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Chapter

Analytical Applications on Some
Hilbert Spaces
Fethi Soltani

Abstract

In this paper, we establish an uncertainty inequality for a Hilbert space H. The
minimizer function associated with a bounded linear operator from H into a Hilbert
space K is provided. We come up with some results regarding Hardy and Dirichlet
spaces on the unit disk .

Keywords: Hilbert space, Hardy space, Dirichlet space, uncertainty inequality,
minimizer function

1. Introduction

Hilbert spaces are the most important tools in the theories of partial differential
equations, quantum mechanics, Fourier analysis, and ergodicity. Apart from the
classical Euclidean spaces, examples of Hilbert spaces include spaces of square-
integrable functions, spaces of sequences, Sobolev spaces consisting of generalized
functions, and Hardy spaces of holomorphic functions. Saitoh et al. applied the
theory of Hilbert spaces to the Tikhonov regularization problems [1, 2]. Matsuura
et al. obtained the approximate solutions for bounded linear operator equations
with the viewpoint of numerical solutions by computers [3, 4]. During the last
years, the theory of Hilbert spaces has gained considerable interest in various fields
of mathematical sciences [5–9]. We expect that the results of this paper will be
useful when discussing (in Section 2) uncertainty inequality for Hilbert space H and
minimizer function associated with a bounded linear operator T from H into a
Hilbert space K. As applications, we consider Hardy and Dirichlet spaces as follows.

Let  be the complex plane and  ¼ z∈ :jzj< 1f g the open unit disk. The
Hardy space H ð Þ is the set of all analytic functions f in the unit disk  with the
finite integral:

ð2π

0
f eiθ
� ��

�

�

�

2
dθ: (1)

It is a Hilbert space when equipped with the inner product:

f , gh iH ð Þ ¼
1

2π

ð2π

0
f eiθ
� �

g eiθð Þdθ: (2)

Over the years, the applications of Hardy space H ð Þ play an important role in
various fields of mathematics [5, 10] and in certain parts of quantum mechanics
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[11, 12]. And this space is the background of some applications. For example, in
Section 3, we study on H ð Þ the following two operators:

∇f zð Þ ¼ f 0 zð Þ, Lf zð Þ ¼ z2 f 0 zð Þ þ zf zð Þ, (3)

and we deduce uncertainty inequality for this space. Next, we establish the
minimizer function associated with the difference operator:

T1f zð Þ ¼ 1

z
f zð Þ � f 0ð Þð Þ: (4)

In Section 4, we consider the Dirichlet space D ð Þ, which is the set of all analytic
functions f in the unit disk  with the finite Dirichlet integral:

ð



f 0 zð Þ
�

�

�

�

2 dxdy

π
, z ¼ xþ iy: (5)

It is also a Hilbert space when equipped with the inner product:

f , gh iD ð Þ ¼ f 0ð Þg 0ð Þ þ
ð



f 0 zð Þg0 zð Þ dxdy
π

, z ¼ xþ iy: (6)

This space is the objective of many applicable works [5, 13–17] and plays a
background to our contribution. For example, we study on D ð Þ the following two
operators:

Λf zð Þ ¼ f 0 zð Þ � f 0 0ð Þ, Xf zð Þ ¼ z2 f 0 zð Þ, (7)

and we deduce the uncertainty inequality for this space D ð Þ. And we establish
the minimizer function associated with the difference operator:

T2f zð Þ ¼ 1

z
f zð Þ � z f 0 0ð Þ � f 0ð Þ

� �

: (8)

2. Generalized results

Let H be a Hilbert space equipped with the inner product :, :h iH. And let A and B
be the two operators defined on H. We define the commutator A,B½ � by

A,B½ �≔AB� BA: (9)

The adjoint of A denoted by A ∗ is defined by

Af , gh iH ¼ f ,A ∗ gh iH, (10)

for f ∈Dom Að Þ and g∈Dom A ∗ð Þ.
Theorem 2.1. For f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ, one has

∥A ∗ f∥2H ¼ ∥Af∥2H þ A,A ∗½ � f , fh iH: (11)

Proof. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. Then AA ∗ f and A ∗Af belong to H.
Therefore A,A ∗½ � f ∈H. Hence one has
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∥A ∗ f∥2H ¼ AA ∗ f , fh iH ¼ A ∗Af , fh iH þ A,A ∗½ �f , fh iH (12)

¼ ∥Af∥2H þ A,A ∗½ �f , fh iH: □ (13)

The following result is proved in [18, 19].
Theorem 2.2. Let A and B be the self-adjoint operators on a Hilbert space H.

