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Chapter

Fungal Endophyte-Host Plant 
Interactions: Role in Sustainable 
Agriculture
Tamanreet Kaur

Abstract

Fungal endophytes that live inside plant tissues without causing any apparent 
symptoms in the host plant are important components of plant micro-ecosystems. 
Endophytic fungi confer profound impacts on their host plants by enhancing their 
growth, increasing their fitness, strengthening their tolerances to pests and dis-
eases. Moreover, fungal endophytes symbiotic with host plant produce a plethora of 
bioactive secondary metabolites that are expressed as defensive weapons to protect 
the host plant against various abiotic stresses. Currently, main focus in endophytic 
fungi research is associated with the ability of these microorganisms to produce 
and accumulate biologically active metabolites as these are potent source of novel 
natural products useful in agriculture sector.

Keywords: fungal endophyte, symbiosis, secondary metabolites, stress, sustainable 
agriculture

1. Introduction

Over reliance of synthetic pesticides in crop fields from late 1940 to mid-1960s 
resulted in a number of adverse environmental impacts such as secondary pest 
outbreak, insect resurgence, effects on non-target organisms, residual problem, 
environmental pollution, prompted an urgent need for alternative tactics to help 
make crop protection more sustainable. Biological control using micro-organism 
has gained much interest, being specific, low relative cost and low risk to ecosystem 
[1]. Among the various micro-organisms, endophytic fungi can make the chemi-
cal intensive crop production system more sustainable as it has ability to enhance 
plant growth, yield and increase plant fitness by providing biotic and abiotic stress 
tolerance [2, 3]. Endophytes (“endo” = within, “phyte” = plant) are the microorgan-
isms that inhabit interior of plants especially leaves, stems, roots without causing 
any apparent harm to the host [4]. These are ubiquitous having rich biodiversity 
and found in every plant species as nearly 3,00,000 plant species exist on earth with 
each individual plant host having one or more than one endophytes [5]. Endophytic 
fungi are considered as plant mutualists as they receive nutrition and protection 
from host plant while the host plant may benefit from enhanced competitive abili-
ties and increased resistance to herbivores, pathogens and various abiotic stresses 
[6]. It spends whole or part of their life cycle colonizing inters- and/or intra-
cellularly within the healthy tissues of the host plant without causing visible signs 
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of infection [7, 8]. Moreover, fungal endophytes have gained significant interest 
in sustainable agriculture due to their great potential to contribute to secondary 
compounds with unique structure, including alkaloids, benzopyranones, chinones, 
flavonoids, phenolic acids, quinones, steroids, terpenoids, tetralones, xanthones, 
etc. [9–11] produced by the fungi or by the plant due to interaction with the fungi. 
Among the microorganisms, fungal endophytes are the largest group produc-
ing secondary metabolites. Fungal toxins produced by these biotic metabolites 
contribute to plants tolerance towards various biotic and abiotic stresses. Fungal 
endophytes are known to produce bioactive compounds toxic to insects, nema-
todes, produces extracellular enzymes (cellulases, proteinase, lipases, esterases) 
for degradation of dead soil biomass, solubilize insoluble phosphates and produce 
plant growth-promoting hormones (auxins, cytokinins, gibberellins). Endophyte 
infected plants manage plant growth under adverse conditions of drought, salinity, 
temperature and heavy metal stress through different mechanisms. This chapter 
outlines various approaches for the use of endophytic fungal inoculants to combat 
various stresses in agricultural fields, thus increasing global crop productivity.

2. Fungal endophyte-host plant association

The association between fungal endophytes and their host plant is due to their 
unique adaptations which enable the endophytes to harmonize their growth with 
their host plant [12]. The origin of endophytes is not clear due to complex associa-
tion between the endophyte and its host plant and the multiplicity of the host’s 
living environment. Exogenous and endogenous are the two hypotheses explaining 
the origin of endophytes. According to endogenous hypothesis, endophytes are 
gaged from the mitochondria and chloroplast of the plant, and so it has compa-
rable genetic backgrounds to the host [13], whereas exogenous hypothesis believes 
that endophytes arrive from outside of the plant and got inserted into the host 
from root wound, induced channels, or surface [14]. During the long period of co-
existence and evolutionary processes, different relationships have been established 
between endophytic fungi and their host plants ranging from (i) a continuum of 
mutualism, (ii) antagonism, and (iii) neutralism. As once inside the tissues of a 
host plant, the endophytic fungi assumed a quiescent (latent) state, either for the 
whole lifetime of the host plant (neutralism) or for an extended period of time 
(mutualism or antagonism) until environmental conditions are favorable for 
endophytic fungi [15]. Endophytes due to its cryptic existence also have its role of 
decomposers in ecosystem, as they are among the primary colonizers of dead plant 
tissues [16, 17].

