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Astrocytic S100B, Blood-Brain 
Barrier and Neurodegenerative 
Diseases
Anuradha Krishnan, Hao Wu and Venkat Venkataraman

Abstract

Increased life span and expectations of a better quality of life have resulted in 
a spotlight on neurodegenerative and cardiovascular diseases generally associated 
with aging. The drive toward evidence-based medicine has necessitated a constant 
search for objective biomarkers to assay disease onset, progress, and outcomes 
to make the best clinical decisions. Enhancement of their use depends on the 
mechanistic understanding of the biomarker’s role in the disease process itself. This 
chapter focuses on S100B. It is a calcium sensor protein that is primarily astrocytic. 
While it plays a complex, interlinked role in signaling, serum levels of S100B as a 
biomarker for clinical decisions is also an area of intense investigation. Both aspects 
are presented, with an emphasis on the role of S100B in in maintaining a blood-
brain barrier, especially in the context of suggesting a unified mechanism for the 
onset and progression of neurodegenerative diseases.

Keywords: S100B, calcium, blood-brain barrier, biomarker, neurodegeneration,  
tight junctions

1. Introduction

Rudolph Virchow first proposed the concept of neuroglia as a component of the 
connective tissue of the brain “nervekitt” [1]. The term “astrocyte” is attributed 
to Michael von Lenhosseck, coined to denote the stellate (star-like) morphology, 
with independent contributions also by Kolliker and Anderiezen (reviewed in [2]). 
The diversity of this group of cells was brought into clear focus by the excellent 
drawings by Cajal [3]. Glial cells, including astrocytes, were once believed to be 
limited to passive support in the functioning of the brain. Work over the last few 
decades has ushered in the understanding that they actively participate in normal 
metabolism and physiology of the brain, even more so during injury response and 
repair. They alter the microenvironment through secretion of a variety of signals 
including cytokines as a result of intracellular process collectively termed “activa-
tion,” which operates at both ends of time scale—acute and short-term (trauma) 
as well as chronic and long-term (neurodegenerative diseases). While meant to be 
adaptive and reparative, they could also lead to exacerbation of injury or disease 
(for some reviews, please see [4–12]). Understanding the process of activation and 
its effect on the microenvironment is fundamental to devising positive interven-
tions. One of the important signaling molecules involved in this process is S100B, 
a calcium sensor protein, which is secreted to act at the extracellular level but also 



Glia in Health and Disease

2

functions intracellularly (reviewed in [13–15]). While primarily astrocytic, it is 
expressed in other glial cells, non-neuronal cells, and is also detected in the serum. 
In this chapter, the role for S100B in the neurovascular unit (NVU)—important for 
the blood-brain barrier (BBB)—is discussed. A summary of conditions in which the 
serum S100B levels are proposed to be of values as a biomarker provides the back-
drop. Based on the findings, a mechanism that places the NVU, with a central role 
of S100B, at the heart of neurodegenerative diseases is suggested.

2. S100B: the protein

S100B, an astrocytic protein, was originally obtained from the bovine brain [16], 
as a mixture with S100A1—the fraction was termed “S100” due to partial solubility 
in 100% saturated ammonium sulfate solution [16], reviewed in [15]. Over 50 years 
after the identification of S100B, the S100 family now includes more than 20 genes 
paralogous to S100B, with functions in healthy as well as diseased states [17]. The 
S100 proteins exist mostly as dimers—homodimers or heterodimers—and share 
common structural motifs such as the Ca-binding EF hand.

S100B is a homodimer of a 92-amino acid protein, termed S100b, with a molecu-
lar mass of 10,713 Da, but migrates between 9 and 14 kDa on SDS-polyacrylamide 
gels. Crystal structures and refined NMR structures [18, 19] reveal that the mono-
mer contains two EF-hands—one non-canonical and one conventional—that bind 
calcium; the dimer is in antiparallel orientation. Upon binding calcium, the mol-
ecule switches to a more open conformation with hydrophobic patches exposed to 
facilitate interaction with other molecules. However, these conformational changes 
are unlike other more conventional EF-containing proteins and are unique for 
S100B protein—experimentally supported through calcium-induced mobility shift 
assays [20]. Thus, the S100B protein is specialized to sense changes in calcium levels 
and mediate appropriate responses, especially in the nervous system.

