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Chapter

Bayesian Deep Learning for Dark
Energy
Celia Escamilla-Rivera

Abstract

In this chapter, we discuss basic ideas on how to structure and study the Bayes-
ian methods for standard models of dark energy and how to implement them in the
architecture of deep learning processes.

Keywords: cosmology, dark energy, Bayesian analyses, machine learning,
cosmological parameters

1. Introduction

The dark sector of the universe has been the issue of study for cosmologists who
are striving to understand the world around us in its entirety. The composition of
the current universe is an age-old inquiry that these researchers have probed into.
And while we do have estimates of the likely percentages of baryonic matter, dark
matter, and dark energy at 5, 27 and 68%, respectively, researchers have been trying
to improve these estimates and optimise the computational expense of the statistical
methods employed to analyse cosmological data available.

These thoughts have opened the path of the following chapter, in where we will
discuss from the standard dark energy models to explain the cosmic acceleration
until the design of a numerical architecture in order to understand the constrains
over the cosmological parameters that can describe the current universe and its
effects.

2. Dark energy as a solution to the cosmic acceleration

A highlight in observational cosmology is the origin and nature of the cosmic
accelerated expansion. The standard cosmological model that is consistent with
current cosmological observations is the so-called concordance model or Λ CDM.
According to this scenario, the observed accelerating expansion is related to the
repulsive gravitational force of a Cosmological Constant Λ with constant energy
density ρ and negative pressure p. This proposal has been the backbone of the
standard cosmology since the nineties, but simple enough as it is the proposal that
has a couple of theoretical problems; two of them are the fine tuning argument and
coincidence problem [1, 2]. In order to solve or at least relax these problems, some
proposals have led to alternative scenarios that can modify the general relativity
(GR) or consider a landscape with a dynamical dark energy. It is in this way that
dark energy emerges as a cosmological solution since it can be described as a fluid
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parameterised by an equation of state (EoS), which can be written in terms of the
redshift, w zð Þ. So far, the properties of this EoS remain under-researched. Just to
mention a few, there are a zoo of proposals on dark energy parameterisations
discussed in the literature (see, e.g., [3–9]), addressing from parameterisation as
Taylor-like series to dynamical w zð Þ that can provide oscillatory behaviours [10–13].

Nowadays, the techniques to discriminate between models and confront them
with Λ CDM are based on the calculations of the constraints on the EoS-free param-
eter(s) of the models. This methodology has been done using observables that can
show the cosmic acceleration such as supernovae type IA (SNeIa), baryon acoustic
oscillations (BAO), cosmic microwave background (CMB), weak lensing spectrum,
etc. The relevance of using these observations is due to the precision with which dark
energy can be probed. Currently, some measurements such as the Pantheon from
supernovae [14], BOSS [15], just to cite a few, point out a way to constrain these EoS
parameters. These observations allow deviations from the Λ CDMmodel, which are
usually parameterised by the EoS- free parameters [16–20]. In past years, there have
been many observations related to the verification of the cosmic acceleration, for
example, from Union 2.11 to the Joint LightCurve Analysis [21, 22]. But the statistics
has been improved due to the density of data this kind of supernovae.

3. On how to model dark energy

One of the first steps to understand the behaviour of the cosmic acceleration
remains in that we require an energy density with negative pressure at late times
[23]. To achieve this, we need to express the ratio between the pressure and energy
density as negative, i.e., w zð Þ ¼ P=ρ<0. In order to develop the evolution equations
for a universe with this kind of fluid, we start by introducing in Einstein equations a
Friedmann-Lemaitre-Robertson-Walker metric to obtain the Friedmann and
Raychaudhuri equations for a spatially flat universe:

E zð Þ2 ¼
H zð Þ

H0

� �2

¼
8πG
3

ρm þ ρDEð Þ Ω0m 1þ zð Þ3 þ Ω0 DEð Þf zð Þ
h i

, (1)

and

€a

a
¼ �

H2

2
Ωm þ ΩDE 1þ 3wð Þ½ �, (2)

where H zð Þ is the Hubble parameter in terms of the redshift z, G is the gravita-
tional constant and the subindex 0 indicates the present-day values for the Hubble
parameter and matter densities.

