcare. The goal of personalized medicine is to use large amounts of health-
care data to find, predict, and analyze diagnostic decisions, which physicians can in 
turn implement for each individual patient. Such data includes but is not limited to 
genetic or familial information, medical imaging data, drug combinations, popula-
tion wide patient health outcomes, and natural language processing of existing 
medical documentation.
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We will focus primarily on three of the largest applications of machine learning 
(ML) in the medical and biomedical fields. As a rapidly evolving field, there is a 
wide range of potential applications of machine learning in the healthcare field 
which may encompass auxiliary aspects of the field such as personnel management, 
insurance policies, regulatory affairs, and much more. As such, the topics covered 
in this chapter have been narrowed down to three common applications of machine 
learning.

The first is the use of machine learning in medical images such as magnetic reso-
nance imaging (MRIs), computerized axial tomography (CAT) scans, ultrasound 
(US) imaging, and positron emission tomography (PET) scans. The result of these 
imaging modalities is a set or series of images which typically requires a radiologist 
to interpret and make a diagnosis. ML techniques have rapidly been advancing to 
predict and find images which may indicate a disease state or serious issue.

The second is natural language processing of medical documents. With the 
push towards electronic medical records (EMR) in many countries, the consensus 
from many healthcare professionals has been that the process is slow, tedious, 
and, in many cases, completely botched. This can sometimes lead to poorer overall 
healthcare for patients. One of the major challenges is the amount of physical medi-
cal records and documentation that already exists in many hospitals and clinics. 
Different formatting, hand-written notes, and a plethora of incomplete or non-
centralized information has made the switch to adopting electronic medical records 
less than efficient.

The third machine learning application encompasses the use of human genetics 
to predict disease and find causes of disease. With the advent of next-generation 
sequencing (NGS) techniques and the explosion of genetic data including large 
databases of population-wide genetic information, the attempt to discern meaning-
ful information of how genetics may affect human health is now at the forefront of 
many research endeavors. By understanding how complex diseases may manifest 
and how genetics may increase or decrease an individual person’s risk can aid in 
preventative healthcare. This could provide physicians with more information 
on how to tailor a specific patients’ care plan to reduce the risk of acquiring more 
complex diseases.

The common issue present in all three of these topics is how to translate health 
data acquired from the Internet of Things, into understandable, useful, trustworthy 
information for patients and clinician. How do we interpret hundreds of thousands 
of inputs and parameters from the data? How do we do this efficiently? What is the 
progress of addressing this problem currently?

2. Artificial intelligence and machine learning

Artificial intelligence (AI) has been intricately linked to the rise of modern-day 
computing machines. Machine learning has its roots and beginnings firmly planted 
in history. Alan Turing’s work in cracking the German Enigma machine during 
World War II became the basis for much of modern computer science. The Turing 
Test, which aims to see if AI has become indistinguishable from human intelligence, 
is also named after him [1, 2].

At the height of the Second World War, the Allies had a significant logistical 
hurdle in the Atlantic. The United States and United Kingdom needed to set up 
secure shipping lines to move both armaments and troops to England in preparation 
for a mainland European invasion. However, the German U-boats were extremely 
effective at disrupting and sinking many of the ships traversing these shipping lanes 
[3]. As such, the Allies needed to intercept German communications to swing the 
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Battle of the Atlantic in their favor. The Germans encrypted their communications 
with The Enigma Machine, the most sophisticated encryption device of its time.

Turing and the rest of Bletchley Park were tasked with breaking the coded 
messages produced by The Enigma Machine and eventually produced The Bombe, 
a mechanical computing device which successfully decoded the cipher of The 
Enigma machine (Figure 1). Using the Bombe, they read the German orders sent to 
submarines and navigated their ships around these dangers. This was Turing’s first 
intelligent machine. Alan Turing would later go on to describe the idea of a thinking 
machine which would eventually be called AI [4].

Machine learning is a subset of AI and the term was coined in the late 1950s by 
Arthur Samuel who published a paper on training computers to play checkers when 
he worked with IBM [5]. AI is best described as giving human-like intelligence to 
machines in a manner that directly mimics the decision making and processing of 
the human conscience. ML is the subset of AI that focuses on giving machines the 
ability to learn in an unaided manner without any human intervention.

By the late 1960s, researchers were already trying to teach computers to play 
basic games such as tic-tac-toe [6]. Eventually, the idea of neural networks, 
which were based on a theoretical model of human neuron connection and com-
munication, was expanded into artificial neural networks (ANNs) [7, 8]. These 
foundational works laid dormant for many years due to the impracticality and poor 
performance of the systems created. Computing technology had not yet advanced 
enough to reduce the computational time to a practical level.

The modern computer era led to exponential increases in both computational 
power and data storage capacity. With the introduction of IBM’s Deep Blue and 
Google’s AlphaGo in recent decades, several leaps in AI have shown the capacity of 

Figure 1. 
Picture of the German Enigma machine which was used to code military communications. Taken from 
Wikimedia Commons.
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AI to solve real world, complex problems [9, 10]. As such, the promise of machine 
learning has taken hold in almost every sector imaginable.