Expression of S100B in the nervous system is primarily in the glial cells—astro-
cytes in the central nervous system and Schwann cells in the peripheral nervous sys-
tem, where they carry out intracellular as well as extracellular functions [reviewed 
in [14, 15]]. Since these functions are relevant to both healthy and diseased states 
and S100B is detectable in serum, specifically humans, a focused effort has been 
underway to determine if S100B could serve as a biomarker.

3. S100B: the biomarker

Biological marker (biomarker) is defined as “a characteristic that is objectively 
measured and evaluated as an indicator of normal biologic processes, pathological 
processes or pharmacological responses to a therapeutic intervention” (Biomarker 
Definitions Working Group). An optimal biomarker is ideally measurable easily, 
quantitatively related to the extent of the condition, yields reproducible results, and 
provides guidance regarding outcomes/clinical decisions [21]. The quest for a bio-
marker may pass through several avenues that include imaging, functional imaging, 
microRNAs, and microarrays. Even as these journeys have increased the knowledge 
base, they have also highlighted the complexity of the process. Typically, however, 
biomarker levels in body fluids—blood, cerebrospinal fluid, saliva, or urine—are 
more common.

A summary of current information on the correlation of serum S100B levels to 
different conditions is provided in Table 1.
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Condition Citation Comments

Brain-related

Traumatic brain injury

 Mild [22]

 Moderate [23–26] Not a reliable predictor of 
good vs. bad outcome

 Severe [24] Useful to predict if 
the patient will regain 
consciousness 3–6 min 

after injury, in addition to 
predicting the outcome

 Children [27, 28] Normal serum levels are 
higher than in adults. Cannot 

be used as a predictor of 
injury, but is a predictor of 

outcome

 Sub-
concussive 

head impacts

[29]

 Non-traumatic intracerebral hemorrhage [30, 31]

 Stroke (ischemic and hemorrhagic) [32, 33]

Heart-related

 Cardiopulmonary bypass surgery [34] Meta-analyses

 Congestive heart failure [35] Further increase if 
accompanied by renal 

insufficiency

 Dilated cardiomyopathy [36]

Skeleton-related

 Orthopedic trauma [37]

 Hip arthroplasty [38]

Cancer-related

 Brain metastases of lung cancer [39]

 Estrogen receptor-positive breast cancer [40] Elevated levels indicate poor 
disease-free survival

 Malignant melanoma [41–44] Elevated levels indicate poor 
disease outcome

Neonates-related

 Congenital heart disease [45] Levels dropped to normal 7 
days post-operative

 Intraventricular hemorrhage, intrauterine 
growth restrictions, perinatal asphyxia

[21]

 Hypoxic ischemic encephalopathy [46]

Other diseases

 Epilepsy [47, 48]

 Delirium [49, 50]

 Neuromyelitis optica (AQP4+ve) [51]
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In all of the conditions above, serum S100B levels are elevated. It is noted that 
there are some sporadic reports of decreased levels, particularly in the case of 
diabetes and anorexia nervosa [58, 59].

The diverse nature of the pathologies with which elevated serum S100B levels 
are associated, coupled with the lack of functional correlation, has made mecha-
nistic explanations difficult to say the least. While S100B is currently known to be 
expressed in multiple tissues, the primary source of serum S100B is believed to be 
of astrocytic origin [60, 61]. Therefore, for S100B levels in serum to be elevated, 
astrocytic S100B must be able to reach the blood, which would not normally happen 
due to the presence of the blood-brain barrier (BBB).

The BBB comprises the physiological and functional barrier that separates the 
nervous system from the circulatory system [62, 63] and its breakdown allows for 
the leakage of damaging humoral elements into the brain parenchyma [63–67].

