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Chapter

Biochar-Assisted Wastewater 
Treatment and Waste Valorization
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Abstract

Biochar is the solid byproduct of pyrolysis, and its cascading use can offset 
the cost of the production and its use in application such as soil remediation. A 
wide variety of research on biochar has highlighted its ability to absorb nutrients, 
metal and complex compounds, filter suspended solids, enhance microorganisms’ 
growth, retain water and nutrients as well as increasing the carbon content of the 
soil. Besides, sustainable biochar systems are an attractive approach for carbon 
sequestration and total waste management cycle. The chapter looks into such 
cascading use of biochar in wastewater treatment for recovering nutrients and 
improving the efficiency of activated sludge treatment and anaerobic digestion for 
producing biosolid with enhanced soil amendment properties.

Keywords: biochar, wastewater treatment, activated sludge treatment, anaerobic 
digestion, nutrient recovery, waste valorization

1. Introduction

Today, the global population continues to grow by 83 million annually and is 
predicted to be 9.8 billion in 2050 [1]. This increase in population will lead to higher 
demands of food, water, and energy, which have already been constrained due to the 
competing needs for limited resources in many parts of the world [2]. The chal-
lenges presented by climate change, pollution, and developing economy are posing 
significant pressure on food, water, and energy systems [3]. Efficient and integrated 
management of energy, food, and water resources could help address several of the 
biggest global challenges, such as climate change, sustainable economy, food secu-
rity, environmental and social security [4, 5]. In the future, we will need increased 
food production, clear water sources, as well as alternative energy options with mini-
mum resource utilization and ideally decreasing environmental impacts [6]. Work is 
underway to improve the food production chain as well as develop new technologies 
for renewable energy. So far less focus has been given to the water, especially to the 
management of the wastewater. There is a need for shifting the paradigm in the 
case of wastewater management from treatment and disposal to reuse, recycle, and 
resource recovery. With growing water scarcity and the fact that uncontrolled dis-
posal of wastewater to the freshwater system is causing depletion of the system also 
stresses toward a change in mindset about wastewater management. This approach 
will prevent detrimental impacts on human health and ecosystem caused by the cur-
rent handling methods. The next step toward a sustainable future will be wastewater 
treatment serving multiple purposes of treatment and recovery of resources like 
water, nutrient, and energy. The efficient wastewater management approach will see 
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a cascaded benefit in other sectors including production of fertilizers such as nitro-
gen and phosphorus. Phosphorus is obtained from ore called phosphate rocks. The 
quality and accessibility of currently available phosphate rock reserves are declining, 
and the cost to mine, refine, store, and transport them is rising [7, 8]. Similarly, the 
production of nitrogen and other mineral fertilizers is energy intensive as well as 
contributes to environmental pollution [3, 9]. The nitrogen fertilizer can leach to 
nearby water bodies leading to the phenomenon of eutrophication. The richness of 
nutrients in the water results in excessive growth of macroalgae and could lead to 
anoxic events and loss of aquatic system. Recovery of these nutrients from waste-
water helps to close the cycle and reduce the amount of chemical fertilizer, directly 
contributing to the sustainability of food production.

One of the first indications of intentional nutrient recycling is documented 5000 
years ago in rural Asia, where human excreta was used for fertilization of fields 
called “night soil” [10]. In the nineteenth and twentieth century with the industrial 
revolution, the population density became high, which gave rise to “Sanitation 
Revolution,” a transition from land-based to water-based disposal of human 
wastes. This disposal system changed the nutrient cycle from reuse to complete 
discard. Following the Industrial and Sanitation Revolutions, the Green Revolution 
that reformed agriculture largely abandoned organic fertilizers and put forth the 
mineral fertilizers [10, 11]. Furthermore, owing to the excessive population growth, 
producing enough food with only organic sources of plant nutrients has become 
impossible. Therefore, the need for mineral fertilizers is a true fact. Thus, many 
urban areas have dedicated wastewater treatment plant to remove the nuisance of 
human waste. But, it is becoming evident that future changes, particularly those 
associated with urbanization and population growth-related increase in volume of 
wastewater, add more stress to the wastewater system performance [12].