From Eq. (2), it is possible to obtain the energy conservation equation, in that
way, the energy density of the non-relativistic matter is ρm zð Þ ¼ ρ0m 1þ zð Þ3. And
the ρm is given by:

ρm zð Þ ¼ ρ0m 1þ zð Þ3, (3)

and the dark energy density can be modulated as ρDE zð Þ ¼ ρ0 DEð Þf zð Þ, where can
be written as:

ρDE zð Þ ¼ ρ0 DEð Þ f zð Þ: (4)

1 http://supernova. lbl.gov/Union/
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If we assume that the energy-momentum tensor (on the right side of the
Einstein’s equations) Tμν is a perfect fluid (without viscosity or stress effects), i.e.,
∇μT

μν ¼ 0, the form of f zð Þ can be restricted to be:

f zð Þ ¼ e
3
Ð z

0

1þw ~zð Þ
1þ~z d~z

h i

: (5)

Now, the behaviour of the latter is restricted directly to the form of w zð Þ, which
can give a description of the Hubble function (which can be normalised by the
constant Hubble H0), as for example, in the case of quiescence models (w ¼ const:)
the solution of f zð Þ is f zð Þ ¼ 1þ zð Þ3 1þwð Þ. If we consider the case of the cosmological
constant (w ¼ �1), then f ¼ 1.

Some interesting insights of the above forms for w zð Þ has been reported in
[4, 24] and references therein, where a dark energy density ρDE with varying and
non-varying w zð Þ is considered.

As an extension, with the later equations we can calculate the dynamical age of
the universe using the follow relationship:

Ωm þΩDE ¼ 1 or
ρm

ρDE

¼
Ωm

ΩDE
: (6)

Integrating, we can obtain:

t0 ¼

ð

∞

0

dz

1þ zð ÞH zð Þ
, (7)

t0 ¼ H0
�1
ð

∞

0

dz

1þ zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω0m 1þ zð Þ3 þ Ω0 DEð Þf zð Þ
h i

r : (8)

From here, we can set a functional form of f zð Þ, in which contribution of the
dark energy density to H zð Þ in Eq. (1) goes to a region of negative values of w zð Þ.
The physics behind this behaviour is an impact on the evolution of dark energy
using the dynamical age of the universe Eq. (8). When we compare several theo-
retical models in the light of observations, a model approach is essential. As we
mentioned in the “Introduction” section, to obtain a dark energy model with
late-time negative pressure, we can think in two scenarios:

• a quiescence model, which can show a wide application in tracker the slow roll
condition of scalar fields and demands a constant value of w. As an example,
for a flat universe and according to the Planck data [21], the dark energy EoS
parameter gives w ¼ �1:006� 0:045, which is consistent with the
cosmological constant. These data constrain the curvature parameter at 2 σ and
are found to be very close to 0 with ∣Ωk∣<0:005.

• a kinessence model; where when the EoS is a function of redshift z. For this
case, several dark energy models with different parameterisations of w zð Þ have
been discussed in the literature [24].

4. Standard dark energy models

One of the most commonly used proposals in the literature are Taylor series-like
parameterisations [25–29]:
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w zð Þ ¼
X

n¼0

wnxn zð Þ, (9)

where wn are constants and xn zð Þ are functions of the redshift z, or, the scalar
factor a. As brief examples, in this section, we present three models that have
bidimensional forms in the since that they depend only of two free parameters wi. A
first target is to express the exact form of the Hubble function using a specific
expression for w given by Eq. (5). Once integrated, we can normalise this function
by a Hubble parameter H0, and from now on, we called this normalisation function
depending of the redshift as E zð Þ ¼ H zð Þ=H0. The second target is to test these
equations with the current astrophysical data available.

4.1 Lambda cold dark matter-redshift parameterisation (ΛCDM)

This model is given by:

E zð Þ2 ¼ Ωm 1þ zð Þ3 þ 1� Ωmð Þ, (10)

where Ωm represented the matter density (including the non-relativistic and
dark matter terms). We consider in f zð Þ the value of w ¼ �1. As it is well known in
the literature, this standard model provides a good fit for a large number of obser-
vational data surveys without addressing the important theoretical problems men-
tioned above.