4. S100B and blood-brain barrier (BBB)

4.1 BBB and neurodegenerative diseases

The BBB is mainly formed by a monolayer of brain vascular endothelial cells 
(BVECs) that are sealed by tight junctions (TJs) [reviewed in [68–70]]. It actively 
regulates transportation of metabolic wastes and nutrients, such as ions, glucose, 
and amino acids, between blood and brain interstitial fluid (ISF) [reviewed in 
[69]]. On the other hand, other plasma components such as immunoglobulins and 
cells such as leukocytes are restricted. Thus, the BBB enables neurons and support-
ing cells to receive nutrients and remove wastes. In addition, they provide protec-
tion from the immune system. The concept of the neurovascular unit (NVU), to 
maintain the function of the BBB in health and underlie its response during disease, 
has been proposed [71–74].

Impaired function of the BBB has been linked to a variety of pathological 
conditions that affect the brain [reviewed in [62, 63, 67, 75]]. These include epi-
lepsy [reviewed in [76]], psychiatric diseases such as neuropsychiatric lupus [77], 
dementias such as Parkinson’s disease [78–80], Alzheimer’s disease (AD) [81–86], 
other neurodegenerative diseases such as Huntington’s disease [87], amyotrophic 
lateral sclerosis [88, 89], multiple sclerosis [90, 91], and those caused by viral 
infections [92–94]. The compromise of the BBB has been tightly linked causally or 
as a diagnostic marker to chronic neurodegenerative diseases such as AD [95–97] 
and acute conditions such as delirium [98]. Yet, the causes and consequences of the 
BBB breach in those diseases remain elusive. Work carried out in this laboratory has 
established a role for S100B in maintaining an intact BBB using a mouse (S100BKO) 
model [66].

Condition Citation Comments

 Neurosarcodiosis [52]

 Obstructive sleep apnea [53]

 Proliferative diabetic retinopathy [54]

 Schizophrenia [55, 56]

 Systemic lupus erythematous [57]

Table 1. 
Conditions with elevated serum S100B levels.
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4.2 S100B is essential to maintain BBB

The detection of leaked serum components, such as IgG, has been widely used to 
assess impairment of BBB function [64]. In a study from this laboratory by Wu and 
coworkers [66], vascular leaks in the brain were evaluated by immunostaining brain 
sections from S100BKO mice to detect extravascular IgG. Previous studies have 
shown that intravenous injection of pertussis toxin [PT] generates leaks in the BBB 
[64, 99]. Therefore, wild type and S100BKO mice were injected with PT and the 
effect on BBB permeability was investigated.

Extravasated IgG from the blood vessels was detected as perivascular leakage 
clouds marking sites of BBB breach. In wild-type mice, leak clouds were detected only 
upon injection of PT; in the S100BKO mice, however, they were detected even without 
PT injection by 6 months of age and were exacerbated by PT injection. Thus, there is 
an endogenous BBB deficiency in S100BKO mice, which is increased by treatment with 
PT. The BBB breach was chronic and age-dependent, increasing with age [66]. Thus, 
the system mimics the chronic, age-associated compromise of BBB in humans. In addi-
tion, selective binding of neurons by IgG was also temporally and spatially associated 
with these leak clouds, suggesting that neuron-binding autoantibodies are present and 
BBB compromise allows their access to neurons in the brain; an increase in the brain-
reactive autoantibodies was also associated with increased BBB breach [66].

Interestingly, despite detectable pathology, there was very little glial response 
as measured by increased expression of glial fibrillary acidic protein (GFAP) [66]. 
Is it possible that S100B is necessary to trigger the astroglial response to neuronal 
injury/insult? The question remains to be answered.

The potential reason for the BBB breach, however, could be identified: Based 
on electron microscopic analyses, disorganization of endothelial tight junctions is 
proposed to cause the observed BBB breach [66].

4.3 S100B is essential to maintain blood-retinal barrier (BRB)

Tight junctions are also important for the maintenance of the blood-retinal barrier 
(BRB). The existence of blood-retinal barrier (BRB) is well established [100–104], 
although its similarity to the BBB remains to be completely elucidated [105, 106] and 
its establishment, less understood [107]. If S100B was essential for the maintenance 
of tight junctions in vascular endothelial cells and lack of it caused BBB breach, would 
similar breaches be observed BRB also? The results presented below show that this is, 
indeed, the case.