The widespread adoption of machine learning can be mostly attributed to the 
availability of extremely large datasets and the improvement of computational 
techniques, which reduce overfitting and improve the generalization of trained 
models. These two factors have been the driving force to the rapid popularization 
and adoption of machine learning in almost every field today. This coupled with the 
increasing prevalence of interconnected devices or the Internet of Things (IoT) has 
created a rich infrastructure upon which to build predictive and automated systems.

Machine learning is a primary method of understanding the massive influx of 
health data today. An infrastructure of systems to complement the increasing IoT 
infrastructure will undoubtedly rely heavily on these techniques. Many use cases 
have already show enormous promise. How do these techniques work and how do 
they give us insight into seemingly unconnected information?

2.1 Machine learning algorithms

Machine learning is broadly split into supervised and unsupervised learning. 
Algorithms falling under both categories implement mathematical models. Each 
algorithm aims to give computers the ability to learn how to perform certain tasks.

2.1.1 Supervised learning

Supervised learning typically employs training data known as labeled data. 
Training data has one or more inputs and has a “labeled” output. Models use these 
labeled results to assess themselves during training, with the goal of improving the 
prediction of new data (i.e., a set of test data) [11]. Typically, supervised learning 
models focus on classification and regression algorithms [12]. Classification prob-
lems are very common in medicine. In most clinical settings, diagnosing of a patient 
involves a doctor classifying the ailment given a certain set of symptoms. Regression 
problems tend to look at predicting numerical results like estimated length of stay 
in a hospital given a certain set of data like vital signs, medical history, and weight.

Common algorithms included in this supervised learning group are random for-
ests (RF), decision trees (DT), Naïve Bayes models, linear and logistic regression, 
and support vector machines (SVM), though neural networks can also be trained 
through supervised learning [13]. Random forests are a form of decision trees but 
are an ensemble set of independently trained decision trees. The resulting predic-
tions of the trees are typically averaged to get a better end result and prediction 
[14]. Each tree is built by using a random sample of the data with replacement and 
at each candidate split a random subset of features are also selected. This prevents 
each learner or tree from focusing too much on apparently predictive features of the 
training set which may not be predictive on new data. In other words, it increases 
generalization of the model. Random forests can have hundreds or even thousands 
of trees and work fairly well on noisy data [15]. The model created from aggregat-
ing results from multiple trees trained on the data will give a prediction that can be 
assessed using test data (Figure 2).

A method used to improve many supervised algorithms is known as gradient 
boosting. Taking decision trees as an example, the gradient boosting machine as it 
is commonly known, performs a similar ensemble training method as the random 
forest but with “weak learners.” Instead of building the decision trees in parallel as 
in the random forest algorithm, the trees are built sequentially with the error of the 
previous tree being used to improve the next tree [16]. These trees are not nearly 
as deep as the random forest trees, which is why they are called “weak” (Figure 3). 
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Typically, better results can be achieved with gradient boosting, but tuning is much 
more difficult, and the risk of overfitting is higher. Gradient boosting works well 
with unbalanced data and training time is significantly faster due to the gradient 
descent nature of the algorithm [17, 18].

2.1.2 Unsupervised learning

Unsupervised machine learning uses unlabeled data to find patterns within 
the data itself [19]. These algorithms typically excel at clustering data into rel-
evant groups, allowing for detection of latent characteristics which may not be 

Figure 2. 
Example of a workflow for training and assessing a random forest model. Each green triangle represents an 
independently trained tree from the training data. The prediction of each tree is summed and is represented 
as the model. Test data is then fed to the model, i.e., all the trees, and the resulting prediction is made. The 
prediction is then compared to the original test data to assess how the model performs.
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immediately obvious. However, they are also more computationally intensive and 
require a larger amount of data to perform.

The most common and well-known algorithms are K-means clustering and deep 
learning, though deep learning can be used in a supervised manner [12, 20]. Such 
algorithms also perform association tasks which are similar to clustering. These 
algorithms are considered unsupervised because there is no human input as to what 
set of attributes the clusters will be centered on.

The typical k-means algorithm has several variations such as k-medians and 
k-medoids, however the principle is the same for each algorithm. The algorithm 
uses Euclidian distance to find the “nearest” center or mean for a cluster assuming 
there are k clusters. It then assigns the current data point to that cluster and then 

Figure 3. 
Example of a simple workflow for training and assessing a gradient boosting machine model. Each green 
triangle represents a trained tree from the training data with the subsequent tree using the residuals or errors 
from the prior tree to improve its prediction. The prediction of each tree is summed and is represented as the 
model. Test data is then fed to the model, i.e., all the trees, and the resulting prediction is made. The prediction 
is then compared to the original test data to assess how the model performs.
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recalculates the center for the cluster, updating it for the next data point [21]. The 
biggest drawback to this algorithm is that it must be initialized with an expected 
number of “means” or “centers.” Improper selection of the k value can result in poor 
clustering.