4.2 Linear-redshift parameterisation (LR)

One of the first attempts using Taylor series—at first order—is the EoS given by
[30, 31].

w zð Þ ¼ w0 �w1z, (11)

from we can recover ΛCDM model if w zð Þ ¼ w ¼ �1 with w0 ¼ �1 and w1 ¼ 0.
We notice immediately that due the linear term in z, this proposal diverges at high
redshift and consequently yields strong constraints on w1 in studies involving data
at high redshifts, e.g., when we use CMB data [32].

As usual, we can use the later to obtain an expression for the Hubble normalised
function as:

E zð Þ2 ¼ Ωm 1þ zð Þ3 þ 1�Ωmð Þ 1þ zð Þ3 1þw0þw1ð Þ � e�3w1z (12)

4.3 Chevallier-Polarski-Linder parameterization (CPL)

Due the consequence of the LP parameterisation divergence, Chevallier, Polarski
and Linder proposed a simple parameterisation [33, 34] that in particular can be
represented by two wi parameters that are given by a present value of the EoS w0

and its overall time evolution w1. The proposal is given by the expression:

w zð Þ ¼ w0 þ
z

1þ z

� �

w1, (13)

and its evolution is

E zð Þ2 ¼ Ωm 1þ zð Þ3 þ 1� Ωmð Þ 1þ zð Þ3 1þw0þw1ð Þ � e�
3w1z
1þzð Þ: (14)
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As we can notice, the divergence at high redshift relaxes, but still this ansatz has
some problems in specific low redshift range of observations.

5. Estimating the cosmological parameters

After we have defined a specific cosmological model, we can then perform
their test using astrophysical observations. The methodology can be described by a
simple calculation of the usual χ2 method and then process the MCMC chains
computational runs around a certain value [observational(s) point(s)] and obtain
the best fit parameter(s) of this process. Parameter estimation is usually done by
computing the so-called likelihood function for several values of the cosmological
parameters. For each data points in the parameter space, the likelihoodℒ function
gives the minimised probability of obtaining the observational data that was
obtained if the hypothesis parameters had the given values (or priors). For exam-
ple, the standard cosmological model Λ CDM is described by six parameters,
which include the amount of dark matter and dark energy in the universe as well
as its expansion rate H. Using the CMB data (which is the accuracy data that we
understand very well so far), a likelihood function can be constructed. The infor-
mation given by L can tell which values of these parameters are more likely, i.e. by
probing many different values. Therefore, we are able to determine the values of
the parameters and their uncertainties via error propagation over the free param-
eters of the model.

Now, the following question is that what kind of astrophysical surveys2 can we
use to test the cosmological models. In the next sections we described the most
used surveys that are employed to analyse the cosmic acceleration. It is important
to mention that these surveys spread depending upon their own nature. We have
three types of observations classified as: standard candles (e.g., supernovae, in
which characteristic function is the luminosity distance), standard rulers (e.g.,
supernovae, in which characteristic function is the angular/volumen distance),
and the standard sirens (e.g., gravitational waves, which can be described by
frequencies or chirp masses depending the observation) [35–45]. The set of all of
them can describe a precise statistics, but by separate, each of them have intrinsic
problems due to their physical definition. For supernovae, the luminosity distance
has in their definition an integral of the cosmological model; therefore, when we
perform the error propagation, the uncertainty is high. This disadvantage can be
compensated by the large population of data points in the sampler. On the other
hand, the uncertainty is less for standard rulers in comparison to supernovae. For
this case, the definition of angular distance does not include integrals. The price
that we pay in order to use this kind of sampler is that the population of data is
very small (e.g., from surveys like BOSS or CMASS, we have only seven data
points). Moving forward, the observation of gravitational wave standard sirens
would be developed into a powerful new cosmological test due that they can play
an important role in breaking parameter degeneracies formed by other observa-
tions as the ones mentioned. Therefore, gravitational wave standard sirens are of
great importance for the future accurate measurement of cosmological parame-
ters. In this part of the chapter, we are going only to develop the use of the first
two kinds of observations.