Then

∥ A� að Þ f∥H∥ B� bð Þ f∥H ≥
1

2
∣ A,B½ � f , fh iH∣, (14)

for all f ∈Dom ABð Þ ∩ Dom BAð Þ, and all a, b∈.
Theorem 2.3. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. For all a, b∈, one has

∥ Aþ A ∗ � að Þ f∥H∥ A� A ∗ þ ibð Þ f∥H ≥ ∣∥Af∥2H � ∥A ∗ f∥2H∣, (15)

where i is the imaginary unit.
Proof. Let us consider the following two operators on Dom AA ∗ð Þ ∩

Dom A ∗Að Þ by

P ¼ Aþ A ∗ , Q ¼ i A� A ∗ð Þ: (16)

It follows that, for f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ, we have Pf ,Qf ∈H. The
operators P and Q are self-adjoint and P,Q½ � ¼ �2i A,A ∗½ �. Thus the inequality
(15) follows from Theorems 2.1 and 2.2. □

Theorem 2.4. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. Then

Δ
þ
H fð ÞΔ�

H fð Þ≥∥f∥4H ∥Af∥2H � ∥A ∗ f∥2H
� �2

, (17)

where

Δ
�
H fð Þ ¼ ∥f∥2H∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2: (18)

Proof. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. The operator P given by (16) is
self-adjoint; then for any real a, we have

∥ P� að Þf∥2H ¼ ∥Pf∥2H þ a2∥f∥2H � 2a Pf , fh iH: (19)

This shows that

min
a∈

∥ P� að Þf∥2H ¼ ∥Pf∥2H � Pf , fh iH
�

�

�

�

2

∥f∥2H
, (20)

and the minimum is attained when a ¼ Pf , fh iH
∥f∥2H

. In other words, we have

min
a∈

∥ Aþ A ∗ � að Þf∥2H ¼ ∥ Aþ A ∗ð Þf∥2H � h Aþ A ∗ð Þf , f iHj j2

∥f∥2H
: (21)

Similarly

min
b∈

∥ A� A ∗ þ ibð Þf∥2H ¼ ∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2

∥f∥2H
: (22)
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Then by (15), (21), and (22), we deduce the inequality (17). □
Let λ>0 and let T : H ! K be a bounded linear operator from H into a Hilbert

space K. Building on the ideas of Saitoh [2], we examine the minimizer function
associated with the operator T.

Theorem 2.5. For any k∈K and for any λ>0, the problem

inf
f ∈H

λ∥f∥2H þ ∥Tf � k∥2K
� �

(23)

has a unique minimizer given by

f ∗
λ,k ¼ λI þ T ∗Tð Þ�1T ∗ k: (24)

Proof. The problem (23) is solved elementarily by finding the roots of the first

derivative DΦ of the quadratic and strictly convex function Φ fð Þ ¼ λ∥f∥2H þ ∥Tf �
k∥2K . Note that for convex functions, the equation DΦ fð Þ ¼ 0 is a necessary and
sufficient condition for the minimum at f . The calculation provides

DΦ fð Þ ¼ 2λf þ 2T ∗ Tf � kð Þ, (25)

and the assertion of the theorem follows at once. □
Theorem 2.6. If T : H ! K is an isometric isomorphism; then for any k∈K and

for any λ>0, the problem

inf
f ∈H

λ∥f∥2H þ ∥Tf � k∥2K
� �

(26)

has a unique minimizer given by

f ∗
λ,h ¼

1

λþ 1
T�1k: (27)

Proof. We have T ∗ ¼ T�1 and T ∗T ¼ I. Thus, by (24), we deduce the result. □

3. The Hardy space H ð Þ

Let  be the complex plane and  ¼ z∈ :jzj< 1f g the open unit disk. The
Hardy space H ð Þ is the set of all analytic functions f in the unit disk  with the
finite integral:

ð2π

0
f eiθ
� ��

�

�

�

2
dθ: (28)

It is a Hilbert space when equipped with the inner product:

f , gh iH ð Þ ¼
1

2π

ð2π

0
f eiθ
� �

g eiθð Þdθ: (29)

If f , g∈H ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, then

f , gh iH ð Þ ¼
X

∞

n¼0

anbn: (30)
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The set znf g∞n¼0 forms an Hilbert’s basis for the space H ð Þ.
The Szegő kernel Sz given for z∈, by

Sz wð Þ ¼
X

∞

n¼0

znwn ¼ 1

1� zw
, w∈, (31)

is a reproducing kernel for the Hardy space H ð Þ, meaning that Sz ∈H ð Þ, and
for all f ∈H ð Þ, we have f , Szh iH ð Þ ¼ f zð Þ.