In untreated wild-type mice (Figure 1A), staining for IgG was restricted to within 
blood vessels, which indicates an intact barrier. In PT-injected wild-type mice, IgG 
extravasated from the blood vessels. However, the perivascular leakage clouds were 
not obvious while the IgG-bound ganglion cells were detected (indicated by arrows 
in Figure 1B). The results suggest that neuron-binding autoantibodies are present 
and BRB compromise allows their access to neurons in the retina. Leak clouds outside 
the blood vessels were observed in S100BKO mice in the absence of PT (Figure 1C). 
Upon PT injection of S100BKO mice, the perivascular leak clouds persist (Figure 1D). 
Thus, an endogenous BRB deficiency in S100BKO mice was observed. The presence of 
retina-specific autoantibodies was confirmed independently by Western blot analyses 
(Figure 1E). The result shows that their appearance is age-dependent, as in the BBB.

Thus, the effect of S100B deprivation leads to chronic barrier disruption in both 
brain and retina through disruption of the endothelial tight junctions, most likely. 
The details of the mechanistic aspects of the action of S100B on tight junction 
maintenance remain to be established: both intracellular and extracellular routes are 
possible [14]. An intracellular mechanism is supported by observations that S100B is 



Glia in Health and Disease

6

expressed in endothelial cells [108, 109]; furthermore, assembling and maintaining 
functional tight junctions is dependent upon several signaling pathways [reviewed in 
[110–112]], all of which are known to be influenced by S100B: calcium homeostasis 
[13, 14, 113], guanylate cyclase activation [114, 115], modulation of rhoGTPases such 
as Rac1 [116] and protein kinase C activity [108]. Extracellularly, S100B, most likely, 
acts through the receptor for advanced glycation end products (RAGE) expressed on 
endothelial cells [117] and results in the activation of the Ras-ERK1/2-NF-κB pathway 
[reviewed in [14]]. This pathway regulates endothelial hyperpermeability [reviewed 
in [111]], particularly the assembly of TJ proteins [118]. Moreover, the expression of 
NF-κB itself is regulated by S100B [119, 120]. Additional receptors for S100B, such as 
CD166/ALCAM and Toll-Like Receptors (TLR), are also known. Therefore, extracel-
lular S100B may also be critical for endothelial function in maintaining the BBB.

5. Blood-brain barrier (BBB) and neurodegenerative diseases

5.1 Autoantibodies and neurodegenerative diseases

The BBB breach allows autoantibodies in the blood vessels to gain access to neu-
rons and other cell types, causing compromise in function and, in extreme cases, 
cell death. The breach itself could be generated over time through age or disorders 
or acutely through traumatic injuries. Debris released from sick or dead cells would 
now be encountered by the immune system, which would mount an antibody 
response, generating autoantibodies. This results in a potentially devastating feed-
back loop: the autoantibodies cause compromise of cells, releasing debris, which, in 
turn, augments the response. The only way to halt this cycle will be through the loss 
of the targeted antigens: either through endocytosis or receptor stripping. Typically, 
that would also lead to dysfunctions in neurons and other cells [121, 122].

This “positive feedback loop” hypothesis is suggested by a decreased expression of 
MAP2, shown to be indicative of neuronal stress [123, 124], in both in vivo [66] and in 
vitro model systems of BBB [125] or BRB [126] breach. Previous studies have also shown 
a widespread presence of brain-reactive autoantibodies in human serum [127] and 
changing autoantibody profiles upon disease [96, 122, 128–130]. Much evidence now 

Figure 1. 
S100BKO mice demonstrate significant BRB compromise in the retina and express retina-specific 
autoantibodies. Overlay of IgG immunostaining (red) with DAPI (blue) is presented from the retinal sections 
of untreated wild-type mice (A), PT-treated WT mice (B), S100BKO mice (C), and S100BKO mice treated 
with PT (D). Scale bar, 20 μm. Western blots (E) of the swine retinal protein extract were probed with pooled 
sera from wild-type mice (WT) or from S100BKO mice at 3 (3 Mon), 6 (6 Mon), or 9 (9 Mon) months of age. 
A representative result is shown. Molecular size markers are indicated alongside.
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suggests that BBB breakdown also contributes to acute dysfunctions such as post-opera-
tive delirium and recovery from anesthesia [131, 132]. An increase in BBB permeability, 
like in S100BKO mice reported here, has been observed previously in humans with age 
[82] and with many chronic dysfunctions Table 1. Therefore, the S100BKO mouse may 
serve as a useful model to mimic the status of the aged BBB. It is well documented that 
the elderly population is highly susceptible to neurodegenerative diseases and delirium.

