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Chapter

Treatment of Solid Waste 
Containing Metals by Biological 
Methods
Marlenne Gómez-Ramírez and Sergio A. Tenorio-Sánchez

Abstract

Methods for the treatment of hazardous wastes are based on two main 
approaches: either hydrometallurgy or pyrometallurgy. Biological methods are 
considered viable environmental-friendly technologies and have been developed in 
the last years and have been associated with lower cost and energy requirements, in 
comparison with nonbiological processes. In these methods, it is important to find 
suitable microorganisms to degrade organic substances under favorable condi-
tions to complete the treatment. The advantages of biotechnological treatment of 
hazardous wastes are biodegradation or detoxification of a wide variety of hazard-
ous substances using natural microorganisms, as well as the availability of a wide 
range of biotechnological methods for the total destruction of these wastes without 
the production of secondary hazardous derivatives. However, to intensify the 
biological treatment, it is a necessary requirement to add nutrients and acceptors 
of electrons, including the control of the optimal conditions. Thus, biotechnology 
provides a solution for the ecological degradation of harmful heavy metals and toxic 
chemicals. The main purpose of this chapter is to present and discuss the biological 
methods used in the treatment of solid waste containing metals and the advantages 
and disadvantages of each method.

Keywords: solid waste, metals, biological methods, bio-treatment

1. Introduction

The fast-developing of industries, such as mining, smelting operations, farming, 
energy stations, processing in refineries, coal burning in power plants, petroleum 
combustion, nuclear power stations and high tension lines, plastics, textiles, 
microelectronics, wood preservation, paper processing plants, and agricultural and 
anthropogenic activities, generally use metal-containing compounds which, due to 
the inappropriate waste disposal practices, have contributed to the contamination 
of soil and water with organic compounds and heavy metals with permanent toxic 
effects on ecosystems and humans [1, 2]. To counteract the effects of such contami-
nants, several methods and techniques have been implemented, each having its 
advantages and disadvantages. Currently, there are various types of waste contami-
nated with metals, and various treatments are applied depending on the type of 
waste to be treated, among them are as follows:
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A. Domestic agricultural and industrial water: the conventional techniques for 
removing dissolved heavy metals include chemical precipitation, carbon 
adsorption, ion exchange, evaporations and membrane processes, electrodi-
alysis, and photocatalysis [3, 4].

B. Contaminated soils: remediation techniques such as excavation, soil leaching/
acid extraction, and soil washing are inadequate, costly, and often involved 
the storage of contaminated effluents in designated areas. The use of plants in 
metal extraction (phytoremediation) has appeared as a safe and cost-effective 
alternative in the removal of heavy metals excess from soil and water [1].

C. Municipal solid waste (MSW): it is a complex material, which varies greatly in 
composition. In most of countries, solid wastes in land fill (open dump sites) 
are the most common means of disposal [5]. Lack of MSW management and 
disposal is leading to significant environmental problems. This includes soil, 
air water, and esthetic pollution. Such environmental problems are associ-
ated with human health disorder [6]. Composting is one of several methods 
for treating biosolids. Compost production is normally produced by two 
methods, an aerobic process and anaerobic pre-treatment of MSW followed 
by an aerobic curing step. There are many methods for removal of metal and 
toxic elements from soil and compost such as hydrothermal; subcritical water 
treatment; chemical leaching using inorganic mineral acids like sulfuric acid, 
hydrochloric acid, and nitric acid; or use of chelating reagents like nitrilotri-
acetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and diethylen-
etriaminepentaacetic acid (DTPA). Alkaline solutions like ammonium and 
sodium hydroxides are also sometimes used. However, these treatments have 
some common disadvantages such as high cost and generating potential toxic 
by-products [5, 7]. On the other hand, the compost and sewage sludge addi-
tions to agricultural and other soils, with background concentrations of heavy 
metals, raise the soil content and the availability of heavy metals for transfer 
into crop plants [8].

D. Hazardous waste: it includes waste batteries, electronic waste, waste X-ray 
films, fly ash, petroleum spent catalyst, and metal finishing industrial waste. 
Several technologies are used for the treatment of this kind of industrial 
waste; these are pyrometallurgy, hydrometallurgy, and bio-hydrometallurgy. 
Pyrometallurgical recovery consists of the thermal treatment of ores and 
metal containing wastes to bring about physical and chemical transformations. 
The hydrometallurgical recovery uses mainly the leaching process, by using 
aqueous solutions containing a lixiviant brought into contact with a material 
containing a valuable metal. The leached metals are concentrated and purified 
by using precipitation, cementation, solvent extraction, and ion exchange [9].