The greater dependency on fossil fuels in every sector is heavily contributing 
to global warming and climate change [13]. As an alternative, abundant biomass 
could play an essential role in reducing the dependency on fossil fuel as well as 
contribute toward sustainable development. Pyrolysis of biomass produces biochar 
and bio-oil. The bio-oil could be used as fuel to substitute the petroleum products 
with some upgrading that includes catalytic esterification and hydrogenation. The 
biochar could be used for energy and soil application [14]. Soil application helps 
in sequestration of carbon dioxide and subsequently supports food production. 
At present, the biochar application in soil remediation is not cost-effective. The 
financial feasibility could be improved by developing a cascaded use of biochar, as 
discussed in this chapter. The inherent properties of biochar make it suitable for 
(a) recovering nutrients from the wastewater, (b) improving the activated sludge 
treatment to reduce the energy use for aeration and to improve the settling ability of 
sludge, (c) increasing the energy recovery from sludge through anaerobic diges-
tion, and (d) enhancing the quality of the biosolids for soil application. There are 
reports of biochar application having agronomic benefits in fertilizer management, 
yield, and soil biota [15–20]. Biochar, as a sound absorbent, also holds promise for 
low-cost wastewater treatment as an alternative to activated carbon [21–24]. The 
integrated use of biochar in wastewater treatment addresses the current issues 
with the management of wastewater. However, the benefit of using biochar varies 
with its type and characteristics, which depends on the biomass, and the pyrolysis 
conditions [25].

This chapter provides insights on the use of biochar in a wastewater treatment 
process to enhance the treatment as well as recover valuable byproducts. The chap-
ter will discuss biochar production and properties, mechanisms involving removal 
of organic and inorganic compounds from the effluent phase, and role in activated 
sludge treatment and anaerobic digestion.
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2. Biochar properties for wastewater treatment

Biochar is a carbon-rich solid material produced from biomass through a 
thermochemical process called pyrolysis. During pyrolysis, lignin, cellulose, 
hemicellulose, fat, and starch in the feedstock are thermally broken down forming 
three products: biochar (solid), bio-oil (partly condensed volatile matter), and 
non-condensable gases (CO2, CO, CH4, and H2) [26, 27]. The bio-oil and gases can 
be captured to produce energy and depending on the feed valuable coproducts like 
wood preservatives, food flavoring, adhesive, or biochemical compounds [28]. The 
yield of biochar and the properties, however, depends on the pyrolysis condition. 
Slow pyrolysis at moderate temperature (350–500°C) and slow heating rate results 
in higher yield (30%) of biochar than around 10% or less yield with fast pyrolysis 
(600–700°C and fast heating rate) or gasification (temperature 700°C or above) 
[29]. The feedstock type and pyrolysis condition used during the production of 
biochar notably change the physiochemical properties such as surface area, polarity, 
atomic ratio, pH, and elemental composition [25, 30, 31]. These properties deter-
mine the effectiveness of biochar in wastewater treatment.

Biochar has wide applications in water and wastewater treatment because of its 
distinctive characteristics, for example, adsorption capacity, specific surface area, 
microporosity, and ion exchange capacity [30, 32]. The removal mechanisms of 
different pollutants are governed by their interactions with various attributes of 
biochar, which depends on pyrolysis temperature and feedstock type [33]. Pyrolysis 
temperature greatly affects the properties of biochar. The increase in pyrolysis 
temperature results in higher carbon content, hydrophobicity, aromaticity, surface 
area, and microporosity in biochar [34]. Similarly, the pH of the biochar increases 
with increasing pyrolysis temperature due to enrichment of ash content in the 
biochar [35, 36]. High-temperature (>500°C) biochar has low polarity and acid-
ity due to loss of O- and H-containing functional groups [34]. Lower pyrolysis 
temperature (<500°C) facilitates partial carbonization, thus yielding biochar with 
smaller pore size, lower surface area, and high O-containing functional groups [36]. 
Lower temperature biochar contains a higher content of dissolved organic carbon, 
relatively low polarity and C/N ratio [30, 34, 37].

