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Chapter

Reconfigurable Minimum-Time
Autonomous Marine Vehicle
Guidance in Variable Sea Currents
Kangsoo Kim

Abstract

In this chapter, we present an approach of reconfigurable minimum-time
guidance of autonomous marine vehicles moving in variable sea currents. Our
approach aims at suboptimality in the minimum-time travel between two points
within a sea area, compensating for environmental uncertainties. Real-time reactive
revisions of ongoing guidance followed by tracking controls are the key features of
our reconfigurable approach. By its reconfigurable nature, our approach achieves
suboptimality rather than optimality. As the basic tool for achieving minimum-time
travel, a globally working numerical procedure deriving the solution of an optimal
heading guidance law is presented. The developed solution procedure derives opti-
mal reference headings that achieve minimum-time travel of a marine vehicle in
any deterministic sea currents including uncertainties, whether stationary or time
varying. Pursuing suboptimality, our approach is robust to environmental uncer-
tainties compared to others seeking rigorous optimality. As well as minimizes the
traveling time, our suboptimal approach works as a fail-safe or fault-tolerable
strategy for its optimal counterpart, under the condition of environmental uncer-
tainties. The efficacy of our approach is validated by simulated vehicle routings in
variable sea currents.

Keywords: guidance, minimum-time, marine vehicle, sea current, suboptimal,
environmental uncertainty

1. Introduction

It is well known that the sea environment contains several kinds of flows, which
possibly interacts with the motion of surface or submerged vehicles. Among these,
sea or ocean currents are the most significant ones, directly affecting traveling
speed, power consumption, and thus the endurance and range of a vehicle. Suppose
that a marine vehicle is to travel to a given destination starting from a point in the
region of flow disturbance. Then, it is quite natural that the traveling time of the
vehicle should change according to the selection of a specific path. In case the power
consumption of a vehicle is controlled to be constant throughout the travel, the total
energy consumption is directly proportional to the traveling time.

Recently, autonomous marine vehicles (AMVs) are playing important roles in
diverse applications, such as oceanographic survey, marine patrol, undersea oil/gas
production, and various military applications [1]. Relying on onboard energy
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storage as the main energy source, the endurance and moving range of an AMV are
limited by its power consumption and its capacity of energy storage. Therefore, it
can be said that the reduced traveling time of an AMV enhances vehicle safety and
mission effectiveness [2].

Considerable research works have been done on the guidance or path planning
for a mobile vehicle through varied fluid environments. Though aiming at the same
objectives, the most notable difference between the guidance and the path planning
of a vehicle is the consideration of its dynamical constraints. While, in general,
dynamical constraints in vehicle motion are incorporated into the formulation of
vehicle guidance problems [3, 4], they are ignored in most path planning problems
[5, 6]. This allows great flexibility in the target path generation, enabling the use of
combinatorial optimization techniques in path planning approaches. Dynamic pro-
gramming (DP) might be one of the most classical and popular techniques for
combinatorial optimization. In [6], the problem of minimal-time vessel routing in a
region of deterministic wave environment is treated on the basis of the dynamic
programming approach. In this problem, sea region is subdivided into several sub-
regions of different sea states. The optimal path is derived by determining the
sequence of subregions to be visited, which minimizes the traveling time to a given
destination. Aside from the difficulty in establishing a practically available numer-
ical procedure adjoining the formulation, the significant solution dependency on
the regional subdivision is a critical issue in this approach. Some recent researches
reported the application of a generic algorithm (GA) to path planning for an
underwater vehicle in a variable ocean [5]. Major advantages of the GA over
dynamic programming are reduced computational complexity and time, although it
is susceptible to local minima, however. Also, one of its significant drawbacks is a
strong constraint in generating the optimal path. In a path planning application on
the basis of GA, a user-defined primary coordinate should strictly maintain a
monotonic increase in the optimal path [5]. This is such a strong constraint that
makes it impossible to generate the optimal path containing interim backward
intervals. Minimum-time guidance of a mobile vehicle in a fluid environment of
arbitrary flow field is a strongly nonlinear optimization problem, quite difficult to
solve numerically as well as analytically. One of the recent approaches to treating
this sort of problems is cell mapping [3]. Though it is known to be especially
adequate for strongly nonlinear problems, computational demand of cell mapping
for obtaining a stable solution is enormous.