E. Landfill mining: in many regions of the world, landfills have long been seen as a 
final way to store waste at minimum cost. Landfill mining has been suggested 
as a strategy to address such problems and in principle means the excavation, 
processing, treatment, and/or recycling of deposited materials [10].

Given the increase in the generation of waste contaminated with metals, strate-
gies have been sought in which microorganisms are small factories for the trans-
formation and/or decontamination of the waste through different mechanisms of 
each microorganism, thereby reducing the metal load in the residue, changing the 
oxidation state of the metal by making it less toxic, or recovering it either soluble 
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or insoluble for reuse. Some metal tolerant microorganisms have the potential to 
be used in biotechnological processes for the recovery of valuable metals [11]. The 
bacteria have developed various resistance mechanisms to tolerate the harmful 
effects of toxic metals and have been abundant on the planet earth, and microbes 
have been exposed to them since basically the beginning of life, nearly 4 billion 
years ago [12]. Among them are mainly those that involve (1) cellular components 
that capture ions, neutralizing their toxicity, (2) enzymes that modify the redox 
state of metals or metalloids, turning them into less toxic forms, and (3) expulsion 
of metals or metalloids from cytoplasm through membrane-located transporter 
proteins [13].

The sections covered in the chapter are as follows:

1. Introduction

2. Biological systems for the treatment and recovery of metals.

3. Microorganisms with potential for the treatment and recovery of metals.

4. Treatment of spent catalysts of the petrochemical industry by microbial route.

5. Conclusion

2. Biological systems for the treatment and recovery of metals

Biotreatment is a biological process in which live, dead microorganisms or 
metabolites produced by them are used such as enzymes, biopolymers, sidero-
phores, organic acids, inorganic acids, and biosurfactants. To eliminate pollution 
caused by metals or other contaminants, defense mechanisms are activated to 
detoxify their environment causing a transformation of the contaminant into less 
toxic compounds or the internalization of the contaminant inside the microbial 
cells [14, 15].

To understand and know the type of mechanism that each microorganism will 
use depend on how they interact with the environment and the contaminants; some 
factors are (1) microbial specie, (2) microbe-metal interactions, (3) growth medium 
composition, (4) pH, (5) temperature, (6) contact time, (7) oxygen, (8) osmotic 
pressure, (9) culture age, (10) microbial tolerance, (11) population density, (12) 
chemical and metal composition of solid wastes, (13) pulp density of waste, (14) 
size of particle of solid waste, (15) oxidation state of metals, and (16) presence of 
other toxic compounds [16–21]. The isolation of microorganisms from contaminated 
environments has led to finding microorganisms adapted to them, which have also 
developed certain metabolic strategies to detoxify their environment and, which are 
used for the treatment of different types of waste. The solid wastes generated from 
agricultural, electronic scraps, medical activity, metal finishing industry, industrial 
effluents, auto catalysts, manufacturing and recycling of batteries, fly ash, mining 
tailing, spent catalyst by petrochemical and petroleum refining industry mostly con-
tain Ag, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mo, Mg, Zn, Cr, Hg, Ni, V, Pb, Se, Zn, Ti, and 
so on and precious metals such as Au, In, Ag, Pd, Pt, and so on [9, 16–18, 20, 22–27]. 
Due to high metal content, waste containing metals are considered as artificial source 
of minerals and valuable metals that can be recovered [9, 18, 22, 23]. During treat-
ment of solid waste, generally a low pulp density is used with ranges between 0.01 
and 10% (w/v) and rarely higher than 16–80% (w/v) [19, 21, 22, 24, 26, 27]. While 
in biohydrometallurgy of low-grade ores, pulp density is generally 10% or higher 
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because the ores are mainly reduced sulfides ores, which do not contain alkaline 
matter or toxic compounds that could inhibit the microbial growth or production of 
metabolite of interest to metal removal [16, 17].