Deep learning uses neural nets to perform predictions even on unlabeled data as 
well as classification techniques. Based off models of human neurons, perceptrons, 
as they are typically called, are organized into many networked layers making the 
network “deep” in nature [20]. Each perceptron has multiple inputs and a single 
output. They are organized into layers where the outputs of the previous layer 
serve as the inputs for the next layer. The input layer requires one perceptron 
per input variable and the subsequent layers are determined before training by 
a human (Figure 4). This is one of the difficulties and challenges in building an 
effective neural net. The computationally intensive nature of computing each 
perceptron for a large neural net can mean that training alone can take days to 
weeks for large data sets [22].

2.1.3 Hyperparameters

In machine learning, a model typically has a set of parameters as well as a set of 
hyperparameters. Parameters are variables about the model that can be changed 
during training. For example, parameters can be the values of the training data 
itself with each piece of data being different along one or several of the parameters. 
Whereas hyperparameters are typically set before training occurs and cannot 
change once learning begins. Hyperparameters typically are set to tune values like 
the model’s learning speed and constrain the algorithm itself.

Different algorithms will have different sets of hyperparameters. For example, 
a common hyper parameter for artificial neural networks is the number of hidden 
layers. Additionally, a separate but related hyperparameter is the number of per-
ceptrons in each hidden layer. Whereas a similar equivalent in decision trees would 

Figure 4. 
Example of a simple neural net with two hidden layers of three perceptrons each. The number of inputs, 
number of hidden layers, and number of perceptrons in each layer can be changed. Additionally, the 
connections between layers and perceptrons can also be changed.
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be the maximum number of leaves in a tree or the maximum depth for a tree. Other 
common hyperparameters include learning rate, batch size, dropout criterion, and 
stopping metric.

Properly selecting hyperparameters can significantly speed up the search for 
a proper generalized model without sacrificing performance. However, in many 
cases finding the proper set is more of an art than a science. Many researchers have 
attempted to make hyperparameter searching a more efficient and reproducible 
task [23–25]. Again, this process also highly depends on the algorithm, dataset, and 
problem you are trying to solve. A machine learning model can be tuned a nearly 
infinite amount of different ways to achieve better performance. Hyperparameters 
represent a way to reproduce results and also serve as a tool to properly vali-
date models.

2.1.4 Algorithm principles

Considering the pace of research in the field, there are constant advances 
and improvements to many of these machine learning techniques, but the 
important thing to remember is that not all algorithms work for all use cases. 
Each algorithm has advantages and disadvantages. Certain data types may also 
affect the performance of individual algorithms and the time spent implement-
ing such models will often be a result of testing different variations, parameters, 
and hyperparameters within these algorithms to achieve the best generalized 
performance.

2.2 Assessment of model performance

The goal of any machine learning algorithm is to utilize real data to create a 
model that performs the best on real-world scenarios, and that can be assessed in 
a quantitative, reproducible manner. Assessment of statistical models is a whole 
subfield in itself, but we will briefly discuss the basics, which are applicable for 
almost any machine learning algorithm you will come across.

2.2.1 Sensitivity vs. specificity

Sensitivity and specificity are two important metrics used in a statistical or 
machine learning model to assess if the model is performing successfully. As such, it 
is important to understand what each of these numbers tell us about what a trained 
model can do, and what the model cannot do.

Sensitivity is the probability that a positive result occurs given that the sample is 
indeed positive. Mathematically,

  Sensitivity =   
 (Number of True Positives)  

   _______________________________________    
Number of True Positives + Number of False Negatives

    

This is also sometimes referred to as the recall or hit rate, or just simply the true 
positive rate, and the sensitivity is equivalent to  1 − False Negative Rate .

Specificity is the probability of a negative result given that the sample is nega-
tive. Mathematically,

  Specificity =   
Number of True Negatives

   _______________________________________    
Number of True Negatives + Number of False Positives

    

This value is also referred to as the selectivity of the test. This is equivalent to  
 1 − False Positive Rate .
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2.2.2 The receiver operator curve and area-under the curve

The standard metric for assessing the performance of machine learning 
models is known as the receiver operating characteristic (ROC). The ROC can be 
summarized by a number from 0 to 1, which is the measured area-under-the-ROC 
curve (AUC). The ROC curve is a 2D plot that measures the false positive rate vs. 
true positive rate. There are four numbers that are used to determine the effective-
ness of a test: true positive rate, false positive rate, true negative rate, and false 
negative rate.

True positive and true negative are the correct answers to a test while false posi-
tive and false negative are incorrect answers to the test or model. These numbers 
can be condensed further into two numbers known as sensitivity and specificity. 
We have already discussed sensitivity and specificity but now we will discuss how 
they are used to create the ROC.

Ideally a test would have both high sensitivity and high specificity. However, 
there is a tradeoff, prioritizing one often leads to the detriment of the other. When 
setting the threshold low, one will receive a high true positive rate (high sensitivity) 
and a high false positive rate (low specificity). Conversely, setting the threshold 
high will result in a low true positive rate (low sensitivity) and a low false positive 
rate (high specificity).