2.1 Fungal endophytes

2.1.1 Transmission

The life history of endophytes in symbiotum with host plant has three modes of 
reproduction (Figure 1). They can either be transmitted (i) vertically from infected 
plant to offspring via seeds (Neotyphodium spp.), (ii) horizontally by sexual spore s 
from infected individuals (e.g. Epichloe spp.) or (iii) mixture of two life cycles [19]. 
The pure vertical transmission is asexual reproduction of intercellular hyphae of 
above ground tissues with no symptoms and transmitted vertically via seeds from 
infected plants to offspring (e.g. Neotyphodium spp.). In contrast, the pure hori-
zontal transmission evolves sexual life cycle, relies on the production of contagious 
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sexual spores. These spores can only be produced on a fungal structure (stroma) 
surrounding the grass flag leaf sheath (e.g. some Epichloe spp.). Leaves accumulate 
numerous infections shortly after emergence by means of epiphytic germination 
of fungal propagules, followed by cuticular penetration or entry through stomata’s 
[20–22] and grow intercellularly within healthy tissues [20, 23]. However, many 
Epichloe spp. use a third mode of reproduction. In this fungi choke some flowering 
tillers and produce sexual spores leaving majority of tillers uninfected and trans-
mitted asexually via seeds [18]. Endophytes are transmitted vertically (systemic) 
and horizontally (non-systemic). Vertically transmitted endophytes are mutualis-
tic, whereas those transmitted horizontally depict antagonism to the host [6, 24].

3. Fungal endophytes for sustainable agriculture

In view of escalating pollution and cost due to indiscriminate use of chemical 
pesticides, diverted researchers interest towards alternative eco-friendly and safe 
approaches to meet increasing demand of agriculture productivity. Sustainable 
agriculture requires the use of various strategies to increase or maintain the current 
rate of food production while minimizing damage to the environment and human 
health. Symbiotic endophytic fungal associations with crops offer wide range 
of benefits ranging from the promotion of plant growth to improvements in the 
tolerance of various biotic and abiotic stresses. Moreover, loss of useful endophytic 
microbes from crop plants during their domestication and long term cultivation 
also requires transfer of endophytes from wild relatives of crops to crop species.

4. Fungal endophytes: Biotic stress management

Endophytic fungi have gained importance in the area of agriculture because 
of their ability to confer resistance to various biotic stress conditions like insect 
herbivory, nematicidal attack and by aiding plant growth processes.

Figure 1. 
Asexual and sexual life cycles of Epichloe festucae symbiotic with Festuca spp. [18].
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4.1 Fungal endophytes

4.1.1 Biocontrol agents

Fungal endophytes act as biocontrol agents as they can protect their host plants 
from pathogens and pests [25, 26]. The mechanism whereby endophytes deter 
herbivory is through production of antiherbivory/bioactive compounds [27–29] or 
complex interacting factors of metabolic processes in both the fungus and the plant 
after infection [26, 30]. These defensive compounds may deter feeding (antixeno-
sis) or reduce insect performance (antibiosis) [31, 32]. Endophytic fungi release the 
specialized biologically active compounds without any observable damage to their 
host tissues [33]. Defensive compounds may be categorized into various functional 
groups: alkaloids, terpenoids, isocoumarin derivatives, quinones, flavonoids, 
chlorinated metabolites, phenol and phenolic acids and many others [7, 34].

