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Chapter

Combined Gravity or
Self-Potential Anomaly Formula
for Mineral Exploration
Khalid S. Essa and Mahmoud Elhussein

Abstract

A combined gravity and/or self-potential anomaly formula is utilized to estimate
the model parameters of the buried geologic structures represented by simple geo-
metric. The simple geometric shapes (spheres, cylinders, and sheets) are not really
found but often applied to reduce the nonuniqueness in interpreting the gravity and
self-potential data. Numerous approaches through the combined formula such as
least squares, Werner deconvolution, and the particle swarm optimization method
are used. The application of these methods was demonstrated by applying a syn-
thetic gravity and self-potential example without and with 10% random noise to
compare their efficiency in estimating the model parameters of the buried struc-
tures. Besides, they were applied to two field data for mineral exploration. The
appraised model parameter values from each method were compared together and
with those published in literature.

Keywords: gravity and/or self-potential, model parameters, noise, mineral
exploration

1. Introduction

Minerals exploration is vital in many countries to increase the income of their
people and their economy relies upon discovering minerals. The minerals or ores
mined have different variety according to its important in the economy. Geophysical
passive method such as gravity and self-potential play an important role in discover-
ing these minerals or ores [1–5]. The gravity method based on measuring the varia-
tions in the Earth’s gravitational field resulting from the density differences between
the subsurface rocks while the self-potential method depended on the electrical
potential that develops on the earth’s surface due to flow of the natural electrical
current on the subsurface [6, 7]. The interpretation of gravity and self-potential data
falls on the main two categories as follows: the first category depends on three-
dimensional and two-dimensional data elucidation [8–13], the second category is
depending using the simple geometric-shaped model such as spheres, cylinders, and
sheets which are playing a vital role in interpreting the subsurface structures to reach
the priors information that help in more investigations [14–20]. In addition, methods
depend on the global optimization algorithms such as genetic algorithm [21–24],
particle swarm [25, 26], simulated annealing [27–32], flower pollination [33],
memory-based hybrid dragonfly [34], differential evolution [35, 36].
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Here, a combined formula for both gravity and self-potential [37] is applied to
construct this chapter. Moreover, this formula is used to calculate the buried model
parameters, for example in case of self-potential data, the parameters are the elec-
tric dipole moment or the amplitude coefficient (K), the polarization angle (θ), the
depth (z), the shape (q), and the origin location (xo) while in case of gravity data,
the parameters are the amplitude coefficient (K), the depth (z), the shape (q), and
the origin location (xo) for the buried simple-geometric shapes. Three approaches
are suggested to interpret the gravity or self-potential anomaly profile through the
combined formula. These methods are least squares, Werner deconvolution, and
the particle swarm optimization. The advantage of each method is demonstrated by
applying a synthetic example for gravity and self-potential data without and with a
10% random noise to compare their efficiency in deducing the buried model
parameters. In addition, they tested on two field example for mineral exploration.

2. The suggested combined gravity or self-potential formula

Firstly, the gravity anomaly formula due to simple geometric shapes is
[15, 16, 18]

g xi, z, qð Þ ¼ K
zm

xi � xoð Þ2 þ z2
� �q : (1)

Secondly, the self-potential anomaly formula for the same simple geometric
models is [14]

V xi, z, θ, qð Þ ¼ K
xcosθ þ zsinθ

xi � xoð Þ2 þ z2
� �q : (2)

In Refs. [1, 37], Eqs. (1) and (2) were used to join together to produce a com-
bined gravity or self-potential formula for the simple geometric structures such as a
semi-infinite vertical cylinder, a dike, a horizontal cylinder, and a sphere (Figure 1)
as follows:

J xið Þ ¼ K
cxi cosθð Þn þ zp sinθð Þm

xi � xoð Þ2 þ z2
� �q , (3)

where K is the amplitude coefficient, which depends on the shape of the buried
model, z is the depth, θ is the polarization angle, xi is the horizontal coordinates,
xo is the origin location of the buried structure, q is the shape (i.e., equals 1.5 for a
sphere, 1.0 for a horizontal cylinder, and 0.5 for a semi-infinite vertical cylinder),
c, n, p, and m are constants, which depend on the shape [37]. Eq. (3) is the
combined formula for interpreting gravity or self-potential data. So, three suggested
approaches were applied to estimate the unknown model parameters as follows:

2.1 The least-squares approach

Essa [37] developed this approach, which was relied on solving the problem of
finding the depth from the measured data by solving a nonlinear form F(z) = 0 by
minimizing it in a least-squares sense. After that, the estimated depth was used in
estimating other parameters (the polarization angle and the dipole moment for

2

Geophysics and Ocean Waves Studies



self-potential data or the amplitude coefficient for gravity data) via suggesting the shape
of the buried structure (the semi-infinite vertical cylinder, the dike, the horizontal
cylinder and the sphere) at the lowest root-mean-squared error. This approach is a semi-
automatic because that need assuming the shape of the buried structures (a priori
information needed) and applied all observed points in estimating the model parameters.

2.2 Werner deconvolution approach

Werner deconvolution was proposed by Werner in 1953 [38]. This approach is
used to estimate mainly the origin location and the depth of the buried structures.