Biochar often compromises of both positively and negatively charged surfaces 
(zwitterionic) [34, 35]. The negatively charged functional groups contribute to 
cation exchange capacity (CEC) whereas anion exchange capacity (AEC) is also 
exhibited by O-containing functional groups (oxonium heterocycles) in biochar 
[36, 38]. Oxygen (O) containing alcohol, carbonyl, and carboxylate functional 
groups are generally believed to contribute to biochar cation exchange capacity 
because they carry a negative charge and serve as Lewis bases for the sorption of 
cations. Whereas, it is believed that oxonium functional groups contribute to pH-
independent anion exchange and that both pyridinic functional groups and nonspe-
cific proton adsorption by condensed aromatic rings contribute to pH-dependent 
anion exchange capacity in biochars [38].

Biochar derived from woody biomass and crop residues has a higher surface area 
compared to that of solid municipal wastes and animal manure [30]. Apart from 
the usual pyrolysis method, different engineering methods have been developed 
and used to expand biochar’s applications. Engineered biochar is the derivative of 
biochar that is modified by physical, chemical, and biological methods to improve 
its physical, chemical, and biological properties (e.g., specific surface area, poros-
ity, cation exchange capacity, surface functional group, pH etc.) and its adsorption 
capacity [37, 39, 40]. Some of the modification includes anaerobic digestion of 
feedstock before pyrolysis, steam/gas activation, pyrolysis using microwave heat-
ing, ball milling, magnetic modification, chemical modification using hydrogen 
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peroxide, alkali or acid, and impregnation/coating with chemicals [41]. The detail 
about the modified biochar for wastewater treatment will be discussed in the fol-
lowing sections.

2.1 Biochar modification

Researchers have discussed several methods for modifying the properties of 
biochar [42]. These methodologies include treatments with steam, acids, bases, 
metal oxides, carbonaceous materials, clay minerals, organic compounds, and 
biofilms [43].

2.1.1 Physical activation of biochar

Physical activation methods such as steam activation involve high-temperature 
steam forced through the pores of the biochar. Steam activation, which is car-
ried out after pyrolysis, is a common modification method used to increase the 
structural porosity of the biochar and remove impurities such as products of 
incomplete combustion. According to [44], higher water flow rates and longer 
activation times at 800°C increased the sorption of Cd, Cu, and Zn on the sur-
face of biochar from poultry manure feedstocks pyrolyzed at 700°C. In another 
study, comparison of Cu2+ adsorption for biochar from Miscanthus before (500°C 
pyrolysis) and after (800°C) steam activation showed no significant change [45]. 
It was found that steam activation of the biochar increased the surface area and 
aromaticity alongside a decrease in the abundance of functional groups [45]. 
Similarly, steam-activated biochar from pine sawdust increased the surface area 
but had little effect on the surface functional group as a result of which adsorp-
tion capacity of biochar for phosphate was reduced due to electrostatic repulsion 
by the negatively charged surface of biochar [46]. The steam-activated invasive 
plant (Sicyos angulatus L.)-derived biochar produced at 700°C showed 55% 
increase in sorption capacity of veterinary antibiotics (sulfamethazine) compared 
to that of nonactivated biochar produced at the same temperature [47]. Hence, 
steam activation could be a process for increasing the porosity and surface area of 
biochar along with aromaticity to obtain better adsorption of inorganic material 
in the wastewater.

2.1.2 Chemical activation using acidic and alkaline solutions

The biochar activation using acidic solutions forms carboxylic groups on the 
biochar surface [48] and develops micropores, thus increasing the surface area [49]. 
The increase of oxygenated functional groups on biochar surfaces increases the 
potential of biochar to bind positively charged pollutants through specific adsorp-
tion chemically. The pH dependence of Cu2+ sorption capacity for HNO3-activated 
cactus fiber biochar indicated chemical sorption on oxygen-containing functional 
groups on the biochar surface [48]. Higher O/C ratio in the post-activation of rice 
straw with H2SO4 and HNO3 showed evidence of oxygen-containing functional 
group incorporated into the carbon structure [50]. Acid treatment of pine tree 
sawdust with diluted H3PO4 prior to pyrolysis increased the surface area, the total 
pore volume, and volume of micropores area along with P-O-P incorporation in the 
C structure [51]. This increased the Pb sorption capacity of the phosphoric-treated 
biochar by 20% in comparison to a nontreated sample, mainly due to phosphate 
precipitation and surface adsorption [51]. Similarly, almost double increase in 
cation exchange capacity was observed for pinewood biochar treated with 30% 
H2O2 because the oxygen-containing functional groups in the surface of biochar, 
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which were more abundant in the activated biochar, exchanged with cations 
in solution [52]. Treating a hydrochar, a carbon-enriched solid produced from 
hydrothermal carbonization of peanut hull, with a 10% H2O2 solution increased Pb 
sorption capacity compared to the unmodified hydrochar, which can be attributed 
to a greater abundance of carboxyl functional groups that can form complexes with 
Pb [53]. However, the introduction of acid or oxidizing agents dissolves mineral 
components (CO3