1. Alkaloids: Alkaloids are the first reported fungal metabolites to have insec-
ticidal activity. Alkaloids produced by the fungus or by plant in response to 
fungal infection increase host resistance to herbivores [4, 35]. Endophyte in-
fected grasses contain a variety of alkaloids such as peramines, ergot alkaloids, 
lolitrems, loline alkaloids and which are absent in non-infected conspecifics 
[36, 37]. Alkaloids are the first reported fungal metabolites to have insecticidal 
activity. Most of the alkaloids have been detected in the cultures of grass as-
sociated endophytic fungi, such as sexual Epichloe spp. and asexual Neotypho-
dium spp. Fungal isolate determines the types of alkaloids produced and plant/
fungal genotype interaction can modify the quantities of these alkaloids [38].
The alkaloids from fungal endophytes are categorized into three groups, amines 
and amides, indole derivatives and pyrrolizidines. Among amines and amides, 
peramine is toxic to insects without being harmful to mammals [39, 40]. It is 
a strong feeding deterrent for argentine stem weevil and several other insects 
[41, 42]. The levels of alkaloids and other toxins may be altered qualitatively de-
pending on the plants physiological state. Ball et al. [43] verified that with plant 
aging, the amount of peramine decreases in leaves and reaches lower levels 
during inflorescence phase. The second group of amine and amide alkaloids is 
ergot alkaloids that also provide significant resistance against insect pests [44]. 
Feeding experiments with a variety of mammals indicate that ergot alkaloids 
have significant detrimental effects on mammalian health and reproduction 
[45, 46]. Among indole derivatives, the lolitrem C and F have been shown to 
confer resistance against a number of insect species [47]. Other indole deriva-
tives namely chanoclavine, agroclavine and elymoclavine isolated from culture 
of Neotyphodium endophyte [34] were reported to be toxic to some insects 
and mammals [48]. Among Pyrrolizidines, the saturated aminopyrrolizidine 
alkaloids as norloline, N-formylloline, N-acetylnorloline, N-acetylloline were 
exclusively found in endophyte infected grasses of F. arundinacea (infected 
with Neotyphodium coenophialum) and Festuca pratensis (with Neotyphodium un-
cinatum) [49]. A number of feeding experiments have demonstrated the insec-
ticidal and insect feeding deterrent activities of these lolines [50–52]. Lolines in 
addition to the well documented effect on insects are also nematicidal [53].

2. Terpenoids: Second group of endophytic toxins include terpenoids isolated 
from some endophytic cultures originating from a variety of host plants. 
Sesquiterpenes and diterpenes are among the identified terpenoids. Sesquiter-
penes as of heptelidic acid and hydroheptelidic acid isolated from Phyllosticta 
sp., an endophytic fungus of balsam fir (Abies balsamea) exhibited toxicity to 
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spruce budworm, Choristoneura fumiferana (Clemens) larvae [54]. Two insect 
toxins, pimarane and diterpene were isolated from an unidentified endophytic 
fungus symbiotic with needle of A. balsamea [54]. Two benzofuran carrying 
normonoterpene derivatives, toxic to spruce budworm larvae were charac-
terized from an endophytic culture obtained from wintergreen (Gaultheria 
procumbens) [55].

3. Isocoumarin derivatives: Toxicity of isocoumarin related metabolites from 
the conifer endophyte cultures showed toxicity against cells and/ or larvae of 
spruce budworm [56].

4. Quinones: Rugulosin, a metabolite of endophytic fungus Hormonema dema-
tioides from balsam fir has been reported to have insecticidal activity [54]. An 
unidentified endophytic culture isolated from eastern larch (Larix laricina) 
produced a quinone derivative, which was toxic to spruce budworm larvae [55].

5. Flavonoids: Among the flavonoids, tricin and related flavone glycosides 
isolated from endophyte infected blue grass (Poa ampla) exhibited toxicity 
against mosquito larvae [56].

6. Chlorinated metabolites: Insecticidal chlorinated metabolite, heptelidic acid 
chlorohydrins were isolated from cultures of balsam fir needle endophyte Phyl-
losticta spp. [57].

7. Phenol and phenolic acids: Phenol and phenolic acids are frequently detected 
in cultures of endophytes and have pronounced biological activities. Singh 
et al. [58] purified phenolic compound from ethyl acetate extract of endo-
phytic Cladosporium sp. isolated from guduchi (Tinospora cordifolia), which 
induced significant mortality and adversely affected development and survival 
of tobacco cutworm, Spodoptera litura (Fabricius).