Path finding or guidance algorithms can be classified into two categories
according to the instant when its solution is generated. While a pregenerative one
derives an unchangeable solution prior to a mission, a reactive algorithm allows
revised solution during the mission [5, 7]. In this research, as a reactive strategy for
achieving minimum-time travel in varied sea current environments, we propose an
approach of suboptimal guidance. In our problem, minimum-time travel of a vehi-
cle is attempted on the basis of the optimal guidance law presented by Bryson and
Ho [8]. The solution of this guidance law is a time sequence of the optimal headings.
In an actual field application for the minimum-time travel, obtained optimal head-
ings are tracked by a vehicle as the reference in its heading control. Compact as it is,
the optimal guidance law is derived without considering any specific dynamic
constraint, like many other path planning approaches. In our suboptimal strategy,
we compensate for this drawback by incorporating reactive revisions of optimal
reference heading. Once there happens a failure in tracking current optimal refer-
ence attributed to the ignorance of limitations in vehicle dynamics, onboard auto-
pilot reroutes the vehicle by reapplying the optimal guidance law.

In addition to the dynamic constraints, there are several unfavorable environ-
mental factors that might be fatal in achieving the proposed optimal vehicle routing.
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Examples of such factors are uncertainties in sea environments, severe sensor
noises, or temporally faulty actuators [9, 10]. As a fail-safe or fault-tolerable strat-
egy, our suboptimal approach can compensate for the failure in ongoing minimum-
time travel due to any of the abovementioned factors. The suboptimal guidance
does not achieve rigorous optimality. However, it achieves a near-optimality real-
ized by the utmost in-situ actions as possible, which is useful and important in a
practical sense.

Though provides superior adaptiveness, robustness, and more flexibility, the
reactive approach in marine vehicle guidance incurs a heavy computational cost in
its onboard implementation [3, 5, 10]. In this research, we present a practical
solution procedure of highly reduced computational cost required for implementing
our minimum-time guidance in a suboptimal manner. This is a simple procedure
applicable to any sea current whether stationary or time-varying, provided that its
distribution at a specified instant is deterministic. Robust global convergence is
another advantage of our procedure. On the basis of the minimum principle [8, 11],
our procedure realizes an efficient search space reduction, enabling optimal solution
search in a global manner. Due to this algorithmic nature, our numerical procedure
bears crucially lower possibility of taking local minima than other search algorithms
primarily relying on initial guesses.

As mentioned previously, deterministic sea current is the prerequisite for
implementing our suboptimal and optimal strategies. It is noted that, however, in
many cases, it is not easy to obtain a predescribed current distribution of the sea
region of interest. One of the simplest ways to build up the database of sea current
distribution is direct measurement. Many governmental, public, or private institu-
tions related to maritime affairs provide tabulated surface current distributions
which are obtained by field measurements [12, 13]. The availability of these data is
more or less restrictive because there are many sea regions for which the current
distribution data are not built up or treated as confidential. As another source of sea
current information, numerical estimation models are playing an important role. By
assimilating the field measurement into them, some recent numerical models pro-
vide both forecasts and nowcasts of ocean fields with sufficiently accurate meso-
scale resolution [14]. In this research, we employ two kinds of sea current data
generated in totally different ways; the measurement-based stationary current dis-
tribution in Northwest Pacific, near Japan, and the sequential tidal current distri-
bution in Tokyo Bay obtained by a numerical forecasting model.

Unlike path-planning approaches, our approach leads to simulation-based resul-
tant optimal trajectory rather than optimal reference path. In our optimal guidance
problem, not the position but the heading of a vehicle is employed as the design
variable to be optimized. And, since we consider the dynamics of a specific vehicle
as a constraint, optimal trajectory is to be generated by the simulated vehicle
routing following the optimal reference heading. It is noted here that while the term
of path is used as a route or track between one place and another, the trajectory
means a curved path that an object describes on the basis of its kinematic scheme in
this research [15].