The ROC and AUC metric is used to characterize most of the classification tasks 
many machine learning models are attempting to do; does this person have the 
disease or do they not? If a test has a high sensitivity and a high specificity it is con-
sidered a near perfect test and the AUC is close to 1 (Figure 5). If the test is random 
then the AUC is 0.5. The x-axis is typically the false positive rate (or 1 – specificity). 
Ideally, the false positive rate is as low as possible. The y-axis is typically the true 
positive rate (sensitivity). The sensitivity is what is usually maximized. On a typical 
curve, the midpoint of the curve is the most balanced trade-off between sensitiv-
ity and specificity though this is not always the case. The AUC value is a simpler, 
more generalized way, to assess the performance rather than the varying tradeoffs 
between sensitivity and specificity.

Another way to think of AUC is as a percentage the model can correctly identify 
and separate a positive result from a negative result. Given an unknown case, a 
model with an AUC of 0.75 has a 75% chance of correctly identifying whether the 
case is a positive case or a negative case. This number will quickly tell you the results 
of any model.

2.2.3 Overfitting

Overfitting is one of the main concerns when training any model [26]. Simply 
put, when training a model on a set of data, over-training the model will improve 
the performance of the model on that specific dataset but at the cost of losing 
generalization to other datasets. An overfitted model will not work when applied to 
new data it has never seen before. From a practical standpoint, such a model is not 
very useful in a real-world application.

When training any machine learning model, the ideal result is a generalized 
model. A generalized model works well on a variety of different cases and a vari-
ety of different datasets, especially data it has never seen before. As such, many 
researchers are hesitant to give too much credence to a model or method that utilizes 
a single dataset.

A variety of methods have been used to prevent models from overfitting and 
many of these are now encapsulated in the hyperparameters discussed earlier.  
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The idea is to prevent the models from adapting too quickly to the dataset it is being 
trained on. This subset of methods is known as regularization [27].

One such method, used in neural nets, is called dropout. This method is widely 
used to prevent artificial neural nets from overfitting during classification tasks. 
The method is fairly simple. During the training process, random perceptrons and 
their corresponding connections are “dropped” from the network. These “thinned” 
networks have better performance compared to other regularization techniques on 
supervised learning tasks [28].

Often a method known as cross-validation is used to assess the performance and 
validate the generalized predictive ability of a model. The most common method for 
building machine learning models is the partitioning of the data set into roughly 
80% for training and 20% for testing. This partition is typically less useful for linear 
models but splitting is more beneficial for complex models [29]. During cross-val-
idation, this split is done in separate sections of the data to ensure proper coverage. 
For example, if a 10-fold cross-validation is performed, the first split in a data set 
with 100 observations could be a the first 80 for training and the last 20 for test, the 
second split could be the first 10 and last 10 for test and the middle 80 for training, 
etc. (Figure 6). This creates 10 models using the same algorithm just trained and 
tested on different portions of the same data. The average performance of these 10 
models gives a good measurement of the generalized performance of the algorithm 
on that type of data.

2.3 Big data and the health information explosion

The healthcare sector has always had a very large amount of information, often 
times stored as physical documents in clinics, hospitals, regulatory agencies, and 
biomedical companies [30, 31]. With the push to electronic medical records (EMR), 
this information is rapidly being transformed into a form which can be leveraged 
by AI technologies. The estimated amount of healthcare data stored in 2011 was 
around 150 exabytes (1 EB = 1018 bytes), though that number is most likely expo-
nentially larger almost a decade later [32, 33]. These large databases, when in a 
digitized form, are often known as Big Data.

However, such healthcare information is very different in both form and func-
tion. Visual data in the form of medical images is very different than familial history 

Figure 5. 
Examples of an AUC denoting a model which has good predictive power (left) and an AUC denoting a model 
with poor or near random predictive power (right). 1 – Specificity is sometimes written as false positive rate 
(fpr) and sensitivity can be read as true positive rate (tpr).
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which may be simple text-based information. Laboratory and clinical tests may be 
reported as numbers only, while health outcomes are often qualitative in nature 
and may be a simple yes or no entry in a spreadsheet. Insurance and administrative 
data is also indirectly linked to various information, such as patient outcomes, while 
information from sensor based technologies like EKGs, pulse oximeters, and EEG 
provide time-series data of vital signs [34].

Additionally, the genomic revolution has contributed enormously to the data 
explosion. Large-scale genetic databases such as the Cancer Genome Atlas (TCGA) 
and the UK Biobank include thousands of patients’ genetic sequencing information 
along with various other health information such as disease state, age of diagnosis, 
time of death, and much more [35–38]. Copy number variation (CNV) data from 
the UK Biobank’s roughly 500,000 patients, which does not even contain the raw 
sequence reads, is almost 2 Terabytes (TB) alone in flat text files. These genetic 
databases rely on an array of assays and sequencers spread across different hospitals 

Figure 6. 
Example of a set of cross validation splits. There are n splits for the number of iterations desired and the results 
of all iterations are averaged to assess the generalized performance of a model trained on a dataset.