Adapted microorganisms are used to carry out these biotreatments, or they 
are adapted to the characteristics that the pollutant presents (high concentration 
and variety of metals); however, in works related to the recovery of contaminated 
sites, the use of metabolic activity of microorganisms such as bacteria and fungi, 

Biological process Process description

Bioadsorption The union between the microbial biomass and the metal can occur at 
an extracellular level and is carried out by coordinated complexes. The 
microorganisms used as biosorbents retain heavy metals on the surface 
of the cell when they come into contact with the metals through ionic 
interactions between them and the cell wall. The microbial cell can be alive 
or dead, and energy expenditure by the microorganism is not required [35]

Bioabsorption The intracellular accumulation of a metal occurs in two stages: process 
of adsorption of the metal and subsequently the transport of the 
metal into the cell by an active transport system. The bioaccumulation 
processes require the metabolic activity of the cells; they also involve a 
transmembrane transport system, which is responsible for letting the 
captured metal into the cell wall or membrane inside the cell, once it was 
incorporated, the metal can remain sequestered by specific genetically 
encoded proteins, so it is required to expose the cell to metal ions to 
induce their expression [36]

Bioleaching/mobilization It uses the ability of a variety of microorganisms (bacteria and fungi) 
to mobilize and leach metals from a solid matrix based on three 
principles: (1) the production of organic and/or inorganic acids; (2) 
through oxide-reduction reactions; and (3) secretion of complexing 
agents (siderophores, lipopeptide biosurfactants). The microorganisms 
used are autotrophic, heterotrophic bacteria as well as fungi. These 
microorganisms are capable of producing organic and inorganic acids, and 
the processes can be carried out directly, using the microorganism and its 
by-products, or indirectly in which only the acid or metabolite produced 
by the microorganism is used [21, 37–44]

Membrane transporters 
expelling harmful species 
from the cell cytoplasm

Ejecting systems of cations

(1) Cation diffusion facilitators (CDF) are proteins that are distributed in 
the three domains (Bacteria, Archaea, and Eukarya). They generally not 
only transport zinc but can also expel other cations such as Cd, Co, Ni, 
and Fe.
(2) P-type ATPases constitute a superfamily of metal transporters that are 
energized by the hydrolysis of ATP. They are widely distributed in the three 
domains of life, and their substrates are ions such as H+, Na+, K+, Mg2+, 
Ca2+, Cu+, Ag+, Zn2+, and Cd2+. This type of ATPases is located in the inner 
membrane and can transport ions into the cellular interior, commonly 
physiological ions such as Mg2+, or function as expulsion systems, 
removing toxic metals to the periplasmic space.
(3) RND proteins, these are involved in resistance, nodulation, and cell 
division processes in different bacterial species, have only been identified 
in bacteria. RND proteins that participate in the expulsion of metals are 
commonly associated with a pair of auxiliary polypeptides: a small outer 
membrane protein and a periplasmic protein that binds (or fuses) to the 
inner and outer membranes [11, 45, 46].
Anion ejection systems

In this group, there is a system of expulsion of toxic inorganic ions that use 
transporters to expel arsenic and chromium oxyanions. This system can 
work in a dual way: driven by the hydrolysis of ATP or by a chemiosmotic 
process [11].

Table 1. 
Biological mechanisms involved in the removal of metals.
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isolated from environments exposed to metals has been proposed [28]. This condi-
tion allows to obtain microorganisms adapted and/or resistant to metals of interest, 
whose metabolic activity could favor the mobilization and/or immobilization of 
metals from a contaminating matrix; this is through the accumulation or adsorption 
of metals by biomass or the production of metabolites such as organic and mineral 
acids, chelating agents (siderophores and biosurfactants), and enzymes [15]. 
Table 1 shows some of the mechanisms used by microorganisms for the removal 
of metals. In these processes, the cell wall plays the main role since it is the first one 
that comes into contact with the metal ions, and these are deposited on the surface 
or between the cell wall structures, which, depending on the type of cell, will 
contain functional groups such as carboxyls, phosphonates, amines, and hydroxyl 
groups, among others [29]. These metal ions will be attracted by the negatively 
charged sites of cellular components. The cell wall in Gram-positive bacteria has a 
thickness of 20–80 nm and is made up of peptidoglycan or murein and is located 
on the plasma membrane, in which there are a lot of teichoic acids, which are 
polymers of glycerol or ribitol linked to a phosphate group, which are attached to 
the peptidoglycan layer by covalent bonds with the acid of acetyl muramic acid 
(6-hydroxy-N-acetyl-muramic) [30, 31] also called lipoteichoic acids because they 
leave the cytoplasmic membrane and have a negative charge. Teichoic acids extend 
over the entire surface of the peptidoglycan, and given their negative charge, they 
give the cell wall of the bacterium its net negative charge, being the teichoic and 
lipoteichoic acids the ones that participate in the entrapment of metal ions on the 
surface of the cell wall. The Gram-negative cell is a bit more complex, in which the 
peptidoglycan layer (cell wall) has a thickness of 2–7 nm surrounded by an outer 
membrane of 7–8 nm, and the peptidoglycan is between the plasma membrane and 
the outer membrane, which is composed of phospholipids, lipopolysaccharides 
(LPS), enzymes, and other molecules such as lipoproteins. The polysaccharide 
chains constitute the O-antigens of the Gram-negative bacteria; the lipopolysac-
charides (LPSs) are formed by lipid chains and carbohydrates; these LPSs are 
joined to the outer membrane by ionic and hydrophobic interactions; the groups 
of LPSs and phospholipids have a net negative charge, so that they are attributed 
to the cell surface charge of Gram-negative cells; and these are the primary sites of 
interaction with metal ions [30, 31]. Due to these characteristics, bacteria can be 
used as biosorbents; in addition to that, their small size and rapid growth ability 
under pre-established conditions (temperature, pH, nutrients, aeration, etc.) allow 
the recovery of various metals or specific metals depending on the conditions used 
and the type of microorganism. Some species like Bacillus [16, 22, 32], Pseudomonas 
[33], Streptomyces [34], and Microbacterium [24, 27] have already been tested for the 
recovery of some metals such as Cr (VI), Cu, Cd, Fe (III), Pb, Hg, Ni, Zn, Pd, Pt, 
Th, U, and V.