For z∈, the function u zð Þ ¼ Sz wð Þ is the unique analytic solution on  of the
initial problem:

u0 zð Þ ¼ w zu0 zð Þ þ u zð Þð Þ, w∈, u 0ð Þ ¼ 1: (32)

In the next of this section, we define the operators ∇, ℜ, and L on H ð Þ by

∇f zð Þ ¼ f 0 zð Þ, ℜf zð Þ ¼ z f 0 zð Þ, Lf zð Þ ¼ z2 f 0 zð Þ þ zf zð Þ: (33)

These operators satisfy the commutation rule:

∇,L½ � ¼ ∇L� L∇ ¼ 2ℜþ I, (34)

where I is the identity operator.
We define the Hilbert space U ð Þ as the space of all analytic functions f in the

unit disk  such that

∥f∥2U ð Þ ¼
1

2π

ð2π

0
f 0 eiθ
� ��

�

�

�

2
dθ<∞: (35)

If f ∈U ð Þ with f zð Þ ¼
P

∞

n¼0anz
n, then

∥f∥2U ð Þ ¼
X

∞

n¼1

n2 anj j2: (36)

Thus, the space U ð Þ is a subspace of the Hardy space H ð Þ.
Theorem 3.1.

i. For f ∈U ð Þ, then ∇f , ℜf and Lf belong to H ð Þ.

ii. ∇ ∗ ¼ L.

iii. For f ∈U ð Þ, one has

∥Lf∥2H ð Þ ¼ ∥∇f∥2H ð Þ þ ∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: (37)

Proof.

i. Let f ∈U ð Þ with f zð Þ ¼ P

∞

n¼0anz
n. Then

∇f zð Þ ¼
X

∞

n¼0

nþ 1ð Þanþ1z
n, ℜf zð Þ ¼

X

∞

n¼1

nanz
n, (38)

and

Lf zð Þ ¼
X

∞

n¼1

nan�1z
n
: (39)

5

Analytical Applications on Some Hilbert Spaces
DOI: http://dx.doi.org/10.5772/intechopen.90322



Therefore

∥∇f∥2H ð Þ ¼
X

∞

n¼0

nþ 1ð Þ2 anþ1j j2 ¼ ∥f∥2U ð Þ, (40)

∥ℜf∥2H ð Þ ¼
X

∞

n¼1

n2 anj j2 ¼ ∥f∥2U ð Þ, (41)

and

∥Lf∥2H ð Þ ¼
X

∞

n¼0

nþ 1ð Þ2 anj j2 ≤ f 0ð Þj j2 þ 4∥f∥2U ð Þ: (42)

Consequently ∇f , ℜf , and Lf belong to H ð Þ.

ii. For f , g∈U ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, one has

∇f , gh iH ð Þ ¼
X

∞

n¼0

nþ 1ð Þanþ1bn ¼
X

∞

n¼1

nanbn�1 ¼ f ,Lgh iH ð Þ: (43)

Thus ∇ ∗ ¼ L.

iii. Let f ∈U ð Þ. By (ii) and (34), we deduce that

∥Lf∥2H ð Þ ¼ ∇Lf , fh iH ð Þ (44)

¼ L∇f , fh iH ð Þ þ ∇,L½ �f , fh iH ð Þ (45)

¼ ∥∇f∥2H ð Þ þ ∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: □ (46)

Theorem 3.2. Let f ∈U ð Þ. For all a, b∈, one has

∥ ∇þ L� að Þf∥H ð Þ∥ ∇� Lþ ibð Þf∥H ð Þ ≥∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: (47)

Theorem 3.3. Let T1 be the difference operator defined on H ð Þ by

T1f zð Þ ¼ 1

z
f zð Þ � f 0ð Þð Þ: (48)

i. The operator T1 maps continuously from H ð Þ to H ð Þ, and

∥T1f∥H ð Þ ≤∥f∥H ð Þ: (49)

ii. For f ∈H ð Þ and z∈, we have

T ∗
1 f zð Þ ¼ zf zð Þ, T ∗

1 T1f zð Þ ¼ f zð Þ � f 0ð Þ: (50)

iii. For any h∈H ð Þ and for any λ>0, the problem

inf
f ∈H ð Þ

λ∥f∥2H ð Þ þ ∥T1f � h∥2H ð Þ

n o

(51)

has a unique minimizer given by

f ∗
λ,h zð Þ ¼ 1

λþ 1
zh zð Þ, z∈: (52)
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Proof.

