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1. Perovskite structure and synthesis

Perovskite is considered one of the most promising materials of the twenty-first 
century. In the past few decades, the perovskite has attracted broad attention and 
made great progress in energy storage, pollutant degradation as well as optoelectronic 
devices due to its superior photoelectric and catalytic properties. All materials with 
ABX3 structure are collectively referred to as perovskite materials, which can be 
simply divided into inorganic perovskite and organic-inorganic hybrid perovskite. 
The tolerance factor is usually used to indicate the structure of perovskite. Each 
ion radius in perovskite oxide should satisfy the following equation: t = ((rA + rO))/
(√2(rB + rO)), where rO, rA, and rB are the radii of respective ions A, B, and oxy-
gen elements. So far, various perovskites, such as Ba2XOsO6 (X = Mg, Zn, Cd), 
Cs2AgBiBr6, and CH3NH3PbX3 (X = Cl, Br, I), have been synthesized and used in 
different fields. For example, perovskite oxides play a pivotal role in half-metallic fer-
romagnetic, spintronic applications, energy storage, and pollutant degradation, while 
the halide perovskite is used for LEDs and photodetectors. Currently, diverse prepa-
ration methods have been developed for the synthesis of perovskite with different 
dimensions. For instance, solid phase synthesis method and sol-gel method are used 
for synthesizing perovskite oxide and hydrothermal method for halide perovskite.

1.1 Solid phase synthesis

Solid phase synthesis is a traditional preparation to obtain perovskite oxides 
by evenly mixing two or more kinds of metal salts and pressing them into sheets. 
After calcining at a certain temperature, this material can be acquired by grinding 
calcined sample. To study its magnetism, Yuan et al. prepared the perovskite oxide 
Y1−xGdxFeO3 (0 ≤ x ≤ 1) with good crystal structure by solid phase method [1]. This 
preparation process has the advantages of simple production process and low cost, 
and as-prepared materials have high mechanical strength.

1.2 Sol-gel method

Organometallic compounds or inorganic metal salts as precursors are hydro-
lyzed or alcoholized to form sol and are finally condensed to form gel. After heat 
treatment, the required oxide powder is obtained. The commonly used gels include 
ethanol, ammonia, polyvinyl alcohol, citric acid, etc. Taguchi et al. synthesized 
LaCoO3 with small particle size by using ethylene glycol and citric acid as gel [2]. 
Besides, the effects of different calcination temperatures on the properties of 
materials were also studied by Toro et al. [3].
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Figure 1. 
(a) The illustration of spin-coating method, (b) anti-solvent crystallization, and (c) inverse temperature 
crystallization for preparing perovskite materials.

1.3 Hydro-thermal synthesis

Using an aqueous solution as the reaction medium, perovskite crystals were 
precipitated in the reaction vessel under high temperature and pressure. Wang et al. 
have prepared the perovskite oxide of LaCrO3, La0.9Sr0.1CrO3, and La0.8Sr0.2CrO3, 
in which the grain size is between 1 and 2 μm [4]. The crystallinity, particle size, 
and morphology of materials can be controlled by hydrothermal process and 
prepare ultra-fine, less agglomerated, and grow single-crystal spherical core-shell 
perovskite materials.

1.4 Vapor deposition

This technique mainly uses one or several gas phase compounds or elemental 
materials containing thin film elements to produce thin films by chemical reac-
tions on the substrate surface. Liu et al. have reported the first vapor-deposited 
perovskite films through dual-source evaporate PbCl2 and CH3NH3I on the FTO 
substrates [5]. Later, smooth and highly crystalline perovskite thin films were pre-
pared by pulsed laser deposition [6]. Large amount of researches have revealed that 
the quality has a great influence on the precursor ratio control and deposition rate. 
Besides, chemical vapor deposition, as a general method, is also used to synthesize 
one-dimensional nanowires [7, 8] and two-dimensional microplatelets [9].