Since the 1980s, there is accumulating evidence about factors that influence the 
outcome of grass–endophyte–insect interactions. Webber [59] was probably 
the first worker to report plant protection given by fungal endophyte Phomop-
sis oblonga in elm trees (Ulmus spp.) against the elm bark beetle, Physocnemum 
brevilineum (Say). Majority of studies for herbivore performance on native grass 
species symbiotic with endophytic fungi are more consistent showing negative 
effects including increased mortality [60], reduced mass [61, 62] and deceler-
ated development time [63]. Afkhami et al. [62] reported that bird cherry oat 
aphid, Rhopalosiphum padi (Linnaeus) damaged more endophyte free nodding 
fescue (Festuca subverticillata) than endophyte symbiotic F. subverticillata, while 
positive effect of endophyte infection was reported on eastern lubber grasshop-
per, Romalea guttata (Houttuyn) that preferentially consumed endophyte sym-
biotic F. subverticillata over endophyte free. Similarly increase in growth rate 
was recorded in third to fifth instars of fall armyworm, Spodoptera frugiperda 
(J.E. Smith) feeding on N. coenophialum infected tall fescue [63].

4.2 Fungal endophytes

4.2.1 Nematicidal agents

Fungal endophytes act as nematicidal agents as they are known to produce some 
compounds which are toxic to nematodes. Diedhiou et al. [64] demonstrated reduced 
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nematicidal activity by an endophytic fungus, Fusarium oxysporum, against the plant 
parasitic nematode Meloidogyne incognita in tomato plant. Schwarz et al. [65] reported 
that several endophytic fungi isolated from above-ground plant organs produced bio-
active compound, 3-hydroxypropionic acid (HPA) extracted by bioactivity-guided 
fractionation of fungal extracts that showed selective nematicidal activity against 
M. incognita with LD50 values of 12.5–15 μg/ml. Similarly, Felde et al. [66] found 
that combined inoculations of endophytic fungal isolates Trichoderma atroviride 
and F. oxysporum is considered an alternative to improve and increase banana yield 
that reduces the population of burrowing nematode, Radopholus similis (Cobb), an 
important parasitic nematode on banana.

4.3 Fungal endophytes

4.3.1 Phytohormone production

Endophytes can actively or passively regulate the plant growth by solubilization 
of phosphate, enhance uptake of phosphorus (P), and/ or plant hormones such as 
auxin, abscisins, ethylene, gibberellic acid (GA), and indole acetic acid (IAA) [67, 68], 
among these Gibberellic acid is an important phytohormone. The phytohormone GA, 
a diterpenoid complex, controls the growth of plants, and promotes flowering, stem 
elongation, seed germination, and ripening [69, 70]. Fungal endophytes Sebacina 
vermifera, Piriformospora indica, Colletotrichum and Penicillium are distinguished to 
have better plant growth promoting effects under unfavorable conditions due to their 
ability to synthesize enzymes and bioactive metabolites [71–73]. Hamayun et al. [69] 
reported that fungal endophyte, Cladosporium sphaerospermum isolated from soybean 
plant (Glycine max) produced gibberellic acid that induced plant growth in rice and 
soybean. Metabolite pestalotin analogue, isolated from the endophytic Pestalotiopsis 
microspora exhibited significant gibberellin activity in winter-hazel seeds (Distylium 
chinense) and increased their germination rate [74]. Endophytes, Fusarium tricinctum 
and Alternaria alternata produced derivatives of plant hormone indole acetic acid 
that enhanced the plant growth [75]. A study conducted by Johnson et al. [76] on root 
colonizing endophyte P. indica found that association of fungal endophytes with roots 
modulated phytohormones involved with growth and development of host plant and 
enhanced nutrient uptake and translocation especially of phosphorus and nitrogen 
from the soil.