2 This word in the coloquial language also can be replaced by likelihood –do not misunderstood with the

function L. Or simple we can called as samplers.
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6. Supernovae sampler

Along the ninety years, since their discovery, Type IA supernovae (SNIa) have
been the proof of the current cosmic acceleration. The surveys have been changing
given us a large population of observations, from Union 2.13 to the Joint LightCurve
Analysis [21, 22], the data sets have been incrementing observations and also their
redshift range. Currently, the Pantheon sampler, which consists of a total 1048
Type Ia supernovae (SNIa) in 40 bins [14] compressed, is the largest spectroscopi-
cally confirmed SNIa sample to date. This latter characteristic makes this sample
attractive to constrain with considerably precision the free cosmological parameters
of a specific model.

SNIa can give determinations of the distance modulus μ, whose theoretical
prediction is related to the luminosity distance dL according to:

μ zð Þ ¼ 5 log
dL zð Þ

1Mpc

� �

þ 25, (15)

where the luminosity distance is given in units of Mpc. In the standard statistical
analysis, one adds to the distance modulus the nuisance parameter μ0, an unknown
offset sum of the supernovae absolute magnitude (and other possible systematics),
which is degenerate with H0.

Now, the statistical analysis of the this sample rests on the definition of the
modulus distance as:

μ z j, μ0
� �

¼ 5 log 10 dL z j,Ωm; θ
� �	 


þ μ0, (16)

where dL z j,Ωm; θ
� �

is the Hubble-free luminosity distance:

dL z,Ωm; θð Þ ¼ 1þ zð Þ

ðz

0
dz0

1
E z0,Ωm; θð Þ

: (17)

With this notation, we expose the different roles of the several cosmological
parameters appearing in the equations: the matter density parameter Ωm appears
separated as it is assumed to be fixed to a prior value, while θ is the EoS parameters
wi. These later are the parameters that we will be constraining by the data. The best
fits will be obtained by minimising the quantity [46–50]:

χ2SN μ0, θð Þ ¼
X

N SN

j¼1

μ z j,Ωm; μ0, θ
� �� �

� μobs z j

� �

Þ2

σ2μ,j
, (18)

where σ2μ,j are the measurement variances. And nuisance parameter μ0
encodes the Hubble parameter and the absolute magnitude M and has to be
marginalised over.

From now on, we will assume spatial flatness; therefore, the luminosity distance
is related to the comoving distance D via the equation

dL zð Þ ¼
c

H0
1þ zð ÞD zð Þ, (19)

where c is the speed of light, so that, using Eq. (15) we can obtain

3 http://supernova.lbl.gov/Union/
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D zð Þ ¼
H0

c
1þ zð Þ�110

μ zð Þ
5 �5: (20)

The normalised Hubble function E zð Þ can be obtained by taking the inverse of
the derivative of D zð Þ with respect to the redshift D zð Þ ¼

Ð z
0H0d~z=H ~zð Þ. An usual

alternative, instead of using the full set of parameters for this sampler, is to use the
Pantheon plugin for CosmoMC to constrains cosmological models (something
similar as in the case of Joint Light Curve Analysis sampler [22]).

Since we are taking nuisance parameter M in the sample, we choose the respec-
tive values of μ0 from a statistical analysis of the Λ CDM model with Pantheon
sample obtained by fixing H0 to the Planck value given in [51]. It is common to
perform this kind of fit using computational tools that can run a standard MCMC
chains. In cosmology—at least at the moment this text is writing—several codes
have been implemented in order to perform the statistical fit of this parameter. The
lector can explore the tool called MontePython code4 and run a standard MCMC for
M using the model of their preference. As an example, if we run a Λ CDM model
with this supernovae sample, the mean value obtained will be μ0 ¼ �19:63.

7. Baryon acoustic oscillation sampler

As a standard ruler, these astrophysical observations can contribute important
features by comparing the data of the sound horizon today to the sound horizon at
the time of recombination (extracted from the CMB anisotropy data). Usually, the
baryon acoustic distances are given as a combination of the angular scale and the
redshift separation.