2. Minimum-time guidance

2.1 Problem statement

The problem of minimum-time guidance for AMVs moving in flow fields is
described in this section. Consider a marine vehicle traveling through a sea region of
flows such as sea currents, whose properties are the function of space, or both space
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and time. The vehicle is to travel to a predetermined destination starting from the
initial position at the initial time t0. Then, it is easily anticipated that the traveling
time of the vehicle varies depending on its traveling path (Figure 1). Furthermore,
it is also anticipated that an ingenious traveling path can minimize the traveling
time to the destination. In this research, we refer to the optimal path as the path of
minimum traveling time to the destination. As a minimum-time problem, our
problem merely takes the traveling time as the performance index. In other words,
in the general form used in optimal control, the integrand of performance index
takes the value of 1.

ð1Þ

In Eq. (1), J is the performance index, and t0 and tf are the initial and final time
of the travel.

2.2 Formulation

As mentioned previously, we employ the vehicle heading as the output in our
optimal guidance problem. Here, it is noted that we adopt the so-called GNC
(Guidance, Navigation, and Control) system based on the hierarchical control
architecture consisting of two control layers. That is, the high-level control for
guidance and navigation, and the low-level control for pure tracking purpose
(Figure 2). The optimal heading derived by solving the optimal guidance law is
used as the reference output for low-level heading tracking control. In this research,
we use the optimal heading guidance law presented by Bryson and Ho [8]. In
deriving the optimal guidance law, two sets of coordinate systems are used: the
inertial (earth-fixed) coordinate system o-xy and the body fixed coordinate system
o’-x’y’ (Figure 3).

As the marine vehicle used in our problem, we employ an autonomous under-
water vehicle (AUV) “r2D4” as described by Kim and Ura [10]. In Figure 3, actu-
ator inputs and kinematic variables are described. ψ is the yaw displacement of the
vehicle. While δpr denotes the main thruster axis deflection, δel and δer are the
deflections of elevators on left and right sides, respectively.

Figure 1.
Dependence of traveling time on traveling path.
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In this research, we approximate that the direction of the vehicle’s advance
velocity coincides with the x’-axis. It is arguable in the rigorous definition since
there certainly occurs sideslip during a turning motion of an underactuated vehicle.
However, as mentioned by Lewis et al. [16], the hydrodynamic sideslip induced by
a low-speed, slender vehicle is bounded within a sufficiently small range, justifying
our approximation. Since the distribution of a sea current is considered to be
deterministic in our research, current velocity is described as a function of the
position and time. Therefore, on the assumption that the advance velocity of a
vehicle and the current velocity are superimposable, the resultant vehicle velocity is
expressed as follows:

ð2Þ

ð3Þ

Figure 2.
Two-layer hierarchical control architecture for an AMV.

Figure 3.
Coordinate systems for optimal guidance problem formulation.
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where u and v are the components of the vehicle velocity relative to the inertial
frame, U0 is the advance speed of the vehicle in still water, and uc and vc are the
components of current velocity at a given position and time. It is noted that we
assume U0 is the constant throughout a travel, which implies the operating condi-
tion of steady cruise.

Eq. (4) shows the minimum-time guidance law originally presented by Bryson
and Ho [8]. Detailed procedures deriving Eq. (4) are well explained by Kim and Ura
[10]. It is noted here that if only deterministic, there is no restriction on the type of
the sea current in Eq. (4). That is, not only stationary but also time-varying sea
current can be applied to Eq. (4). This leads to one of the most powerful aspects of
our approach over many other path planning approaches based on combinatorial
optimization.

ð4Þ

The optimal guidance law shown above is a nonlinear ordinary differential
equation of unknown vehicle heading. The solution of optimal guidance law is used
as the optimal reference heading, by tracking which a vehicle achieves the
minimum-time travel to the destination, leaving the trail of optimal trajectory.

3. Numerical solution procedure

Eq. (4) is a nonlinear ordinary differential equation (ODE) for an unspecified
vehicle heading ψ(t). If the functions uc(x,y,t) and vc(x,y,t) describing current
velocity distribution are differentiable and deterministic, the solution of Eq. (4)
seems to be attainable with an initial value of ψ(t), in terms of an appropriate
numerical solution algorithm such as Runge-Kutta. However, in practice, with an
arbitrary initial heading a vehicle following the guidance law Eq. (4) does not reach
the destination, as depicted in Figure 4.