i. If f ∈H ð Þ with f zð Þ ¼
P

∞

n¼0anz
n, then T1f zð Þ ¼

P

∞

n¼0anþ1z
n and

∥T1f∥
2
H ð Þ ¼

X

∞

n¼1

anj j2 ≤∥f∥2H ð Þ: (53)

ii. If f , g∈H ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, then

T1f , gh iH ð Þ ¼
X

∞

n¼0

anþ1bn ¼
X

∞

n¼1

anbn�1 ¼ f ,T ∗
1 g

� �

H ð Þ, (54)

where T ∗
1 g zð Þ ¼ zg zð Þ, for z∈. And therefore

T ∗
1 T1f zð Þ ¼ zT1f zð Þ ¼ f zð Þ � f 0ð Þ: (55)

iii. From Theorem 2.5 we have

λI þ T ∗
1 T1

� �

f ∗
λ,h zð Þ ¼ T ∗

1 h zð Þ: (56)

By (ii) we deduce that

λþ 1ð Þf ∗
λ,h zð Þ � f ∗

λ,h 0ð Þ ¼ zh zð Þ: (57)

And from this equation, f ∗
λ,h 0ð Þ ¼ 0. Hence

f ∗
λ,h zð Þ ¼ 1

λþ 1
zh zð Þ: □ (58)

4. The Dirichlet space D ð Þ

The Dirichlet space D ð Þ is the set of all analytic functions f in the unit disk 

with the finite Dirichlet integral:

ð



f 0 zð Þ
�

�

�

�

2 dxdy

π
, z ¼ xþ iy: (59)

It is a Hilbert space when equipped with the inner product:

f , gh iD ð Þ ¼ f 0ð Þg 0ð Þ þ
ð



f 0 zð Þg0 zð Þ dxdy
π

, z ¼ xþ iy: (60)

If f , g∈D ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, then

f , gh iD ð Þ ¼ a0b0 þ
X

∞

n¼1

nanbn: (61)

The set 1, zn
ffiffi

n
p

n o

∞

n¼1
forms an Hilbert’s basis for the space D ð Þ.

The function Kz given for z∈, by

Kz wð Þ ¼ 1þ log
1

1� zw


 �

, w∈, (62)
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is a reproducing kernel for the Dirichlet space D ð Þ, meaning that Kz ∈D ð Þ,
and for all f ∈D ð Þ, we have f ,Kzh iD ð Þ ¼ f zð Þ.

For z∈, the function u zð Þ ¼ Kz wð Þ is the unique analytic solution on  of the
initial problem:

u0 zð Þ � u0 0ð Þ
z

¼ wu0 zð Þ, w∈, u 0ð Þ ¼ 1: (63)

In the next of this section, we define the operators Λ, ℜ, and X on D ð Þ by

Λf zð Þ ¼ f 0 zð Þ � f 0 0ð Þ, ℜf zð Þ ¼ z f 0 zð Þ, Xf zð Þ ¼ z2 f 0 zð Þ: (64)

These operators satisfy the following commutation relation:

Λ,X½ � ¼ ΛX � XΛ ¼ 2ℜ: (65)

We define the Hilbert space V ð Þ as the space of all analytic functions f in the
unit disk  such that

∥f∥2V ð Þ ¼
ð



f 0 zð Þ
�

�

�

�

2
zj j2 dxdy

π
<∞, z ¼ xþ iy: (66)

If f ∈V ð Þ with f zð Þ ¼
P

∞

n¼0anz
n, then

∥f∥2V ð Þ ¼
X

∞

n¼1

n3 anj j2: (67)

Thus, the space V ð Þ is a subspace of the Dirichlet space D ð Þ.
Theorem 4.1.

i. For f ∈V ð Þ, then Λf , ℜf , and Xf belong to D ð Þ.

ii. Λ ∗ ¼ X.

iii. For f ∈V ð Þ, one has

∥Xf∥2D ð Þ ¼ ∥Λf∥2D ð Þ þ 2 ℜf , fh iD ð Þ: (68)

Proof.

i. Let f ∈V ð Þ with f zð Þ ¼ P

∞

n¼0anz
n. Then

Λf zð Þ ¼
X

∞

n¼1

nþ 1ð Þanþ1z
n, ℜf zð Þ ¼

X

∞

n¼1

nanz
n, (69)

and

Xf zð Þ ¼
X

∞

n¼2

n� 1ð Þan�1z
n
: (70)

