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Chapter

Introductory Chapter: Machine 
Learning in Misuse and Anomaly 
Detection
Jaydip Sen and Sidra Mehtab

1. Introduction

Over the last 30 years, ubiquitous and networked computing has  increasingly 
gained importance in our life. With the increase in complexity of computer 
networks, cybersecurity threats have also manifested in a variety of which was 
unimaginable even a decade back. While the rule-based intrusion detection systems 
(IDSs) can accurately detect already known attacks on a cyberinfrastructure, these 
systems are not capable to detect novel, unknown, and polymorphic cyber threats. 
Moreover, the computational overheads including CPU cycles and memory over-
heads are unacceptably high for most of the detection systems. Hence, it has been a 
constant challenge for security researchers to design automated, fast, and yet accu-
rate IDSs for deployment in real-world cyberinfrastructures. From expert-crafted 
rules to sophisticated machine learning and deep learning algorithms, researchers 
have explored and attempted to push the boundary of the detection accuracy while 
minimizing the false alarm rates.

Applications of machine learning and data mining algorithms in both signature 
and anomaly detection systems have been widely proposed in the literature. In 
misuse detection systems, following approaches of machine learning are quite 
popular: (1) classification using association rules [1–3], (2) artificial neural networks 
[4], (3) support vector machines [5], (4) classification and regression trees [6, 7], 
(5) Bayesian network classifier [8–10], and (6) naïve Bayes method [11]. While the 
signature detection systems require labeled training data in order to learn the features 
of the attack and the normal traffic, anomaly detection systems are based on identi-
fying any significant changes in the system from its normal state. Various approaches 
to machine learning in anomaly detection have been proposed in the literature. Some 
of these approaches are as follows: (1) association rule mining [12–14], (2) fuzzy 
association rule mining [15], (3) artificial neural network [16–18], (4) support vector 
machines [19, 20], (5) nearest neighbor [21], (6) hidden Markov model [22–24],  
(7) Kalman filter [25], (8) clustering [26], and (9) random forest [27, 28]. Other 
machine learning methods have been proposed for learning the probability distribu-
tion of data and in applying statistical tests to detect outliers [29–35].

The hybrid detection approach combines the adaptability and the powerful 
detection ability of an anomaly detection system with the higher accuracy and reli-
ability of the misuse detection approach [28, 36–43]. The selection of misuse and 
anomaly detection systems for designing a hybrid detection system is dependent on 
the application in which the detection system is to be deployed. Following a com-
binational approach, the integration of an anomaly detection system with a misuse 
detection counterpart has been classified into four categories [28, 36]. These types 
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are: (1) anomaly–misuse sequence detection, (2) misuse–anomaly sequence detec-
tion, (3) parallel detection, and (4) complex mixture detection. The complex mix-
ture model is highly application-specific. Figure 1 depicts the first three categories 
of hybrid detection systems. Complex detection systems are application-specific, 
and these systems cannot be represented by any generic architecture.

2. Conclusion

A fundamental challenge in designing an intrusion detection system is the 
limited availability of appropriate data for model building and testing. Generating 
data for intrusion detection is an extremely painstaking and complex task that 
mandates the generation of normal system data as well as anomalous and attack 
data. If a real-world network environment, generating normal traffic data is not 
a problem. However, the data may too privacy-sensitive to be made available for 
public research.

Classification-based methods require training data to be well balanced with 
normal traffic data and attack traffic data. Although it is desirable to have a good 
mix of a large variety of attack traffic data (including some novel attacks), it may 
not be feasible in practice. Moreover, the labeling of data is mandatory with attack 
and normal traffic data clearly distinguished by their respective labels.

Unlike classification-based approaches that are mostly used in misuse detection, 
unsupervised anomaly detection-based approaches do not require any prior label-
ing of the training data. In most of the cases, the attack traffic constitutes the sparse 
class, and hence, the smaller clusters are most likely to correspond to the attack traf-
fic data. Although unsupervised anomaly detection is a very interesting approach, 
the results produced by this method are unacceptably low in terms of their detec-
tion accuracies.

In a pure anomaly detection approach, the training data are assumed to be con-
sisting of only normal traffic. By training the detection model only on the normal 
traffic data, the detection accuracy of the system can be significantly improved. 
Anomalous states are indicated by only a significant state change from the normal 
state of the system.

Figure 1. 
Three categories of hybrid detection systems. (a) Anomaly–misuse sequence, (b) misuse–anomaly 
sequence, and (c) parallel detection system.
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In a real-world network that is connected to the Internet, an assumption of 
attack free traffic is utopian. A pure anomaly detection system can still be trained 
on a training data that include attack traffic. In that case, those attack traffic data 
will be considered as normal traffic, and the detection system will not raise an 
alert when such traffic is encountered in real-world operations. Hence, in order to 
increase the detection accuracy, attack traffic should be removed from the training 
data as much as possible. The removal of attack traffic from the training data can 
be done using updated misuse detection systems or by deploying multiple anomaly 
detection systems and combining their results by a voting mechanism.

For an intrusion detection system that is deployed in a real-world network, it 
is mandatory to have a real-time detection capability under a high-speed, high-
volume data environment. However, most of the cluster techniques used in unsu-
pervised detection require quadratic time. This renders their deployment infeasible 
in practical applications. Moreover, the cluster algorithms are not scalable, and they 
need the entire training data to reside in the memory during the training process. 
This requirement puts a restriction on the model size. The future direction of 
research may include studies on scalability and performance of anomaly detection 
algorithms in conjunction with the detection rate and false positive rate. Most of 
the currently existing propositions on intrusion detection have not paid adequate 
attention to these critical issues.

In this book, the following chapters deal with various aspects of network 
security and cryptography. While the chapters belonging to the network security 
section broadly discuss different aspects of applications and deployment of security 
protocols and secure system architecture, the cryptography section discusses vari-
ous theoretical algorithms and their complexities.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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