4.4 Fungal endophytes

4.4.1 Agriculturally important enzyme production

Degradation of the dead soil biomass by fungal endophytic is a major step in 
bringing the utilized nutrients back to the ecosystem that improves soil quality. 
Endophytic fungi is reported to produce various extracellular hydrolases includ-
ing cellulase, laccase, pectinase, phosphatase, lipase, xylanase, and proteinase as 
a resistance mechanism against pathogenic invasion [77] and to obtain nutrition 
from host as these enzymes break macromolecules such as lignin, sugar-based 
polymers, proteins, organic phosphate, and carbohydrates to micromolecules 
that are transported throughout the cells for metabolism and help in host sym-
biosis process [78]. Sunitha et al. [79] isolated and identified approximately 50 
endophytic fungal strains having amylase, laccase, cellulase, pectinase, lipase and 
protease enzymes. Study conducted by He et al. [80] explained that endophytic 
fungal species have ability to decompose organic components, including lignin, 
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cellulose, and hemicelluloses that facilitates nutrient cycling. Chathurdevi and 
Gowrie [81] reported that the endophytic fungi species isolated from medicinal 
plant Cardiospermum halicacabum can support plant growth to overcome the 
adverse conditions through producing different extracellular enzymes. Fungal 
chitinases enzyme have vital role in degradation and cycling of carbon and 
nitrogen from chitin molecule. Chitin molecule is a linear homopolymer of 
β-1,4N-acetylglucosamine can be obtained from insect’s exoskeleton, crustacean’s 
shells, and fungal cell wall. Many fungal endophytes isolated from leaves of trees 
of Southern India have shown the production of chitinases [82]. An endophyte, 
Acremonium zeae, isolated from maize is reported to produce the extracellular 
enzyme hemicellulase, which may be used in the bioconversion of lignocellulosic 
biomass into fermentable sugars [83].

5. Fungal endophytes: Abiotic stress management

Agricultural productivity is significantly threatened by various abiotic stresses. 
Environmental stresses such as drought, salinity, temperature can collectively cause 
more than 50% yield losses worldwide [84]. Plants can tolerate abiotic stress by two 
mechanisms: (i) via activation of response systems directly after exposure to stress 
[67] (ii) biochemical compounds that are synthesized by fungal endophytes, acts as 
anti-stress agents [85]. Experimental studies also confirmed that endophytic fungi 
can help the host plants from environmental stress conditions such as drought, 
salts, high temperatures and heavy metals and can thus increase the plant growth.

5.1 Drought stress

Among the abiotic stresses, water stress commonly, known as ‘drought’, is con-
sidered as one of the major challenges to crop production worldwide [86]. Drought 
has a negative impact on the plant growth rate, germination rates, membrane 
loss of its integrity, repression of photosynthesis, and increase in the productiv-
ity of reactive oxygen species [87, 88]. Fungal endophyte infected plants enhance 
drought tolerance by increased accumulation of solutes in tissues, or by reduced leaf 
conductance and a slowdown of the transpiration stream, or due to formation of 
thicker cuticle as compared to non-infected plants [67]. Chippa et al. [89] reported 
that endophytic, Neotyphodium spp. is reported to enhance drought tolerance in 
grass plant by stomatal and osmoregulations and protect plants in drought and 
nitrogen starvation. Experimental studies on lavender plants inoculated with 
Glomus spp. showed that these plants accumulated solutes in tissues thereby 
exhibiting better drought tolerance by improving water contents, N and P contents 
and root biomass [90, 91]. Moreover, plants harboring endophytes consumes 
significantly less water and had enhanced biomass than non-symbiotic plants. For 
instance, endophytes Chaetomium globosum and P. resedanum isolated from sweet 
pepper (Capsicum annuum) plants enhanced shoot length and biomass of the host 
plants challenged by drought stress [92, 93]. Similarly, Redman et al. [72] found 
that inoculation of endophytes Fusarium culmorum and Curvularia protuberata in 
drought-affected rice plants resulted in increased biomass than of non-inoculated 
plants. Fungal endophyte colonization also results in higher chlorophyll content and 
leaf area in plants under drought stress than non-colonized plant. Higher chloro-
phyll concentration is related with higher photosynthetic rate [94]. For instance, 
enhanced photosynthesis rate was recorded in drought stressed C. annuum plants 
colonized by endophytes C. globosum [95] and P. resedanum [96].
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5.2 Salinity stress

High salinity due to extreme climatic conditions and misuse of agricultural land 
over the past few decades has led to high salinity, which is a limiting factor to global 
agricultural productivity [97]. Soil salinity is the accumulation of water soluble 
salts in soil that affects its physical and chemical properties thereby reducing soil’s 
agricultural output [98]. Reactive oxygen species (SOD, CAT, APX) are formed in 
plants on onset of salt and osmotic stress. Endophytic Piriformospora indica induces 
salt stress tolerance by elevation of antioxidant enzymes [99]. These are involved in 
the removal of reactive oxygen species either directly or indirectly via regeneration 
of ascorbate and glutathione in the cell. Experimental studies by Rodriguez et al. 
[100] reported that constant exposure of non-symbiotic plants dunegrass (Leymus 
mollis) to 500 mmol/l NaCl solution, became severely wilted and desiccated within 
7 days and were dead after 14 days. In contrast, symbiotic plants infected with F. 
culmorum showed wilting symptoms only after they were exposed to 500 mmol/l 
NaCl solution for 14 days.