Increased levels of autoimmune antibodies (generally associated with increased 
BBB permeability) have been reported in several diseases (reviewed in [129–134]). 
A positive correlation between autoantibody prevalence and age/diseased state has 
propelled the idea that they are potential diagnostic tools in AD and Parkinson’s 
disease [122, 129–136].

5.2 Toward a unified mechanism

A clear understanding of the structural components and functions of the BBB 
may be the key to delineating pathologies of the brain. Here, we propose the idea 
that neurodegeneration is a multi-step process (Figure 2) involving BBB breach, 

Figure 2. 
Blood-brain barrier breach, autoantibodies and neurodegeneration. A unified mechanism is proposed 
for neurodegenerative diseases. Early changes include changes in the NVU, serum, and other insults on the 
BBB. Once the BBB is breached, it leads to the extravasation of serum components and access/production of 
brain-reactive auto antibodies. This results in a positive feedback loop, altering homeostasis and eventually 
resulting in the disease phenotype through neuronal injury/death.
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infiltration of auto antibodies and other damaging plasma components into the brain 
parenchyma with death of the neurons as the long-term sequelae. Multiple studies 
indicate that the BBB is very important to the brain health, neuronal integrity, and 
homeostasis; when BBB breach occurs, it allows for the extravasation of blood-borne 
molecules (such as Aβ42 in AD), brain-reactive antibodies, and inflammatory factors 
into the normally immune-privileged brain parenchyma [127, 137–139]. Access of 
the previously excluded and potentially damaging blood-borne plasma elements to 
the brain interstitium results in disruption of brain homeostasis, impaired neuronal 
function, and eventually, neuronal loss [64, 134, 140, 141]. Furthermore, injury or 
disease of the central nervous system (CNS), such as AD, causes gliosis, which is 
characterized by the activation of astrocytes, microglia, and other cell types.

Insults to the BBB can be brought about by several pathological conditions and 
result in the compromise of this protective layer. Studies from our lab show that 
the inner blood-retinal barrier (BRB) is very similar to the BBB and can be used 
as a model system to study BBB [126]. The use of brain-reactive autoantibodies to 
diagnose neurodegenerative diseases with a high degree of confidence has also been 
reported [122, 135, 136, 142–145].

Taken together, investigations into the BBB maintenance will yield rich divi-
dends toward the mechanistic understanding that may underlie multiple neuro-
degenerative diseases, increased diagnostic tools in terms of model systems and 
biomarkers and, perhaps, also drug delivery options. Delineation of S100B signal-
ing pathways is likely to contribute significantly toward this end.

6. Conclusions

S100B, primarily astrocytic in origin, is a unique signaling molecule that 
impacts multiple signaling pathways—sometimes negatively, sometimes positively 
[15, 146]. The dual nature of action—intra- and extracellular—poses a significant 
challenge in delineating the precise mechanism of action in many instances. Yet, 
S100B is emerging as a central molecule (Figure 3) in regulating normal and 

Figure 3. 
A central role for S100B, an astrocytic protein. The figure depicts the multiple cell-types contributing to an intact 
BBB that form the NVU. By virtue of being an extracellular signal as well as being expressed intracellularly, 
S100B is proposed to play a central role in maintaining BBB and serve as a marker for neurodegeneration.
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disease processes—especially where astrocytes/glial cells are involved—the enteric 
glial cells being a recent and exciting example [147]. It is hoped that a fundamental 
mechanistic understanding would enable decipher the process, refine the clinical 
relevance biomarker, and carry the laboratory bench knowledge to the patient 
bedside to improve quality of life and clinical interventions.
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