1.5 Solution-chemistry approaches

Solution-chemistry approaches, such as spin-coating, anti-solvent crystal-
lization, inverse temperature crystallization, are low-cost and facile processes 
for preparing perovskite films and high-quality crystals. There are two strategies 
of one- and two-step methods about the spin-coating method. In the one-step 
method, perovskite precursor solution was directly applied to the substrate surface 
and formed perovskite film after annealing treatment. However, the main challenge 
of volume shrinkage has a great impact on the quality of the film. Thus, two-step 
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method is development for the preparation of uniform perovskite films, which 
could reduce this disadvantage to some extent. For synthesizing bulk crystals, 
Shi et al. proposed anti-solvent process to prepare low trap-state density and long 
carrier diffusion CH3NH3PbBr3 single crystals [10]. After that, two-inch-sized 
perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals were prepared by inverse tempera-
ture crystallization [11]. Figure 1 shows the schematic diagram of various solution-
chemistry approaches [10, 12, 13].

2. Perovskites for devices

Perovskite has been widely used in many fields due to the great progress in mate-
rial and device preparation technology. Up to date, there are numerous perovskite 
applications including degradation of organic pollutants, optoelectronic devices, 
and memory devices. Next, we will discuss perovskite applications separately.

2.1 Perovskite for catalyst

With the enhancement of environmental awareness, the construction of sustain-
able development society has become the current consensus. Due to the excellent 
catalytic properties, perovskite has a great application prospect in the degradation 
of organic pollutants and the acquisition of clean energy. It is well known that NOx 
is one of the main causes of air pollution. Several studies were carried out to achieve 
NOx-to-N2 conversion by using perovskite-based catalysts. Furthermore, perovskite 
also shows exotic catalytic properties to other harmful gases, such as CO [14] and 
SO2 [15], which effectively reducing pollutants in the environment. To effectively 
manage clean energy, previous work mainly focused on perovskite-based solid 
oxide fuel cell and water electrolysis.

2.2 Perovskite for optoelectronics

2.2.1 Solar cells

Perovskites are considered to be the most promising candidates for solar cells 
due to their excellent diffusion length (more than 1 μm), low preparation tempera-
ture, low cost, and high efficiency. In 2009, Kojima et al. first prepared perovskite 
solar cells [16], which is an important step for the development of solar cells. Later, 
Burschka et al. fabricated the solar cells by two-step continuous deposition method, 
and the photovoltaic conversion efficiency was increased to 15% [17]. And then, the 
performance was improved by changing device structure and optimizing carrier 
transport layer [18]. So far, the efficiency of perovskite solar cells has exceeded 22% 
[19]. The huge development of perovskite solar cells will provide the possibility for 
its commercialization.

2.2.2 Photodetectors

Photodetectors, which could convert incident light into electrical signal, are very 
important optoelectronic devices for optical communications, homeland security, 
and environmental monitoring. Many works have reported that perovskite-based 
photodetectors have the abilities to sense the spectra from deep-UV to visible 
and NIR [20, 21] and even to X-ray or γ ray [22, 23]. Efforts have been devoted 
to improve the device performance. For example, wide spectrum detection from 
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Figure 2. 
Resistive switching characteristics and the photograph of the flexible device.

visible to near-infrared was realized by adjusting perovskite components [24]. The 
passivation of graphene makes the detectable light intensity of the device down 
to 1 pW/cm2 [25]. Recently, flexible photodetectors and detector arrays have been 
prepared. Therefore, perovskite photodetectors are developing toward the direction 
of high performance and practicality.

2.3 Memory devices

Resistive memory (RRAM) is a non-volatile memory based on reversible conver-
sion between high- and low-resistive states under the action of applied electric field. 
Zhang et al. were the first to demonstrate a 64-bit RRAM array utilizing perovskite 
oxide Pr0.7Ca0.3MnO3 materials by a 500 nm CMOS process [26]. This RRAM array 
has a high/low resistance ratio larger than 1000. After that, multilayer-graphene 
transparent conductive electrodes were employed for flexible perovskite RRAMs 
[27]. Resistive switching characteristics and the photograph of the flexible device 
are shown in Figure 2. A typical structure of resistive random-access memories 
is a metal/insulator/metal (MIM) stack. The applied bias can adjust the operating 
state of the device at will, in which high resistance state (HRS) and low resistance 
state (LRS) can be formed. Conductive filament and uniform modes are currently 
recognized resistance conversion mechanisms. As the most common mechanism, 
ion migration and metal-insulator transition are considered to be the main cause 
of the filament mode. Besides, uniform resistance switching mainly includes the 
carrier trapping/detrapping and the ferroelectric polarization.
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