To define these quantities we require a relationship via the ratio:

dz �
rs zdð Þ

DV zð Þ
, with rs zdð Þ ¼

c

H0

ð

∞

zd

cs zð Þ

E zð Þ
dz (21)

where rs zdð Þ is the comoving sound horizon at the baryon dragging epoch,

rs zdð Þ ¼
c

H0

ð

∞

zd

cs zð Þ

E zð Þ
dz , (22)

and zd is the drag epoch redshift with c2s ¼ c2=3 1þ 3Ωb0=4Ωγ0
� �

1þ zð Þ�1
h i

as

the sound speed with Ωb0 and Ωγ0, which are the present values of baryon and
photon parameters, respectively.

We define the dilation scale as:

DV z,Ωm;w0,w1ð Þ ¼ 1þ zð Þ2D2
A

cz

H z,Ωm;w0,w1ð Þ

� �1=3

, (23)

where DA is the angular diameter distance given by

DA z,Ωm;w0,w1ð Þ ¼
1

1þ z

ðz

0

cd~z
H ~z,Ωm;w0,w1ð Þ

: (24)

4 https://monte-python.readthedocs.io/en/latest/
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Using the comoving sound horizon, we can relate the distance ratio dz with the
expansion parameter h (defined such that H≐100h) and the physical densities Ωm

and Ωb. Therefore, we have

rs zdð Þ ¼ 153:5
Ωbh

2

0:02273

 !�0:134
Ωmh

2

0:1326

 !�0:255

Mpc, (25)

with Ωm ¼ 0:295� 0:304 and Ωb ¼ 0:045� 0:00054 [22]. As we mentioned
above, unfortunately, so far we have a very low data population of this sampler.
Moreover, as an example for this text, we employed compilations of three current
surveys: dz z ¼ 0:106ð Þ ¼ 0:336� 0:015 from six-degree Field Galaxy Survey
(6dFGS) [52], dz z ¼ 0:35ð Þ ¼ 0:1126� 0:0022 from Sloan Digital Sky Survey
(SDSS) [53] and dz z ¼ 0:57ð Þ ¼ 0:0726� 0:0007 from Baryon Oscillation Spectro-
scopic Survey (BOSS) with high-redshift CMASS [54].

We can also, add to the full sample three correlated measurements of
dz z ¼ 0:44ð Þ ¼ 0:073, dz z ¼ 0:6ð Þ ¼ 0:0726 and dz z ¼ 0:73ð Þ ¼ 0:0592 from the
WiggleZ survey [55], which has the inverse covariance matrix:

C�1
WiggleZ ¼

1040:3 �807:5 336:8

�807:5 3720:3 �1551:9

336:8 �1551:9 2914:9

0

B

@

1

C

A
(26)

In order to perform the χ2-statistic, we define the proper χ2 function for the BAO
data as

χ2BAO θð Þ ¼ XT
BAOC

�1
BAOXBAO (27)

where XBAO is given as

XBAO ¼
rs zdð Þ

DV z,Ωm;w0,w1ð Þ
Þ � dz zð Þ

� �

(28)

Then, the total χ2BAO is directly obtained by the sum of the individual quantity by
using Eq. (27) in

χ2BAO�total ¼ χ26dFGS þ χ2SDSS þ χ2BOSSCMASS þ χ2WiggleZ: (29)

8. How to deal with Bayesian statistics

Now, we are ready to introduce how to extrapolate the above frequentist ana-
lyses to the Bayesian field [56]. The important difference between both statistics is
that in the first one we are dedicated in work with a standard χ2 fit, while in the
second one, we are taking into account the following idea: given a specific set of
cosmological values (the priors), which are the probability of a second set of values
to fit the hypothesis [57–60].

The above idea is what we call a Bayesian model selection, which methodology
consist in describe the relationship between the cosmological model, the astrophys-
ical data and the prior information about the free parameters. Using Bayes theorem
[61], we can update the prior model probability to the posterior model probability.
However, when we compare models, the evidence function is used to evaluate the
model’s evolution using the data at hand.