3.  Microorganisms with potential for the treatment and recovery  
of metals

Currently, there are commercial systems of biorecovery of metals that use 
different biosorbent matrices, among which are AlgaSORB™, AMT-BIOCLAIM™, 
BIO-FIX®, B.V. SORBEX, BIO-FIX®

, MetaGeneR, and RAHCO Bio-Beads; the 
first uses a biosorbent material based on algae Chlorella vulgaris with a thickness 
of 1–3 mm consisting of an immobilized biofilm on a silica-gel matrix and is the 
most popular of these sorbents; this biological ion-exchange resin was able to bind 
both metallic cations and metallic oxoanions and could be competitive to com-
mercial ion-exchange resins. The second consists of a biosorbent material based on 
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immobilized Bacillus subtilis cells on extruded beds of polyethyleneimine (PEI) and 
glutaraldehyde, removes metals ions from wastewater, and recovered precious met-
als [47, 48]. Several works have reported improvement of the adsorption capacity of 
biosorbents after immobilization of microorganisms on matrices, and some of them 
are Aspergillus niger, Rhizopus nigricans, Trichoderma viride, Pseudomonas fluore-
scens, Microbacterium oxydans, Cupriavidus sp., Sphingobacterium, Bacillus strain 
CR-7, Bacillus subtilis, Candida albicans, Saccharomyces cerevisiae, Saccharomyces 
uvarum, and Saccharomyces lipolytica [47, 48].

The siderophores are molecules produced by some microorganisms and have 
been used to reduce the level of metal contamination in the environment specifi-
cally from soil and water. The siderophores are low molecular weight (<10 kDa) 
iron chelating compounds synthesized by many bacteria of which can be men-
tioned Pseudomonas, Azotobacter, Bacillus, Enterobacter, Serratia, Azospirillum, and 
Rhizobium [43, 44, 49] and are extremely effective in solubilizing and increasing 
the mobility of a wide range of metals such as Cd, Cu, Ni, Pb, Zn, and the actinides 
Th(IV), U(IV), and Pu(IV) [44]. This ability of siderophores mainly depends on 
their ligand functionalities, by which means siderophores may have a strong affinity 
or selectivity for a particular metal other than Fe with regard to the stability con-
stants of this metal-siderophore complex [43].

However, bioleaching processes are the most reported for the treatment of metal 
contaminated waste or for the recovery of metals. The genus of Acidithiobacillus is 
the most reported autotrophic sulfur-oxidizing bacterium for metal solubilization, 
particularly because it has been able to tolerate high concentrations of heavy metals. 
Obtaining the energy required for its metabolism is received through aerobic oxida-
tion and the reduction of sulfur compounds, including sulfides, elemental sulfur, 
thiosulfates, and Fe2+, producing H2SO4 [38, 42, 50, 51]. During bioleaching, several 
mechanisms are involved, including (1) acidolysis, (2) complexolysis, (3) redoxoly-
sis, and (4) bioaccumulation. However, operating costs are higher for fungal leach-
ing (by heterotrophs) than bacterial leaching (by autotrophs) due to the need for an 
organic carbon source for their growth and organic acid excretion [5].