Database Size of data Number of 

participants

Status Start 

date

The Cancer Genome Atlas 2.5 petabytes 11,300 [36, 41] Completed 2005

The UK Biobank ~26 terabytes*,+ ~488,377 [42] Ongoing 2006

The European Prospective 

Investigation into Cancer 

and Nutrition (EPIC)

Unclear* ~521,000 [43] Ongoing 1992

Estonian Genome Project Unclear* ~52,000 [44] Ongoing 2007

deCODE Unclear* ~160,000 [45, 46] Ongoing 1998

China Kadoorie Biobank Unclear* ~510,000 [47, 48] Ongoing 2004

Lifelines Cohort Study Unclear* ~167,000 [49] Ongoing 2006

All of Us (Precision 

Medicine Initiative)

Unclear* Currently ~10,000, 

planned 1,000,000 

[12, 50–52]

Ongoing 2015

FinnGen Unclear* Planned 500,000 [53] Ongoing 2017

*Project is continuing to collect more data.
+Number represents genetic data only. Project or study may also include unreported data including medical images 
and health records.

Table 1. 
Overview of largest biobank databases as of 2019.
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and research facilities around the globe, before being processed and transferred to 
their respective centralized storage databases [35, 39, 40].

The collection of biological data and creation of these databases show no 
evidence of slowing down. Many biobanks, databases which contain some form 
of biological samples such as blood or serum, contain thousands of participants 
and many have plans to collect hundreds of thousands of samples from patients 
(Table 1). Because many databases are growing so quickly it is unclear how much 
data resides in many of these databases. However, The Cancer Genome Atlas alone 
contains 2.5 petabytes (1 PB = 1015 bytes) of data and the UK Biobank contains 26 
terabytes (1 TB = 1012 bytes) of just genetic information (UK Biobank also contains 
medical images such as brain scans which is not included in this table).

Implementing machine learning systems into a hospital with this complex 
information Web is usually slow, due to the abundance of caution needed to ensure 
patient health. Many physicians are also wary of adopting new systems that are 
unproven in a clinical setting due to the risk of litigation and potentially cata-
strophic consequences for their patients.

3. Machine learning of medical images

Modern medical images are digital in nature. To effectively utilize them in 
healthcare there are several challenges that must be overcome. Medical imaging 
describes a collection of techniques to create visual representations of interior 
portions of the human body for the purpose of diagnosis, analysis, and medi-
cal intervention. This is beneficial in avoiding or reducing the need for the older 
clinical standard of exploratory surgery. Since opening any portion of the human 
body through surgical means increasing the risk of infections, strokes, and other 
complications, medical imaging is now the preferred tool for initial diagnosis in the 
clinical setting.

The current clinical standard of assessing medical images is the use of trained 
physicians, pathologists, or radiologists who examine the images and determine the 
root cause of clinical ailments. This clinical standard is prone to human error and is 
also costly and expensive, often requiring years or decades of experience to achieve 
a level of understanding which can consistently assess these images. Considering 
that the demonstration of viable machine learning capabilities in the modern age 
was demonstrated by Andrew Ng using images pulled from YouTube videos, it is 
clear why medical images were one of the first areas addressed during the initial 
adoption of machine learning techniques in healthcare [54].

Accuracy of diagnosis is extremely important in the medical field as improper 
diagnosis could lead to severe consequences and results. If a surgery is performed 
where none was needed or a misdiagnosis leads to improper dosages of prescribed 
medication, the possibility of a fatal outcome increases. In the realm of image pro-
cessing, most techniques rely fundamentally on deep learning (DL) and specifically 
in artificial neural networks (ANNs). Modern techniques utilize improvements to 
ANNs in the form of convolutional neural networks (CNNs) to boost performance 
when classifying images.

The majority of the current publications are using some form of CNNs when it 
comes to object detection in medical images [55]. Graphic-processing unit (GPU) 
acceleration has made the building of deep CNNs more efficient, however signifi-
cant challenges in creating a competent model still exist. The biggest issue is the 
need for a large amount of annotated medical image data. The cost to aggregate and 
create such databases is often prohibitive since it requires trained physicians’ time to 
annotate the images. Additionally, concerns involving patient privacy often hinders 
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the ability to make such databases open-source. Many studies only use around 
100–1000 samples in training CNNs. This limited sample size increases the risk of 
overfitting and reduces the accuracy of the predictions [56].

Concerns regarding the implementation of machine learning into clinical diagno-
sis have been raised regarding proper validation of models [57]. The main fears entail 
properly scoping the intended goals of a machine learning model, reducing dimen-
sionality of the data, and reproducibility of training such models on real-world and 
new clinical data. Validating results on other datasets can be difficult due to the lack 
of larger datasets for niche diseases, where the aggregation of this data can take more 
work than the actual training of the model. Medical imaging data is inherently more 
difficult to acquire and is more difficult to store and process. The infrastructure to 
handle the data has simply not kept up with the increase in the amount of data.

3.1 Lesion detection and computer automated detection

The most common use of current machine learning technologies in medicine 
is for computer automated detection (CAD) specifically in the detection of lesions 
such as those commonly found in mammograms, brain scans, and other body scans 
[58]. These methods use CNNs to arrive at the probability that a candidate lesion is 
in fact a lesion, often utilizing several 2D slices of 3D rotational scans of either CAT 
or MRI images.

Ultrasound images are also used in training and a variety of methods such as 
randomized rotation of the images or centering candidate lesions in the center of 
the image. Especially in mammography, CAD techniques have reached a level where 
they are used as a “second opinion” for most radiologists, greatly improving the 
accuracy of screenings without doubling the cost associated with using a human as 
the “second opinion” Figure 7.