More precisely, consisting of a part of the solution, the initial vehicle heading is
not arbitrary but is to be assigned correctly. This is because Eq. (4) is derived from

Figure 4.
Solution convergence affected by initial heading.
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the Euler-Lagrange equation, which is a typical example of the two-point boundary
value problem, characterized by split boundary conditions in states and costates
[8, 11]. To obtain the solution of a two-point boundary value problem, an iterative
solution procedure is usually required. The most famous and commonly used
numerical procedures for such purpose are the shooting and relaxation methods
[17]. However, direct applications of these methods to our problem have significant
difficulties. In applying shooting method to a two-point boundary problem in time
domain, governing ODEs with proper initial guesses should be integrated until
reaching the upper limit of the boundary. However, as noticeable from its name,
i.e., the minimum-time guidance, our problem is a so-called free boundary one,
having unspecified upper limit in time domain. In treating a free boundary problem
by relaxation method, on the other hand, the independent variable should be
transformed into a new one defined between 0 and 1. Here, we can anticipate an
intrinsic serious difficulty in determining the stepsize in free boundary problems.
Properness of temporal grid distribution ensuring convergence is initially unknown,
and to know, it is extremely difficult before the end time-marching computation.
Moreover, strong initial guess dependency of the solution is another serious concern
in applying the relaxation method to our problem. Inappropriate initial guess pos-
sibly leads to local optimality or divergence [17].

As a new approach for deriving the numerical solution of the optimal guidance
law Eq. (4), we presented a search procedure, which determines correct initial
heading. Being named AREN (Arbitrary REference Navigation), our procedure
works globally on the basis of the minimum principle. Figure 5 summarizes the
algorithmic scheme of our solution procedure.

Note that in Figure 5 and hereafter, an asterisked variable denotes the one
corresponding to the optimal solution. In applying AREN, we first have to make a
vehicle routing simulation in which the vehicle travels to the destination following
an arbitrary guidance. It is noted here that the traveling time must be registered at
the final stage of this simulation. We call the traveling time the reference final time
and use it as the key criterion in seeking optimal initial heading. The navigation
applied to the simulation is called reference navigation, which is arbitrary if only
the vehicle’s arrival at the destination is assured. Therefore, simple one such as
proportional navigation (PN) based on the line-of-sight (LOS) guidance is fre-
quently used as the reference navigation. To find the correct initial heading, the
interval of 0–2π is divided by equally spaced N-1 subintervals, as represented by:

Figure 5.
Schematic of the numerical solution procedure AREN.
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ð5Þ

where is (i)th initial heading guess, and is the increment of the guess.

Next, by applying an initial heading guess to Eq. (4), we solve Eq. (4) in time

domain. This produces a simulated vehicle routing starting from . The routing

having been produced here is called the (i)th trial adjoining to . Once the vehicle

passes through the destination by the (i)th trial, it is regarded as a possible optimal
routing since the correct initial heading incorporated into the optimal guidance law
lets a vehicle reach the destination. Therefore, N trials are the candidates for the
simulated minimum-time routing. In practice, however, discretization error in the
optimal initial heading causes the residual in the optimal trajectory, making the
optimal solution identified in an approximate manner. For the vehicle trajectory
generated by a trial, we define the “minimum distance” as the shortest distance

between the destination and the trajectory. In Figure 6, , , and are the

minimum distances corresponding to (k-1)th, (k)th, and (k + 1)th trials, respectively.
When the minimum distance of (k)th trial is smaller than any other one,

satisfying:

ð6Þ

we choose the (k)th trial as the optimal routing because the vehicle approaches
the destination marking the smallest deviation. In determining the optimal routing
among the trials, however, there still remains a serious drawback. We have no idea
how long we have to continue a trial not to miss the true minimum distance of the
trial. We settle this problem by exploiting the result of reference navigation. The
reference navigation is apparently a nonoptimal one based on an arbitrary guidance
only assuring the arrival at the destination. Therefore, the reference final time
must be larger or equal to that of the optimal routing as follows:

ð7Þ

where represents the traveling time of the optimal routing. It should be noted

here that by the minimum principle [8, 11], we can set up a sufficient condition for

Figure 6.
Minimum distances of trials.
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seeking the optimal solution. By the minimum principle, once a trial has started
with an initial heading sufficiently close to the optimal value, the vehicle obviously
passes by the vicinity of the destination at the traveling time smaller than . In
other words, the reference final time qualifies as the upper limit of the necessary
simulation time of any trial, which assures the convergence to the vicinity of the
destination in case the trial is near optimal. In Figure 7, (k)th trial is selected as the

optimal routing among all trials terminated at since is the smallest mini-

mum distance.
The minimum distance of the optimal routing is to be interpreted as the residual

error in the converged solution. Therefore, it can be said that the smaller the

minimum distance is, the better the convergence is. When is still unacceptably

large though the (k)th trial has been accepted as the optimal routing, the initial

heading interval of � is subdivided, and the trials are repeated starting

from these subdivisions pursuing finer convergence.

4. Dynamic constraint

As mentioned previously, we adopt GNC system based on the hierarchical
control architecture consisting of two control layers. In the high-level control layer,

Figure 7.
Determining optimal routing among trials.

Figure 8.
Graphical description of the equation of motion for lateral dynamics.
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i.e., the optimal guidance, the guidance law derived irrespective of specific vehicle
dynamics is used. In the low-level control layer, however, vehicle dynamics is
implemented as an implicit constraint. When conducting the trials explained in
previous section, closed-loop dynamics of a specific vehicle is used. Therefore,
vehicle trajectories generated by the trials are feasible ones subject to the dynamic
constraint of a specific vehicle. Eq. (8) is the state-space model of the lateral
dynamics of r2D4 describing its sway, roll, and yaw responses. In Figure 8, kine-
matic variables and actuations appearing in Eqs. (8)–(10) are described graphically.
By solving Eq. (8) in time domain, velocities and attitudes of the vehicle are
obtained.

ð8Þ

where

ð9Þ

ð10Þ

5. Minimum-time guidance in stationary current flows

5.1 Reference navigation

As mentioned previously, in order to practice the numerical procedure AREN, a
vehicle routing simulation by the reference navigation has to be conducted before-
hand. Among several strategies for mobile vehicle navigation, the simplest one
ensuring arrival at the destination might be the PN based on LOS guidance. In all of
our optimal guidance examples presented in this paper, we employ PN as the
reference navigation.

5.2 Linear shearing flow

The first example of the optimal guidance in this paper is the minimum-time
routing in a current disturbance of linear shearing flow, taken from Bryson and Ho
[8]. The current velocity in this problem is described by:

ð11Þ
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ð12Þ

In Eq. (12), Uc and h are constants whose numerical values are set to be 1.54 m/s
and 100 m, respectively. In this example, the vehicle is to travel to the destination
located at the origin, starting from the initial position at (�186 m, 366 m). As an
operating condition, the vehicle is assumed to maintain its thrust power constant
throughout its travel, producing a constant advance speed of 1.54 m/s. This is an
important operating condition applied to all examples presented thereafter. With
the current distribution given as Eqs. (11) and (12), we can derive the analytic
optimal guidance law in a closed form, shown as follows:

ð13Þ

ð14Þ

where ψf represents the final vehicle heading taken at the destination. The
analytic optimal guidance law shown above is similar to that found by Bryson and
Ho [8] but has some differences due to the switched x and y.

Vehicle trajectories are shown in Figure 9. In Figure 10, vehicle headings
obtained by the routings conducted by PN, that is, the reference navigation, and by
optimal guidance are shown.

During the vehicle routing by PN, significant adverse drift happens at the initial
stage. This is because the speed of current flow exceeds the advance speed of the
vehicle in the region |x| > 100 m, as noticeable from Eqs. (11) and (12). On the other
hand, optimal guidance detours the vehicle across the upper half plane of the flow
region on purpose, taking advantage of the strong current flowing to favorable
direction. This leads to the dramatic decrease in traveling time. The traveling times
by PN and optimal guidance are 353.8 and 739.2 s, respectively, implying a 52%
reduction in the optimal guidance. As seen in Figure 9, the optimal trajectory

Figure 9.
Vehicle trajectories in a stationary linear shearing flow.
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obtained by the numerical solution shows extremely good agreement with the
analytic one.