In the bioleaching, once the acid is produced in a medium, it favors a decrease 
in pH and creates a highly protonated medium (H+) in which a series of electro-
chemical reactions are carried out, where solid compounds are transformed into 
soluble and extractable forms and subsequently can be recovered [5, 41]. There 
are iron-oxidizing species within Acidithiobacillus genus, as Acidithiobacillus fer-
rooxidans, which obtain their energy by oxidation of Fe2+ to Fe3+ [38]. In addition 
to Acidithiobacillus genus, some fungi, as Aspergillus niger [39, 41] and Penicillium 
simplicissimum [40], have been studied for the production and secretion of organic 
acids such as oxalic, malic, gluconic, and citric acid. The production of these acids 
involves a large number of enzymatic reactions, for example, gluconic acid is 
produced extracellularly in two steps, and the glucose in the medium is oxidized in 
a glycolysis process mediated by glucose oxidase. The secretion of these acids by the 
cell also lowers the pH in the medium, protonating it, causing the solubilization of 
metals from a solid matrix to the liquid medium. Given the solubility characteristics 
of metals in these acidic media, leaching processes have been successfully applied 
since the 1980s in large-scale treatments for the recovery of metals such as Ni, Co, 
Zn, Mo, V, Cd, Al, Cu, V, Fe, and Mn, from solid waste using microorganisms listed 
in Table 2 [5, 25, 26, 38, 39, 40, 41, 51].

Indirect bioleaching is mainly used in industrial applications since it is believed 
to be the most appropriate for increasing the efficiency of leaching processes, 
avoiding toxicity problems toward microbial cells by being in the presence of 
the solid waste. However, some authors mention that the presence of cells and 
metabolite produced increases the percentages of metal recovery compared to 
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indirect bioleaching processes [52]. Currently, the bioleaching process is the only 
one reported for the recovery of metals from depleted catalysts, where treatment 
efficacy has been proven up to 90% using Acidithiobacillus and Aspergillus. The 
first bioleach process development that was commercialized for agitated tank 
bioleaching of sulfide concentrates was at the Fairview Gold Mine in South Africa 
in 1986 with a current capacity of 65–80 t/d. Another plants of refractory gold 
tank bioleaching operations are located in Brazil (1991); West Australia (1993); 
Obuasi, Ghana (1994); Tasmania, Australia (2000); Shandong, PR China (2001); 
Krasnoyarsk, Russia (2001); Kazakhstan (2005); Victoria, Australia (2005); Ghana 
(2006); PR China (2006); and Uzbekistan (2008), with different capacities of 
operation [51]. At present, there are patented processes that are used in the world, 
among which stand out BIOX®, BioCOP™, BROGIM®, GEOCOAT®, and BacTech® 
[51]. GeoBiotics originally developed the GEOCOAT® system for the treatment of 
refractory gold deposits and has since expanded the technology for the treatment of 
copper, nickel and cobalt. The process incorporates elements of two successful and 
commercially proven technologies: heap leaching and biooxidation, depending on 
temperature of operation, the heap is inoculated with mesophilic or thermophilic 
microorganism [53]. The GEOCOAT® technologies, together with a wide variety 
of additional expertise and patents, constitutes the GeoBiotics technology suite, 
including high-temperature bioleaching, toxins removal, HotHeap™, BIOPRO™, 
and other complementary processes focused around pretreatment, aeration, stack-
ing, and instrumentation [54].

4.  Treatment of spent catalysts of the petrochemical industry by 
microbial route

In the case of the treatment of spent catalysts, the coke that is impregnated in 
the pellets modifies the particle size, in addition to restricting and decreasing the 
contact surface between microorganisms and metals, so a pretreatment is neces-
sary to eliminate oil residues and subsequently enter the waste into the bioleaching 

Bacteria and archaea Fungi

Acidithiobacillus albertensis Aspergillus flavus

Acidithiobacillus caldus Aspergillus foetidus

Acidithiobacillus ferrooxidans Aspergillus niger

Acidithiobacillus thiooxidans Penicillium chrysogenum

Ferrimicrobium acidiphilum Penicillium simplicissimum

Ferroplasma acidiphilum Penicillium tricolor

Leptospirillum sp.