2−, SiO4
2−, PO4

3−) in the biochar structure and removes them from 
the biochar matrix. These minerals in biochar are particularly important for the 
removal of metal cations from water due to precipitation [54], the affinity of which 
could be reduced by the acid treatment.

Activation of biochar using alkali (most commonly KOH and NaOH) increases 
adsorption by increasing porosity, surface and oxygenated functional group at the 
surface. Oxygenated functional groups provide proton-donating exchange sites 
where cation such as Pb2+ adsorbs chemically [55]. The activation of ipomoea plant 
biochar with KOH, followed by pyrolysis (350–550°C) demonstrated an increase 
adsorption of Cd from aqueous solution [56]. Further evidence of kinetics of 
sorption fitting a pseudo-second-order model and thermodynamic studies indicat-
ing spontaneous endothermic process showed that Cu sorption on KOH-activated 
biochar was due to chemical adsorption [57]. The adsorption capacity of As(V) on 
municipal solid waste biochar was increased by 1.3 times after activation with 2 M 
KOH [58]. It can be concluded that activation by alkali greatly enhanced the surface 
area and altercation of the functional group at the surface.

2.1.3 Biochar-based composites

The biochar composites are prepared by embedding different materials into the 
biochar structure pre- or post-pyrolysis. Generally, biochar has a higher surface 
area, high pH, and a negative surface charge. This facilitates specific adsorption of 
metal ions via oxygenated functional groups, electrostatic attraction to aromatic 
groups, and precipitation on the mineral ash components of the biochar. But at the 
same time biochar is usually a poor adsorbent for oxy-anions contaminants like 
NO3

−, PO4
3−, and AsO4

3− [44]. This can be improved by the homogenous spread of 
metal oxide on biochar surfaces. It can be done by soaking biochars or the feed-
stocks in a solution of metal nitrate or chloride salt solution (common examples 
FeCl3, Fe, Fe(NO3)3, and MgCl2) and heated under atmospheric condition within 
a temperature range of 50–300°C. This process ensures removal of nitrite and 
chlorine leaving behind metals in the biochar matrix. Ca-, FeO-, and Fe3+-modified 
biochar from soaked rice husk and municipal biomass in CaO, iron powder, and 
FeCl3 respectively, increased the capability of biochar to remove As(V), but not as 
high for Cr(VI), from aqueous solution [59]. Taking into consideration that one of 
the main mechanisms for Cr(VI) removal is the electrostatic interaction to the posi-
tively charged functional groups on the surface of adsorbents, high Cr(VI) removal 
is observed at low pH values [60]. It is rather possible that the high pH values of 
the RH-Ca2þ, RH-Fe0, and SW-Fe0 solutions are related to the deprotonation of 
their functional groups and the repelling of the negatively charged Cr(VI) [60]. 
Similarly, a 20-time increase in the sorption of As(V) was observed when corncob 
biochar was modified with Fe(NO3)3 [61]. Despite the lower surface area, modifica-
tion of biochars from garden wood waste and wood chips as well as corncob showed 
the increased PO4

3− sorption by a factor of 12–50% [58]. Further research has been 
carried out for preparing biochar-based composites by impregnation or coating the 
surface of the biochar with metal oxides of Al, Mn, and Mg [58]; clay minerals [62]; 
complex organic compounds, such as chitosan [63] or amino acids [64]; or inocula-
tion with microorganisms [65].
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Thus, the selection of biochar and modification methods for the application in 
wastewater treatment requires a considerable understanding of the biochar proper-
ties and mechanism by which it supports the treatment process at different stages of 
wastewater treatment.