CAD is also currently split into detection and diagnosis. This distinction is subtle 
but important. A lesion can be categorized as either benign or malignant, based off 
a physician’s knowledge and assessment. However, the actual detection is a crucial 
first step in treating a patient.

Figure 7. 
Example of mammogram with the left image being that of a raw mammogram and the right hand being the 
image with the detection overlaid with the region of interest in white, using NASA software originally used to 
enhance earth science imagery. Taken from NASA press release, credited to Bartron Medical Imaging.
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Computer aided detection is the actual recognition of potential lesions from a 
medical image. For example, detection and segmentation of glioblastoma is a dif-
ficult task, due to the invasive and widespread nature of these tumors. Unlike other 
brain tumors, they are not easily localized and assessing how treatments such as 
chemotherapy are performing is in itself a difficult task. Deep learning has aided in 
this by helping automate assessment of glioblastoma MRIs [59].

Computer aided diagnosis describes the probability a lesion is malignant in 
nature. These methods are primarily used to improve the accuracy of diagnosis and 
improve early diagnosis in the clinical setting. Again, these tasks have consistently 
been performed by machine learning especially in brain related applications, due to 
the difficult nature of assessing brain health. Additionally, diagnosis of Alzheimer’s 
through medical imaging is a possible application for deep learning which is show-
ing some promise [60, 61].

4. Natural language processing of medical documents and literature

Electronic medical records (EMR), the new standard in many hospitals, require 
complex digital infrastructure. Unification of health data in a formatted manner is a 
major goal as it should increase the efficiency of hospitals as well as improve patient 
health outcomes. However, a significant problem is the historical existing physical 
documentation. Transferring these existing documents into an electronic form is 
difficult and would be very tedious and expensive if people were hired to manually 
input such information into an electronic system.

One application of machine learning, which may aid in this problem, is natural 
language processing (NLP). By scanning these documents rapidly and integrating 
the resulting images into a database, these systems attempt to extract readable data 
from free text and incorporates image processing to identify key words and terms. 
Handwritten physician notes contain information such as patient complaints, the 
physicians own observations, and patient family history. This clinical information 
can be annotated. However, poorly worded or inaccurate writing by the physician 
can make it difficult to accurately assign this information to appropriate categories. 
Forms and documents that already have structure make for much easier language 
processing, though there is still the risk of missing data Figure 8.

Creating a system for improved clinical decision support (CDS) with old patient 
records is feasible. Any such system is structured to aid in clinical decision making 
for individual patients based on a database of computerized knowledge. Such a 
system could be envisioned as two-fold: 1. extracting facts about the patient from 
their medical record, either through written or typed physician notes or labs or dic-
tation involving audio NLP, 2. Associating possible disease states based on extracted 
information from previous known cases or through literature search via NLP [62]. 
Integration of several specialized NLP systems is required for any true and practical 
implementation of such a CDS system.

Likewise, compilation of the existing scientific research into central repositories 
is a difficult task. Sometimes physicians may be unaware of a promising new treat-
ment just due to the difficulty of parsing the tidal wave of new papers. Scientific 
publications have always been widely dispersed across multiple journals and the 
modern-day information explosion has only exacerbated the issue. When it comes 
to compiling information such as results from genome-wide association studies 
(GWAS), the primary method has been a manual curation of the information by 
certain individuals within the scientific community: “librarians” so to speak.

Recently, a paper published in Nature Communications used machine learning 
systems to automatically compile GWAS information from open-access publications 
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and extract GWAS associations into a database with the aim of helping curators. 
Though the results are somewhat inconsistent (60–80% recall and 78–94% preci-
sion) it represents one of the many ways NLP is being utilized to aid in medical 
discovery [63].

4.1 Examples of natural language processing in healthcare research

There are many exciting possibilities where NLP could be used to improve medi-
cine and medical research. We will discuss a few interesting findings with similar 
approaches but different goals. This is by no means an expansive list but highlights 
the broad spectrum of possible machine learning applications.

In 2015, a research group published a paper reporting 100% accuracy of predict-
ing onset of psychosis using recorded dialog of clinically high-risk youth. Each 
youth was interviewed over a period of 2.5 years every 3 months. Based on the 

Figure 8. 
Example of a nursing care plan which represents a formatted health document. Most of these plans were filled 
out by hand and many hospitals have transitioned such forms to electronic records. However, older documents 
still need to be transferred to digital form. Taken from Wikipedia commons.
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transcripts of these interviews, a machine learning algorithm was trained to predict 
whether a patient would develop psychosis. This was done using what is known as 
Latent Semantic Analysis to determine coherence of speech using NLP. The sample 
size for this study was rather small however (n = 34) [64].

Another study used NLP to identify cirrhosis patients and risk-stratify the 
patients. This study was able to correctly identify cirrhosis patients from electronic 
health records, ICD-9 code combinations, and radiological scans with a 95.71% 
sensitivity and 93.88% specificity [65]. This indicates that such a system could cor-
rectly identify cirrhosis patients based off existing medical data in most hospitals.