As a criterion for evaluating the reference tracking performance in our two-layer
control architecture, we employ Normalized Root-Mean Square Error (NRMSE) fit
defined as follows:

ð15Þ

where ξref and ξ are the vectors of output reference and output, and represents

the mean value of ξ. The value of NRMSE fit varies between �∞ to 1, implying full
decorrelation to perfect fit between the output reference and the output. In this
simulation, NMRES fit between the optimal reference heading and the actually
tracked one has marked 0.993. This means highly good heading tracking result,
which is also found in Figure 10. The numerical solution approximates the analytic
solution with extremely high accuracy (Figure 9), validating AREN as an effective
numerical procedure for the optimal guidance law Eq. (4). As shown in this exam-
ple, our approach based on the numerical procedure AREN and two-layer control
architecture works properly achieving minimum-time AMV routing in a given sea
current field.

5.3 Sea current in Northwest Pacific near Japan

In response to the successful result obtained from the benchmark example
shown in previous section, we apply our optimal guidance to the minimum-time
routing problem in an actual sea region of stationary sea current. The sea region
selected is located in the Northwest Pacific Ocean near Japan. The daily updated sea
current data of this region are available from [18] presented by the Japan Meteoro-
logical Agency. The most notable environmental characteristic in this sea region is
the current field dominated by Kuroshio. The Kuroshio is a strong western

Figure 10.
Vehicle headings during travels in a stationary linear shearing flow.
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boundary current flowing northeastward along the coast of Japan. In the sea current
data from [18], current velocity is defined only on the grid nodes covering the
region. As noticeable from Eq. (4), however, in order to derive the optimal heading
reference, current velocity and its gradient at every vehicle position have to be
available. In the previous example, their exact values are easily obtained by analytic
formulae. In this example, however, since they are defined only on the grid nodes,
current velocity and its gradient are estimated by interpolating the predefined
values on grid nodes surrounding the present vehicle position. In applying the
current velocity interpolation, the grid node nearest the present vehicle position is
identified first. Then, the current velocity at the present vehicle position is esti-
mated by 2-D bi-quadratic interpolation utilizing the values on the nearest node and

Figure 11.
Vehicle trajectories in a sea current in Northwest Pacific near Japan.

Figure 12.
Time sequences of vehicle headings during the travel.
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eight nodes surrounding current vehicle position. Gradients of current velocities are
obtained by the same manner. Since the velocity gradients are not provided from
the database, however, prior to the interpolation, we calculate their nodal values by
finite difference approximation.

Figure 11 shows the vehicle trajectories obtained by the guidance of three dif-
ferent objectives already explained in the previous example. Time sequences of the
vehicle headings corresponding to the vehicle trajectories shown in Figure 11 are
depicted in Figure 12.

As shown in the figure, like the preceding examples in which the current veloc-
ities and their gradients are analytically available anywhere in the region, optimal
reference trajectory has successfully been derived by interpolation-based current
velocities and gradients. Moreover, subject to its dynamic constraint, the vehicle
tracks the optimal reference trajectory with a negligibly small deviation, resulting in
the NMRES fit to be 0.986. This demonstrates the validity of our optimal guidance
strategy in any actual sea currents, if only their distribution is deterministic.

6. Suboptimal strategy

6.1 Environmental uncertainty

In the following example, we apply our optimal guidance strategy to a vehicle
routing in the same sea region shown in the preceding example. The only thing
different from the preceding example is that we consider uncertainty in our sea
current data in this example. The uncertainty components in sea current velocities
are expressed as additive white Gaussian noise (AWGN). Taking the sea current
velocities in the Northwest Pacific Ocean used beforehand as the mean values, the
on-site current velocity including uncertainty is given by:

ð16Þ

ð17Þ

where ucs and vcs are the components of onsite current velocity, uc and vc are the
components of deterministic current velocity taken from the database, and eu(σ)
and ev(σ) are the AWGNs with standard deviation σ. As the parameter for specify-
ing the value of σ, we introduce the regional mean current speed Ucm defined as
follows:

ð18Þ

where i represents the index covering all grid nodes on which the database-based
current velocities are defined.