5.3 Temperature stress (low and high)

High temperature is a major obstacle in crop production that results in major 
cellular damage such as protein degradation and aggregation [101]. Whereas, 
low temperature can cause impaired metabolism due to inhibition of enzyme 
reactions, interactions among macromolecules, changes in protein structure, 
and modulating cell membrane properties [102]. Endophytic, Curvularia spp. is 
proven to confer thermal tolerance ability plants like tomato, watermelon, and 
wheat [103]. Herbal plant wooly rosette grass (Dichanthelium lanuginosum) that 
lives in the areas where soil temperatures can reach up to 57°C, the presence of 
endophytic fungi Curvularia sp. protects the plant from temperature stress better 
than endophyte free plants [104]. Experimental demonstration by Redman et al. 
[103] showed that grass D. lanuginosum survival in soil temperatures ranging 
between 38 and 65°C is directly linked to its association with the fungus C. 
protuberata and its mycovirus, Curvularia thermal tolerance virus (CThTV). 
Moreover, cold stress tolerance was conferred in germinated seeds of rice under 
laboratory conditions by C. protuberata isolated from D. lanuginosum thriving in 
geothermal soils [72].

5.4 Heavy metal stress

Heavy metal contamination due to increased industrialization has recently 
received attention because heavy metals cannot be itself degraded [105]. Toxicity 
by heavy metals can cause the loss of about 25–80% of various cultivated crops. 
Heavy metals being very toxic to roots of cultivated crop plants can cause poor 
development of the root system [106]. Endophytic fungi possess metal sequestra-
tion or chelation systems that increases tolerances of their host plants to heavy 
metals via enhancements of antioxidative system thereby changing heavy metal 
distribution in plant cells and detoxification of heavy metal, thus assisting their 
hosts to survive in contaminated soil [107, 108]. For instance, dark septate root 
endophytes (DSEs), Phialocephala fortinii can produce the black biopolymer 
melanin, which can be synthesized from phenolics and binds heavy metals [109] 
that keep heavy metal ions away from living, plant cells [110]. Siderophores being 
metal-chelating compounds [111, 112] released from roots into the rhizosphere can 
be helpful in inhibiting absorption of heavy metals into plant cells as siderophores 
can form complexes with heavy metals which are not easily absorbed by plant 
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roots. Yamaji et al. [113] recorded that endophytes P. fortinii and Rhizodermea 
veluwensis showed an ability to produce siderophores that probably affects heavy 
metal exclusion in the rhizosphere.

6. Conclusion

Fungal endophytes can be a significant component of sustainable agriculture, 
being safe, cost-effective, have ability to produce various compounds like phytohor-
mones, defensive compounds, solubilize phosphates, extracellular enzymes, sidero-
phore production, inhibiting plant pathogens, and promoting plant growth. Over 
the last decade, sharp rise in study of fungal endophytes is seen as they hold huge 
potential in agricultural sector. However, most of the research on endophytes is still 
at an experimental level in lab or greenhouse. For permitting the practical use of 
these endophytes in agriculture it is extremely necessary to encourage field experi-
ments to determine the effectiveness of the endophytes under real world conditions. 
Simultaneously, it is also necessary to build awareness of this new research field 
among farmers to improve interactions and collaboration with scientists working 
in different fields, thereby encouraging the adoption of endophytes in agriculture 
and maximizing their benefits. If endophytes become feasible in agricultural sector, 
their practical aspects will also have to be researched so that farmers can learn how 
to integrate these endophyte species within pre-existing eco-friendly agricultural 
methods so as to ensure continuity in the approach to sustainability. Moreover, 
scientific research has to be also focused on use of genetically modified endophytes 
made by combining endophytes having two or more different ecological roles, such 
as the suppression of diseases and insect pests to simultaneously improve plant 
yields and its defensive properties. Thus, optimization of microbial functions to 
enhance crop production and protection is also required.
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HPA 3-hydroxypropionic acid
P phosphorus
GA Gibberellic acid
IAA indole acetic acid
SOD superoxide dismutase
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APx ascorbate peroxidase
CThTV Curvularia thermal tolerance virus
DSEs dark septate root endophytes
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