8

Cosmology 2020 - The Current State



We define the evidence function as:

ℰ ¼

ð

L θð ÞP θð Þdθ, (30)

where θ is the vector of free parameters (which for the dark energy models
presented in the above sections, will be given by the wi free parameters). P θð Þ is the
prior distribution of these parameters.

From a computational point of view, and due to the large population of data and
the model used, Eq. (30) can be difficult to calculate due that the integrations can
consume to much computational time when the parametric phase space is large.
Nevertheless, even when several methods exist [62, 63], in this text, we present test
with a nested sampling algorithm [64] which has proven practicable in cosmology
applications [65].

Once we obtain the evidence, we can therefore calculated the logarithm of the
Bayes factor between two models Bij ¼ ℰi=ℰ j, where the reference model (ℰi) with
highest evidence can be the Λ CDM model and impose a flat prior on H0, i.e., we
can use an exactly value of this parameter.

The interpretation of the results of this ratio can be described by a scale known
as Jeffreys’s scale [66], which easily can be explained as follows:

• if lnBij < 1, there is no significant preference for the model with the highest
evidence;

• if 1< lnBij < 2:5, the preference is substantial;

• and, if 2:5< lnBij < 5, it is strong; if lnBij > 5, it is decisive.

9. About deep learning in cosmology

Although Bayesian evidence remains the preferred method compared with
information criterions and Gaussian processes on the literature, a complete Bayes-
ian inference for model selection—this to have a scenario where we can discrimi-
nate a pivot model from a hypothesis—is very computationally expensive and often
suffers from multi-modal posteriors and parameter degeneracies. As we pointed out
in the later section, the calculation of the evidence leads to large time consumption
to obtain the final result.

As the study of the Large Scale Structure (LSS) of the universe indicates, all our
knowledge relies on state-of-the art cosmological simulations to address a number
of questions by constraining the cosmological parameters at hand using Bayesian
techniques. Moreover, due to the computational complexity of these simulations,
some studies look remains computationally infeasible for the foreseeable future. It is
at this point where computational techniques as machine learning can have a num-
ber of important uses, even for trying to understand our universe.

The idea behind the machine learning is based on considering a neural network
with a complex combination of neurons organised in nested layers. Each of these
neuron implements a function that is parameterised by a set of weights W. And
every layer of a neural network thus transforms one input vector—or tensor
depending the dimension—to another through a differentiable function. Theoreti-
cally, given a neuron n, it will receive an input vector and the choice of an activation
function An, the output of the neuron can be computed as:
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h< t> ¼ An h< t�1> �Wh þ x< t> �Wx þ ba
� �

, (31)

yt ¼ An ht �Wy þ by
� �

, (32)

where h< t> is called the hidden state, An is the activation function, and yt is the
output.

The goal is to introduce a set of data in order to train this array, and therefore,
the architecture can learn to finally give an output set of data. For example, the
network can learn the distribution of the distance moduli in the dark energy
models, then feed the astrophysical samplers (surveys) to the network to recon-
struct the dark energy model and then discriminate the most probable model. 5

Moreover, while neural networks can learn complex nested representations of
the data, allowing them to achieve impressive performance results, it also limits our
understanding of the model learned by the network itself. The choice of an archi-
tecture [67] can have an important influence on the performance of the neural
network. Some designs have to made concerning the number and the type of layers,
as well as the number and the size of the filters used in each layer. A convenient way
to select these choices is typically through experimentation—which for our uni-
verse, we will need these to happen first—as it is, we can select the size of the
network, which depends on the number of training test as networks with a large
number of cosmological parameters likely to overfit if not enough training tests are
available.

At the moment these lines are writing, a strong interest over this kind of algo-
rithm is not only bringing new opportunities for data-driven cosmological discovery
but will also present new challenges for adopting machine learning—or, in our case,
a subset of this field, deep learning—methodologies and understanding the results
when the data are too complex for traditional model development and fitting with
statistics. A few proposals in this area have been done to explode the deep learning
methods for measurements of cosmological parameters from density fields [68] and
for future large-scale photometric surveys [69].