3. Role of biochar use in wastewater treatment process

Biochar could be used at different stages of wastewater treatment (Figure 1) 
to improve the treatment efficiency and recovery of value-added byproducts. 
Biochar application in wastewater treatment could be governed by the mechanism 
of adsorption, buffering, and immobilization of microbial cells. If used on the 
treated effluents, suitably modified biochar could efficiently adsorb nutrients like 
nitrogen and phosphorus, which can later be used as a nutrient-enriched material 
for soil remediation. When used in the activated sludge treatment process, biochar 
could play a role for improving the treatment and settling ability of the sludge by 
adsorption of inhibitors and toxic compounds or provide a surface for immobiliza-
tion of microbes. Addition of biochar in the biological system could eventually help 
to improve the soil amendment properties of the biosolid as well. As interest grows 
in the use of biochar in soil applications, its use in wastewater treatment could 
expand the value chain and create additional economic benefits [66]. The following 
section will discuss the role of biochar for various applications in the wastewater 
treatment plant.

3.1 Organic pollutant removal

In recent years, significant amount of research has been done to examine 
the application of biochar for removal of various organic compounds from 
water, which includes agrochemicals, antibiotics/drugs, polycyclic aromatic 

Figure 1. 
Use of biochar at different stages of wastewater treatment.
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hydrocarbons (PAHs), volatile organic compounds or (VOCs), cationic aromatic 
dyes [67–70]. Similarly, removal of organic compounds present in specific waste 
streams such as estrogen compounds in animal manure and sewage, inhibitory 
compounds of biomass degradation (furfural, hydroxymethylfurfural, phenolic 
compounds), and toxic organic compounds in landfill leachate has been studied 
using biochar [71, 72]. Figure 2 schematically shows different interactions of the 
organic pollutant with biochar.

Biochar produced at higher pyrolysis temperature is found better for removal of 
nonpolar organic compounds due to higher surface area and microporosity [30, 73]. 
In contrast, biochar produced at a temperature below 500°C contains more O- and 
H-containing functional groups; thus, they are likely to have a high affinity to polar 
organic compounds [26]. For example, rice husk and soybean-derived biochar 
(600–700°C) facilitates removal of nonpolar carbofuran (pesticide) and trichloro-
methylene (VOC) from contaminated water [26]. Efficient removal of pyrimethanil 
and diesopropylatrazine (fungicide/pesticide) was observed with red-gum wood 
chips and broiler litter-derived biochar at temperature >700°C, whereas the same 
biochar at temperature <500°C was inefficient [74, 75]. On the other hand, removal 
of polar insecticide and herbicide like 1-naphthol, norflurazon, and fluridone was 
observed with biochar produced at <300°C, due to interaction of pollutant and the 
functional groups of biochar [76, 77]. Likewise, higher sorption of aromatic cat-
ionic dyes like methyl-violet and methyl-blue was observed with biochar containing 
more O- and H-functional groups (<400°C) but the mechanism was highly depen-
dent on pH [70, 78]. The sorption of polar antibiotic sulfamethazine (SMZ) by 
hardwood/softwood-derived biochars (produced at 300–700°C) has pH-dependent 

Figure 2. 
Biochar interaction with organic and inorganic compounds in wastewater (adapted from Ahmad et al. [33]).
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interactions [79]. It can be said that pH is the most important factor for biochar 
interactions and removal of polar organic pollutants.

3.2 Inorganic pollutant removal

Inorganic pollutant in wastewater includes heavy metals (Cr, Cu, Pb, Cd, Hg, 
Fe, Zn, and As ions) and compounds like nitrate (NO3), nitrite (NO2), ammonium 
(NH4), phosphorus (P), and hydrogen sulfide (H2S) that cause significant risk to 
public health and environment [80]. Biochar produced at lower pyrolysis tem-
perature (<500°C) has properties that are better suited for removal of inorganic 
compounds. The chemical composition and the morphological structure play an 
important role in the sorption nature of biochar [81]. Figure 2 summarizes the 
interaction methods for inorganic pollutant and biochar.