Yet another study used NLP to accurately identify reportable cancer cases for 
national cancer registries. This method analyzed pathology reports and diagnosis 
codes to identify patients with cancer patients using supervised machine learning. 
The accuracy was 0.872 with a precision of 0.843 and sensitivity of 0.848 [66]. The 
primary goal of this study was to automate the process of reporting cancer patients 
to the National Program of Cancer Registries in the United States.

These examples of NLP use in healthcare highlight the wide diversity of applica-
tions within medicine. Language is the primary means of communicating complex 
information, doctors’ notes and annotated medical documents hold valuable 
insights in populations and individual patient health. The irregularity and variance 
of language and extraction of higher-level information into relevant subcategories 
makes analysis difficult. Machine learning is showing promising results in perform-
ing such complex analyses.

5.  Machine learning in genetics for the prediction and understanding of 
complex diseases

Genetic information and technologies have exploded since 2008, creating dif-
ficult challenges in how to handle the exponentially increasing data. Advances in 
genetic sequencing speed, namely NGS technologies have exponentially increased 
the speed at which a whole human genome is sequenced, while also dramatically 
reducing costs. The human genome is a complex physical structure that encodes all 
the information of human development and characteristics. The genome is highly 
interconnected and deciphering most of these instructions is still a mystery to us. 
Variation of genomes between people also increases the complexity of understand-
ing gene interactions.

Many health initiatives have focused on acquiring large sample sizes of human 
genomes to help identify statistically relevant trends among different populations 
of humans. However, the 23 chromosomes of the human genome contain around 
20,000 genes which have been identified as the primary coding sequences for the 
proteins necessary in building the biological components of our cells [67]. This 
number is still a rough estimate and some estimates indicate that there may be as 
many as 25,000 genes or as few as 19,000 [68, 69]. A large swathe of genetic infor-
mation that does not code for any proteins is not included in these estimates.

A growing body of literature indicates that certain sections of what has been 
colloquially called genetic dark matter, or missing heritability, exists [70–74]. These 
terms refer to the portions of DNA which have no apparent protein coding function, 
but may be relevant to the level of gene expression in a person’s genetic code [75, 76]. 
Levels of gene expression may cause protein overload or deficiency, which can lead 
to a variety of health problems. Additionally, structural differences in the physi-
cal structure of how the DNA is bound into chromosomes and then subsequently 
unwrapped during both the duplication process and translation and transcription 
process, can also affect the level of gene expression.
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For example, methylation or acetylation of the DNA backbone can make it more 
difficult (methylation) or easier (acetylation) to unravel the DNA strand during 
normal cell processes like replication or protein assembly. Evidence of multiple 
copies of the same gene have also been classified in what is described as copy 
number variations (CNV) which indicate duplication, triplication, and deletion 
events of certain areas of the genome in an individual. Understanding this highly 
interconnected and nonlinear relationship between all the different of the areas of 
the human genome is difficult.

With machine learning, scientists have begun to find patterns and trends which 
can be modeled in a more predictable manner. Utilizing the ever-growing amount 
of genetic data, machine learning has the potential of accurately predicting who is 
at risk of acquiring certain diseases such as cancers and Alzheimer’s disease. Mental 
illnesses such as schizophrenia and bipolar disorder have also been known to run in 
families, indicating a possible genetic link.

5.1 Inherited vs. environmental risk

Disease risk can be broadly categorized into inherited risk and environmental 
risk. Inherited risk describes a person’s disposition to acquiring complex diseases 
due to a trait which is genetically passed down from their predecessors. This 
includes genetic mutations contained within their germline DNA which may predis-
pose them to cancers or other health conditions [77, 78].

Environmental risk describes somatic mutations, or mutations to a person’s DNA 
due to something they have encountered in their environment. These mutations can 
still increase a person’s risk of acquiring a disease but they do not affect the germ-
line, and will not be passed on to their progeny and thus will not be inherited [79].

Inherited risk describes mutations that exist in the human germline and which 
will be passed onto the offspring through normal reproduction. Whereas, somatic 
mutations may affect organs or a set of cells, germline mutations exist in all the cells 
of the offspring. Many of these mutations may be passed through paternal lineage 
and there is some indication that certain individuals may have disease predisposi-
tion but which cannot be directly linked to familial history but could still be due to 
these hidden germline mutations [80–82].

Several different types of mutations may exist within a human genome. They are 
broadly categorized as single nucleotide polymorphisms (SNPs), structural varia-
tions or copy-number variations (CNVs), and epigenetic variations.

SNPs are a single or point mutation of one base pair in the human genome that 
occurs in at least 1% of the human population [83, 84]. These mutations are the 
most common source of genetic variation and can occur both within coding regions 
and outside of coding regions of the genome. SNPs contribute to vast differences 
even between relatives and can arise because of both inheritance and development 
in the womb. Within SNPs there are common and rare variants, with rare variants 
occurring less than 0.5% within the global sample [84].

Structural variations and specifically CNVs are deletions, insertions, duplica-
tions, and inversions of large regions of DNA. These structural differences are 
usually inherited and a typical human can have anywhere between 2100 and 2500 
structural variations [84]. These variations were found to cover more of the human 
genome than SNPs alone [83].