Leptospirillum ferriphilum

Leptospirillum ferrooxidans

Sulfolobus metallicus

Sulfolobus yangmingensis

Sulfobacillus acidophilus

Sulfobacillus thermosulfidooxidans

Table 2. 
Microorganisms used in bioleaching treatments.
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process; therefore, the continuous treatment is often transformed into a batch 
treatment (batch processes) causing the process to slow down and increase the cost 
of the treatment [55, 56].

The most reported biological processes for the treatment of catalysts involve 
bioleaching processes using Acidithiobacillus thiooxidans and Acidithiobacillus ferro-
oxidans as producers of inorganic acids in direct bioleaching systems [38, 50]. Using 
inorganic acids and a concentration of 10% v/v of spent catalyst, recovery of Ni and 
V can go up to 98–99% and other metals, such as Mo, Co, Al, and Fe, in a smaller 
proportions (60–80%) [56]. Using a mixed culture of Fe/S oxidizers with  
A. ferrooxidans, A. thiooxidans, and L. ferrooxidans, a recovery was achieved of 
83–90% of Ni and V from the spent catalyst at 10% (w/v) of pulp density [42].

Aspergillus niger is a heterotrophic fungus reported in bioleaching processes 
mediated by organics acids as oxalic acid, reaching recovery percentages of 62.8% 
of Ni when was used spent catalyst at a concentration of 1% (w/v) [39]. In another 
study, that used the same microorganism, recovery was 45.8% of Ni in a concentra-
tion of 3% (w/v) of spent catalyst [41]. Although these microorganisms are the 
most reported in the literature for the treatment of spent catalysts, other microor-
ganisms of the genus Bacillus are being evaluated for these bioleaching processes, 
and Bacillus megaterium was studied for leaching Re and Pt using the cyanide pro-
duced by this microorganism [57]. The ability of Bacillus megaterium MNSH1-9K-1 
and Bacillus subtilis PRGSd-9K-4 for the removal of Ni and V was evaluated by 
using a mineral medium plus a spent catalyst at 16% (w/v) of pulp density, finding 
removals of Ni and V of 149.5 and 920.5 mg/kg, respectively [22]. Species of genus 
Bacillus have been reported to remove metals Ni, V, Al, Fe, As, and Mg at different 
extents, and cell morphology changes have been detected at the end of biological 
treatment as a higher quantity of spores for Bacillus thuringiensis MNSH2-AH-3, 
2 μm cells in pairs for Bacillus megaterium MNSS-AH-4, and long chain-vegetative 
cells having inclusions into the cell surface in Bacillus sp. PRGSd-MS-2 [16]. The 
ability of Microbacterium oxydans MNSH2-PHGII-1 and Microbacterium liquefaciens 
MNSH2-PHGII-2 has recently been reported for the removal of Ni and V metals 
by using a rich medium added of 16% of spent catalyst (w/v) finding removal 
percentages for Ni 45.4 and 51% and for V 30.4 and 41.4% for each microorganism, 
respectively [24]. Microbacterium liquefaciens is able to remove Ni and V from spent 
catalyst at 80% (w/v) pulp density in a glass-column system under the following 
laboratory conditions: 80% (w/v) pulp density, inoculum at 20% (3 × 108 CFU/ml), 
air at 80 ml/min, incubated at 30°C during 14 days. Under this condition, it was able 
to remove 1007.4 mg/kg of Ni, while V was removed at an extent of 5360.5 mg/kg 
[27]. Suspensions containing bioemulsifier produced by Microbacterium sp. strains 
were shown to be able to remove cadmium and zinc from contaminated industrial 
residue and its ability varied according to carbon source [58]. About the biosorption 
capacity of cadmium by the biopolymers Microbactan and MC3B-22, both synthe-
tized by marine bacteria Microbacterium sp. MC3B-10 and Bacillus sp., respectively, 
the maximum sorption capacity of Cd2+ was 97 mg/g for Microbactan and 141 mg/g 
for B. firmus EPS, both at pH 7 and 28°C. In addition, microbactan and B. firmus 
exopolymeric substances (EPSs) were nontoxic to Artemia salina nauplii, which is 
an aquatic model organism widely used in aquaculture activities [59].

5. Conclusion

Microorganisms can adapt to different environments. Biological treatments 
consider characteristics of interest of the microorganisms used, such as resistance 
to metals, at acidic and alkaline pH, at low and high temperatures, taking advantage 
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