3.2.1 Heavy metals

Biochar with high organic carbon content (at non-carbonized fraction), spe-
cific porous structure, and numerous functional groups interacts with heavy met-
als in many ways [82]. The sorption of heavy metals by biochar is mainly by surface 
interaction through ion exchange and complexation between biochar functional 
groups (e.g., OH, COOH, R-OH) and heavy metal ions [83, 84], moreover forma-
tion of metal precipitates with inorganic constituents [83–85] and coordination of 
metal ions with π electrons (C〓C) of biochar [74]. The physiochemical proper-
ties of biochar affect the adsorption throughout its matrix and are dependent on 
pyrolysis temperature, feedstock type, pH, and application rate. Cu2+ showed high 
affinity toward COOH▬ and OH▬ groups of hardwood and crop-derived biochars 
with dependency on pH and feedstock types [86]. Similarly, sida hermaphrodita-, 
guayule shrub-, soybean straw-, and wheat straw-derived biochars were effective 
for removal of Cd2+, Ni2+, and Zn2+ along with Cu2+ [87]. The higher efficiency of 
the above-mentioned biochar was due to high C and O contents, high O/C molar 
ratio, and polarity index, which were mainly regulated by pH [88, 89]. Alkaline 
biochars derived from various agricultural residues (e.g., soybean straw, corncob, 
cocoa husk, corn stover, switchgrass) and manure were efficient for Hg2+ removal. 
Animal manure-derived and cocoa husk biochar was highly effective for Hg2+ 
removal due to high sulfur (SH groups and sulfate) to precipitate 90% of Hg2+ 
as Hg(OH)2 or HgCl2 mainly through coprecipitation with anions (Cl, O, S) of 
biochar [73, 90].

For Cd2+, Zn2+, Pb2+, and Cu2+ dosage of biochar also affects the removal of 
heavy metals. The higher removal efficiency is observed with increasing biochar 
loading in the aqueous system, due to increased pH and surface area with biochar 
addition [54, 91].

3.2.2 Nitrogen and phosphorus

The high surface charge density allows biochars to retain cations by cation 
exchange and the high surface area, internal porosity, and presence of both polar 
and nonpolar surface sites on biochar enable it to adsorb nutrients [92]. In the 
limited studies carried out without soil, biochar has shown the absorption NH4

−, 
NO3

−, and PO4
3− despite the different charges and properties of these nutrients [93]. 

Some examples include digested sugar beet tailing biochar pyrolyzed at 600°C that 
adsorbed PO4 ions most likely in binding sites contained in colloidal and nano sized 
MgO particles on the biochar surface [94]. Also, orange peel biochars pyrolyzed 
between 250 and 700°C removed between 8 and 83% of phosphate from solution 
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[95]. NH4 was adsorbed to biochars produced from rice husk [96] and a mixture 
of tree trunks and branches [97], albeit weakly, as the partitioning coefficients 
between water and biochar were low (Freundlich coefficients of 0.251 mg g−1). 
Similarly, NO3

− has been adsorbed to bamboo charcoal biochar in the concentration 
range of 0–10 mg L−1 [98].

3.3 Activated sludge treatment

One of the most utilized systems for treatment of municipal wastewater is 
biological treatment process like activated sludge system (ASS) because of its 
cost-effectiveness and comparatively more straightforward operation to advance 
systems. Activated sludge process is a suspended growth treatment where aerobic 
microorganism decomposes the organic matter in wastewater, which eventually 
settles as solids by gravity. Currently, increasing concerns are being raised about the 
presence of various micro-pollutants from pharmaceuticals, personal care prod-
ucts (PCPs), pesticides, disinfectants, and antiseptic in domestic and municipal 
wastewaters. These pollutants are alien to the biota in the system, and the conven-
tional treatment process often leads to inadequate removal of these compounds. 
Correspondingly, discharge requirements are currently being stringent for protec-
tion of receiving waters from possible contamination and public health hazard. 
There have been several modifications and changes in the activated sludge system 
to address the problem. One such method is AS-PACT (Activated Sludge with 
Powdered Activated Carbon Treatment) where powdered activated carbon is added 
to the aeration basin of activated sludge system. The larger surface area of carbon 
provides various benefits including adsorption of toxic substances such as phar-
maceuticals and industrial chemicals, immobilization of bacteria, and increased 
sedimentation of activated sludge [99, 100]. Such system, however, requires a 
continuous makeup of fresh carbon [101].