Vehicle trajectories by optimal vehicle routings conducted on two different level
uncertainties are shown in Figure 13. When the level uncertainty is such that
σ = 2Ucm, optimal heading reference derived without considering any uncertainty
still seems acceptable. As a result, though slightly deviating from the destination,
the final position of the vehicle remains in the vicinity of the destination. When the
level of uncertainty increases up to σ = 4Ucm, however, the vehicle following the
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optimal reference heading can no longer approach the destination, which means the
failure in accomplishing the minimum-time travel to the destination.

6.2 Suboptimal guidance

The suboptimal guidance proposed in this research is a fail-safe or fault-tolerable
strategy toward robust field implementation of our optimal guidance strategy. The
optimal reference heading obtained by our approach is the one derived without
considering the dynamics of a specific vehicle. This means the optimal trajectory
may not be realized by a specific vehicle. Hence, we note that the dynamic con-
straint is one possible source of the failure in putting our approach into practice for
an actual field application. Another significant source of the failure is the environ-
mental uncertainty, as already shown above. It is easily expected that as a vehicle
progresses following the optimal heading in the sea region of environmental uncer-
tainty, due to the interaction with the current flow different from that was used in
deriving the optimal heading, its actual trajectory deviates away from the optimal
reference trajectory, and eventually, it might fail in reaching the destination. The
basic idea of our suboptimal approach is rather simple. Let d1 denotes the deviation
distance between the present vehicle position and the preassigned one on the
optimal reference trajectory obtained by AREN. When d1 exceeds a prescribed
acceptable limit da, the high-level controller in autopilot is activated to reroute the
vehicle by reapplying AREN. This rerouting is repeated whenever d1 exceeds a
predefined acceptable limit. The resulting vehicle routing is not rigorously optimal,
since it includes past nonoptimal travels. However, Bellman’s principle of optimality
[8, 11] states that it is evidently the best strategy we can take under the condition
we are faced with. We, therefore, call this approach the suboptimal guidance.
Figure 14 depicts the schematic of our suboptimal guidance explained thus far.

Figure 13.
Vehicle trajectories in Northwest Pacific near Japan. The sea current velocities in this example include
uncertainties modeled by AWGN.
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6.3 Suboptimal vehicle routing in a stationary sea current

Here we show another example of vehicle routing in the Northwest Pacific
Ocean containing the environmental uncertainty of σ = 4Ucm. Vehicle trajectories
are shown in Figure 15.

In this example, a vehicle does not merely track the pregenerated optimal head-
ing reference throughout but regenerates and follows new ones whenever neces-
sary. In other words, the vehicle follows the optimal heading references revised
repeatedly on the basis of our suboptimal strategy. In this example, we set da, the
acceptable limit of position deviation, to be 12,500 m. As noted in the figure,
optimal vehicle routing is revised five times, making the vehicle to reach the desti-
nation, at last. Repeating the vehicle rerouting five times, our suboptimal guidance
has succeeded in taking the vehicle to the destination. Traveling times of vehicle
routings are summarized in Table 1. It is noted here that, while the results of vehicle
routing by PN, straight-line tracking, and optimal guidance are deterministic, the
result by suboptimal guidance is not since it is derived using the model including
environmental uncertainties. Therefore, care should be taken in interpreting the
suboptimal result. The result of suboptimal vehicle routing is event-dependent, so
that it differs in every event. In Table 1, we find that the traveling time of
suboptimal vehicle routing is 208372.0 s. Notably, it is even shorter than that of the

Figure 14.
Schematic of the vehicle routing by suboptimal guidance.

Figure 15.
Vehicle trajectories in NW Pacific generated by suboptimal routing.
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optimal routing in the sea current without uncertainty. This implies that in total, the
uncertainties have affected the travel in a favorable manner, which may not be the
case in other events, however.