10. Deep learning for dark energy

The first target in order to start training an astrophysical survey is to design an
architecture with an objective function of neural networks that can have many
unstable points and local minima. This architecture makes the optimisation process
very difficult, but in real scenarios [70, 71], high levels of noise degrade the training
data and typically result in optimisation scenarios with more local minima and
therefore increase the difficulty in training the neural network. It can thus be
desirable to start optimising the neural network using noise-free data which typi-
cally yield smoother scenarios. As an example, in Figure 1, we present a standard
network using an image of a cosmological simulation (the data) and then divided an
array of several layers to finally extract the output cosmological parameters value
[72, 73]. Each neuron use a Bayesian process to compute the error propagation as it
is done in the standard inference analyses.

We can describe a quickly, but effective, recipe to develop a Recurrent Neural
Network with a Bayesian computation training [29, 74–78] in the following steps:

5 In this text we are employing a Recurrent Neural Network. There are several in this machine learning

field e.g. in [57] and references therein.
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• Step 1. Construction of the neural network. For a Recurrent Neural Network
method, we can choose values that have one layer and a certain number of
neurons (e.g., you can start with 100 for a supernovae sampler).

• Step 2. Organising the data. We need to sort the sampler from lower to higher
redshift in the observations. Afterwards, we re-arrange our data using the
number of steps (e.g., try with four steps numbered as xi for a supernovae
sampler).

• Step 3. Computing the Bayesian training. Due to the easiness of neural
networks to overfit, it is important to choose a mode of regularisation. With a
Bayesian standard method to compute the evidence, the algorithm can
calculate errors via regularisation methods [74]. Finally, over the cost function
we can use Adam optimiser.

• Step 4. Training the entire architecture. It is suitable to consider a high number
of epochs (e.g., for a sampler as Pantheon, you can try with 1000 epoch per
layer). After the training, it is necessarily to read the model and apply more
times the same dropout to the initial model. The result of this step is the
construction of the confidence regions.

• Step 5. Computing modulus distance μ zð Þ for each cosmological model. Using
the definitions of E zð Þ, we can compute μ zð Þ by using a specific dark energy
equation of state in terms of z and then integrating them.

• Step 6. Computing the best fits. Finally, the output values can be obtained by
using the training data as a simulated sample. We use the publicly codes
CLASS6 and Monte Python7 to constrain the models as it is standard for usual
Bayesian cosmology.

• The results of this recipe can be seeing in Figure 2.

Figure 1.
A deep learning architecture for dark energy.

6 https://github.com/lesgourg/class_public
7 https://github.com/baudren/montepython_public
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11. Conclusions

In this chapter, we discuss how to derive the equations of state for a specific dark
energy model. Also, we studied the standard models of dark energy in order to
project the cosmic acceleration according to the current data available in the litera-
ture. It is important to remark that each Bayesian statistics performed will depend
solely on the data used to develop them. More the data, better the statistics. So we
expect that future surveys will improve the constrains over the cosmological
parameters, not only at background level, but also at perturbative level.

The exploration of these astrophysical surveys has reached a new scenario in
regards to the machine learning techniques. These kind of techniques allow to
explore—without technical problems in the astrophysical devices—scenarios where
the pivot model of cosmology, ΛCDM, a theoretical framework that accurately
describes a large variety of cosmological observables, from the temperature anisot-
ropies of the cosmic microwave background to the spatial distribution of galaxies.
This model has a few free parameters representing fundament quantities, like the

Figure 2.
Statistical contours levels for Λ CDM using observational data (red colour) and training deep learning data
(blue colour).
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geometry and expansion rate of the Universe, the amount and nature of dark
energy, and the sum of neutrino masses. Knowing the value of these parameters will
improve our knowledge on the fundamental constituents and laws governing our
universe. Thus, one of most important goals of modern cosmology is to constrain
the value of these parameters with the highest accuracy. Therefore, as an extrapo-
lation between the ideas of the standard cosmostatistics and the use of machine
learning techniques will improve even better the constrain of the cosmological
parameters without to be worried about the intrinsic uncertainties of the data [79].
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