Despite the benefits, the higher cost of activated carbon limits its use in 
municipal wastewater treatment [101]. The biochar could be a low-cost substitute 
to activated carbon [102], but its merits are less known. The addition of biochar 
to a biological treatment system, such as within the aeration tank, could result in 
increased process stability by (a) adsorption of inhibitors (heavy metals, polycyclic 
aromatic hydrocarbon), (b) increasing the buffering capacity of the system, and (c) 
immobilization of microbial cells [103]. Limited studies done on the use of biochar 
in the aeration tank showed increased settling ability of activated sludge [104]. 
Dissolved organic matter in the biochar could also provide additional carbon to 
promote denitrification [105]. The availability of organic matter, however, depends 
on the type of biomass and pyrolysis conditions used for producing biochar. 
Furthermore, the cascading benefits of using biochar in activated sludge treatment 
could also be seen on anaerobic digestion of the sludge and in the final quality of the 
biosolids.

3.4 Anaerobic digestion

In the case of anaerobic digestion, the addition of biochar has shown increases 
in the rate and amount of biogas production [106–108]. This is attributed to the 
buffering properties of biochar, promoting methanogenesis for higher biogas yield 
[109, 110]. Several studies have suggested increases in microbial metabolism and 
growth because of the support provided by the biochar [107, 111]. The biochar could 
also play a significant role in reducing the mobility or availability of the inhibitors 
like heavy metals, pesticides, antibiotics, and other organic compounds by bind-
ing them in its porous structure and maintain proper microbial activity for the 
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digestion process [103]. Further, the adsorption of nutrients in biochar and its slow 
release increase the availability of nutrients to the soil while preventing leaching to 
surrounding water bodies, as it is prevalent in the case of biosolids [103]. Therefore, 
the addition of biochar in the biological system could eventually help to improve the 
soil amendment properties of the biosolid as well.

4. Conclusion

Biochar is a unique renewable resource, which can be used in a wide variety of 
applications from addressing various environmental problems like climate change, 
remediation of pollutants in water and soil to an alternative fuel source. The cascad-
ing use of biochar as a byproduct of pyrolysis for wastewater treatment and nutrient 
recycling can synergistically improve soil and water quality, carbon sequestration, 
greenhouse gas emissions, nutrient cycling, and fuel crisis. The approach perfectly fits 
the ideas of the circular economy: reuse and recycle of waste, keeping material and 
product in use. This approach is connected with three natural cycles: water, carbon, 
and nutrient and has a direct impact on energy, water, and food systems. While much 
work has been done in modifying the biochar for adsorption of desired organic or 
inorganic compounds, very less is known on its application in activated sludge treat-
ment, anaerobic digestion, and the overall quality of the biosolids. As the benefits of 
the integrated use of biochar in wastewater treatment to soil application is established 
in this chapter, future experimental research work could verify its effectiveness.
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Nomenclature

CO2 carbon dioxide
CO carbon monoxide
CH4 methane
H2 hydrogen
C carbon
N nitrogen
O oxygen
Cu copper
HNO3 nitric acid
H2SO4 sulfuric acid
H3PO4 phosphoric acid
Pb lead
H2O2 hydrogen peroxide
P phosphorus
Ca calcium
Mg magnesium
K potassium
Na sodium
KOH potassium hydroxide
NaOH sodium hydroxide
Cd cadmium
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FeCl3 ferric chloride
Fe iron
Fe(NO3)3 ferric nitrate
MgCl2 magnesium chloride
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Zn zinc
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Hg(OH)2 mercury hydroxide (bivalent)
S sulfur
H2S hydrogen sulfide
Cl chlorine
SH sulfanyl or thiol
E+/− ions of compound/element E
Abbreviations
CEC cation exchange capacity
AEC anion exchange capacity
PAHs polycyclic aromatic hydrocarbons
VOCs volatile organic compounds
SMZ sulfamethazine
AS-PACT Activated Sludge-Powdered Activated Carbon Treatment
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