6.4 Suboptimal vehicle routing in a time-varying tidal flow

The last example presented in this chapter is an underwater vehicle routing in
Tokyo Bay. In this example, we consider the mission of minimum-time homing to a
destination. Due to its narrow entrance and shallow depth, sea currents in Tokyo
Bay are hardly affected by the outer ocean currents such as Kuroshio. Instead, like
many other littoral zones, currents in Tokyo Bay are dominated by the tidal flow. In
this research, we use the time-varying sea current distribution data in Tokyo Bay,
generated by a numerical tidal flow simulation model by Kitazawa et al. [19]. As
was the case in the previous examples, we first conduct optimal vehicle routing
without considering environmental uncertainties. In Figure 16, vehicle trajectories
generated by the routings of different guidance strategies are shown. As found in
the figure, our approach of optimal guidance successfully accomplishes the
minimum-time homing mission even the sea current is time varying. Note that the
current distribution shown in the figure is the one taken at the traveling time of
straight-line tracking, which makes the last arrival at the destination.

Traveling time

Guidance Nonoptimal PN 232198.0 s

Straight-line tracking 244312.0 s

Optimal 212006.5 s

Suboptimal 208372.0 s

Table 1.
Traveling times of vehicle routings in NW Pacific.

Figure 16.
Vehicle trajectories in the tidal flow in Tokyo Bay.
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Next, on the basis of our suboptimal strategy, we conduct the vehicle routing
simulation, incorporating uncertainties into the time-varying tidal flow in Tokyo
Bay. The standard deviation of the uncertainties is set to be 4Ucm, as was the case in
the preceding examples. Figure 17(a)–(f) shows sequential vehicle trajectories
created by our suboptimal vehicle routing. The traveling time of the suboptimal

Figure 17.
Sequential vehicle trajectories in Tokyo Bay generated by suboptimal routing (a) t = 4000 s (b) t = 11000 s
(c) t = 13000 s (d) t = 14000 s (e) t = 18000 s (f) t =24251 s.
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vehicle routing and those of the optimal, PN, and straight-line tracking obtained in
the previous example are summarized in Table 2.

In this example, we set da, the acceptable limit of deviation distance, to be
1800 m. As seen in the figures, the vehicle has successfully accomplished its homing
mission by the suboptimal routing, repeating five revised travels. In view of the
results obtained by this example, we find that our suboptimal approach works
effectively even in a time-varying environment including uncertainties.

7. Conclusion

In this chapter, a systematic procedure for obtaining the numerical solution of
the optimal guidance law to achieve the minimum-time routing in a region of sea
current has been presented. The optimal heading is obtained as the solution of the
optimal guidance law, which is fed to the heading control system as the reference.

Reduced computational cost is one of the outstanding features of the proposed
procedure. While linearly proportional to the area of a search region in DP, the
computational time in our procedure exhibits square root dependence. Moreover,
unlike the other path finding algorithms such as DP or GA, when applied to a time-
varying environment, our procedure does not increase the search space, resulting in
the same computational cost as required in the time-invariant ones.

The performance of the optimal guidance has strong dependency on the current
distribution. While an extremely simple configuration, such as uniform flow, hardly
allows navigation time reduction by the optimal guidance, a multi-directional com-
plicated flow distribution enhances the potential efficacy of the optimal guidance.

As a fail-safe or fault-tolerable strategy in optimal guidance, the concept of
suboptimal guidance has been proposed. The fact that there actually are several
possible actions lessening the chance of optimality emphasizes the practical impor-
tance of our suboptimal strategy.

We have not considered the problem of unknown or nondeterministic currents.
Our approach cannot be applied to an entirely unknown environment. For a sea
region with partially or coarsely defined current flow, however, an estimated dis-
tribution can be built by means of interpolation and extrapolation. As has already
been shown in the optimal and suboptimal vehicle routing examples in actual sea
regions, spatiotemporal interpolation of the current velocity successfully derives the
converged solution.
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Traveling time

Guidance Nonoptimal PN 25848.0 s

Straight-line tracking 27744.5 s

Optimal 24002.0 s

Suboptimal 24251.0 s

Table 2.
Traveling times of vehicle routings in Tokyo Bay.
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