Therefore

∥Λf∥2D ð Þ ¼
X

∞

n¼1

n nþ 1ð Þ2 anþ1j j2 ≤
X

∞

n¼2

n3 anj j2 ≤∥f∥2V ð Þ, (71)
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∥ℜf∥2D ð Þ ¼
X

∞

n¼1

n3 anj j2 ¼ ∥f∥2V ð Þ, (72)

and

∥Xf∥2D ð Þ ¼
X

∞

n¼1

nþ 1ð Þn2 anj j2 ≤ 2∥f∥2V ð Þ: (73)

Consequently Λf , ℜf , and Xf belong to D ð Þ.

ii. For f , g∈V ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, one has

Λf , gh iD ð Þ ¼
X

∞

n¼1

n nþ 1ð Þanþ1bn ¼
X

∞

n¼2

n n� 1ð Þanbn�1 ¼ f ,Xgh iD ð Þ: (74)

iii. Let f ∈V ð Þ. By (ii) and (65), we deduce that

∥Xf∥2D ð Þ ¼ ΛXf , fh iD ð Þ (75)

¼ XΛf , fh iD ð Þ þ Λ,X½ �f , fh iD ð Þ (76)

¼ ∥Λf∥2D ð Þ þ 2 ℜf , fh iD ð Þ: □ (77)

Theorem 4.2. Let f ∈V ð Þ. For all a, b∈, one has

∥ Λþ X � að Þf∥D ð Þ∥ Λ� X þ ibð Þf∥D ð Þ ≥ 2 ℜf , fh iD ð Þ: (78)

Theorem 4.3. Let T2 be the difference operator defined on D ð Þ by

T2f zð Þ ¼ 1

z
f zð Þ � z f 0 0ð Þ � f 0ð Þ

� �

: (79)

i. The operator T2 maps continuously from D ð Þ to D ð Þ, and

∥T2f∥D ð Þ ≤∥f∥D ð Þ: (80)

ii. For f ∈D ð Þ with f zð Þ ¼ P

∞

n¼0anz
n, we have

T ∗
2 f zð Þ ¼

X

∞

n¼2

n� 1

n
an�1z

n, T ∗
2 T2f zð Þ ¼

X

∞

n¼2

n� 1

n
anz

n
: (81)

iii. For any d∈D ð Þ and for any λ>0, the problem

inf
f ∈D ð Þ

λ∥f∥2D ð Þ þ ∥T2f � d∥2D ð Þ

n o

(82)

has a unique minimizer given by

f ∗
λ,d zð Þ ¼ d,Ψzh iD ð Þ, z∈, (83)

Ψz wð Þ ¼
X

∞

n¼1

znþ1

λ nþ 1ð Þ þ n
wn, w∈: (84)
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Proof.

i. If f ∈D ð Þ with f zð Þ ¼
P

∞

n¼0anz
n, then T2f zð Þ ¼

P

∞

n¼1anþ1z
n and

∥T2f∥
2
D ð Þ ¼

X

∞

n¼2

n� 1ð Þ anj j2 ≤
X

∞

n¼2

n anj j2 ≤∥f∥2D ð Þ: (85)

ii. If f , g∈D ð Þ with f zð Þ ¼
P

∞

n¼0anz
n and g zð Þ ¼

P

∞

n¼0bnz
n, then

T2f , gh iD ð Þ ¼
X

∞

n¼1

nanþ1bn ¼
X

∞

n¼2

n� 1ð Þanbn�1 ¼ f ,T ∗
2 g

� �

D ð Þ, (86)

where

T ∗
2 g zð Þ ¼

X

∞

n¼2

n� 1

n
bn�1z

n, z∈: (87)

And therefore

T ∗
2 T2f zð Þ ¼

X

∞

n¼2

n� 1

n
anz

n
: (88)

iii. We put d zð Þ ¼
P

∞

n¼0dnz
n and

f ∗
λ,d zð Þ ¼

X

∞

n¼0

cnz
n
: (89)

From (ii) and the equation

λI þ T ∗
2 T2

� �

f ∗
λ,d zð Þ ¼ T ∗

2 d zð Þ, (90)

we deduce that

c1 ¼ c0 ¼ 0, cn ¼
n� 1

λnþ n� 1
dn�1, n≥ 2: (91)

Thus

f ∗
λ,d zð Þ ¼

X

∞

n¼1

ndn
λ nþ 1ð Þ þ n

znþ1 ¼ d,Ψzh iD ð Þ, z∈: □ (92)
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