Epigenetic variation describes variations in the chemical tags attached to 
DNA or associated structures such as histones, which affects how genes are read 
and activated. Epigenetics includes DNA methylation and acetylation, histone 
modifications, and non-coding RNAs which all affect the degree to which a gene 
may be expressed [85]. As a newer field, it is unclear how much of these epigenetic 
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variations are inherited from generation to generation, and how much is a result of 
environmental factors [86].

5.2 Prediction of cancers through germline copy number variations

One of the exciting methods we have discovered is the utilization of germline 
copy number variations in the prediction of different cancers. We have found that it 
is possible to use machine learning models, specifically gradient boosting machines 
(GBM), a form of decision trees (DT), to predict whether a person has a particular 
cancer. The models created were able to predict cancers such as ovarian cancer (OV) 
and glioblastoma multiforme with an AUC of 0.89 and 0.86 respectively [87], using 
copy number variation data taken from germline blood samples only. This result 
indicates that there is a significant inherited portion contributing to cancer risk in 
many, if not all cancers. Since these CNVs are also taken from germline DNA, the 
likelihood of continued inheritance to future generations is high.

This method does not look solely at SNPs as many previous methods rely on 
[88]. Most SNP data specifically looks at mutations within protein coding genes 
while ignoring the rest of the genome, whereas our method utilizes a whole genome 
approach by averaging the copy numbers of a person’s entire genome as the basis for 
predicting cancer. Copy number variation accounts for a large amount of human 
genetic diversity and is functionally significant though the exact mechanisms are 
still unclear [77, 83].

These results demonstrate that almost all cancers have a component of pre-
dictability in germline CNVs which can be used to predict an individual’s risk to 
acquiring that cancer Table 2. Experiments were performed on two independent 
databases: The Cancer Genome Atlas and the UK Biobank. The first database 
contains about 10,000 individuals and latter contains about 500,000 individuals.

Future studies may improve on the performance and the models could poten-
tially be used as a tool to assess individual risk for diseases. Since the method can 
also be easily generalized to other diseases, we anticipate work to continue to 
encompass other potentially complex diseases which may have inherited compo-
nents to them.

6. Conclusions

Application of digital technologies such as machine learning in the healthcare 
field is entering an exciting era. The collision of informatics, biology, engineering, 
chemistry, and computer science will rapidly accelerate our knowledge of both 
hereditary and environmental factors contributing to the onset of complex dis-
eases. The potential of utilizing copy number variations in the prediction of cancer 

Type of cancer Cases Controls AUC

Breast invasive carcinoma (men and women) 977 8821 0.81

Glioblastoma multiforme 484 9314 0.86

Ovarian serous cystadenocarcinoma 424 4268 0.89

Thymoma 111 9687 0.78

Uveal melanoma 80 9718 0.80

Table 2. 
Sampling of performance of GBM models trained on data from the Cancer Genome Atlas.
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diagnosis is exciting. Utilizing machine learning to create an interpretable method 
of understanding how the genomic landscape interlinks across genes to contribute 
to inherited cancer risk could potentially improve patient healthcare on an indi-
vidual level.

Databases such as The Cancer Genome Atlas and UK Biobank are invaluable 
resources, providing high statistical power to scientific analysis. As other large-scale 
population data projects near completion in the coming decade, the methods laid 
on the foundation of The Cancer Genome Atlas and UK Biobank will continue to 
benefit and improve as sample sizes easily begin to move into the regime of millions 
of patients. Tracking populations around the world will truly aid in the goal of 
precision medicine.

Natural language processing will be essential in improving the practicality of 
translating scientific findings and results of other machine learning methods into 
a clinical setting. Multiple specialized systems will have to be integrated with each 
other to effectively extract the wealth of information into a format which can be 
utilized effectively by physicians and healthcare professionals.

Image analysis is becoming a staple in many diagnostic endeavors and will 
continue to improve the accuracy of radiological diagnosis. Detection of malignant 
masses and validation and verification of existing diagnosis has the potential to 
improve patient outcomes, while reducing errors. As a non-invasive method of 
looking inside the human body, any improvements in healthcare imaging will 
reduce the need for risky or ill-informed operations that could lead to other compli-
cations such as infections and blood clots.

The examples discussed in this chapter are some of the most promising works 
in applying machine learning in the healthcare field. Resolving big health data into 
a usable form will undoubtedly require machine learning techniques to improve. 
Infrastructure to support such learning techniques is currently not stable or stan-
dardized. Bringing such methods from concept to practical clinical use is contingent 
on both validation of these results and an appropriate infrastructure to support it.

A large variety of devices and storage methods will need to be unified and 
standardized to benefit from the increased data collection. Information about how 
human genetic variation can contribute to individual susceptibility allows patients 
and doctors to make early lifestyle changes in a preventative manner. Likewise, it 
can inform physicians of which types of prognostics and diagnostics would be the 
most relevant for a specific patient, saving both time and money, while improv-
ing patient outcomes in the long term. Just as AI started with Turing decoding the 
enigma machine, we are now going to use AI and machine learning to decode the 
secrets of the human body and genome.
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