Figure 1.
A sketch diagram for the simple geometric bodies as follows: a sphere model (top panel), a horizontal cylinder
model (middle panel), and a semi-infinite vertical cylinder model (bottom panel).
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Werner proposed to transform the equation of unknown parameters into a rational
function. Eq. (3) can be rewritten in linear form follow:

J xið Þ xi � xoð Þ2 þ z2
� �q

� Kcxi cosθð Þn þ Kzp sinθð Þm ¼ 0, (4)

J xið Þ xi � e1ð Þ2 þ e2
� �q

� e3xi þ e4 ¼ 0, (5)

where e1 ¼ xo, e2 ¼ z2, e3 ¼ Kc cosθð Þn, e4 ¼ Kzp sinθð Þm:

Eq. (5) is linear form in the four variables e1, e2, e3, and e4, so that a mathemat-
ically unique solution can be found for them from evaluating the equation at four
points by assuming the shape of the buried structure.

2.3 The particle swarm approach

The particle swarm was suggested by [39] and has many various applications,
for example, in geophysics [40–42]. For more detail in this approach, you find it
many published literature [43, 44]. The model parameters values of the unknowns
are relied upon the objective function, so that every problem can be resolved. In this
approach, the particles represent the parameter which we are invert. In the begin-
ning, each particle has a location and velocity. After that each particle changes its
location (Pbest) at every iteration until reach the optimum location ( Jbest). This
operation is done by using the following forms:

Vkþ1
i ¼ c3V

k
i þ c1rand Pbest � xkþ1

i

� �

þ c2rand Jbest � xkþ1
i

� �

, (6)

xkþ1
i ¼ xki þ Vkþ1

i , (7)

where vki is the velocity of the particle i at the kth cycle, xki is the current i
modeling at the kth cycle, rand is the random number between [0, 1], c1 and c2 are
positive constant numbers and equal 2, c3 is the inertial coefficient which control

the velocity of the particle and usually taken less than 1, xki is the positioning of the
particle i at the kth cycle.

The five source parameters (K, z, θ, xo, and q) can be assessed by using the
particle swarm approach on the subsequent objective function (Obj):

Obj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
j¼1 Joj � Jcj

� �2

N

v

u

u

t

, (8)

where N is the data points number, Joj is the observed gravity or self-potential

anomaly, and Jcj is the estimated anomaly at the point xj.

3. Synthetic example

To test the ability of each suggested approach in assessing the buried model
parameters for the simple geometric shapes such as spheres, cylinders, and sheets.
Two synthetic examples are suggested for these interpretation. First one is belong-
ing to use the gravity data and second is applying the self-potential data.

3.1 Gravity anomaly model

A gravity anomaly of a horizontal cylinder model is generated using the follow-
ing parameters K = 200 mGal�m, z = 5 m, xo = 0, q = 1.0, and profile length = 100 m
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(Figure 2). The procedures of interpreting the forward model are done using three
steps as follows:

First step: using the least-squares approach to interpret the gravity anomaly
yielding from the above mentioned parameters for different s-values for the three
suggested shape bodies, i.e., q = 0.5, q = 1.0, and q = 1.5, after that the RMS is

Figure 2.
A gravity model due to horizontal cylinder without and with a 10% of random noise (K = 200 mGal�m, z = 5
m, xo = 0, q = 1, and profile length = 100 m).

Table 1.
Numerical results using the least-squares approach for a gravity model due to horizontal cylinder without and
with a 10% of random noise (K = 200 mGal�m, z = 5 m, xo = 0, q = 1, and profile length = 100 m).
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calculated to execute the best-fit parameters (happens at the lowest RMS)
(Table 1). Second step:Werner deconvolution approach is utilized to infer the same
gravity data. An 11 clustered solutions to determine in the average evaluated depth
(4.9 m) (Figure 2). Third step: the particle swarm method is applied to obtain the
parameters (Table 2).

Moreover, a 10% random noise added to the synthetic gravity data mentioned
above (Figure 2) to test the efficiency of the suggested approaches in interpreting
the gravity data. Also, the three approaches are used for this data as mentioned in

Table 2.
Numerical results using the particle swarm approach for a gravity model due to horizontal cylinder without
and with a 10% of random noise (K = 200 mGal�m, z = 5 m, xo = 0, q = 1, and profile length = 100 m).

Figure 3.
Werner deconvolution solutions for a gravity model due to horizontal cylinder without and with a 10% of
random noise (K = 200 mGal�m, z = 5 m, xo = 0, q = 1, and profile length = 100 m).
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Table 1 (the least-squares approach results), Figure 3 (Werner deconvolution
results), and Table 2 (the particle swarm results). Finally, the estimated parameters
are in all case are in good agreement with the true parameters.

Figure 4.
A self-potential model due to horizontal cylinder without and with a 10% of random noise (K = 200 mV�m,
z = 5 m, θ = 45°, xo = 0, q = 1, and profile length = 100 m).

Table 3.
Numerical results using the least-squares approach for a self-potential model due to horizontal cylinder without
and with a 10% of random noise (K = 200 mV�m, z = 5 m, θ = 45°, xo = 0, q = 1, and profile length = 100 m).
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3.2 Self-potential anomaly model

A self-potential anomaly of a horizontal cylinder model is generated using the
following parameters K = 200 mV�m, z = 5 m, θ = 45°, q = 1.0, and profile length =
100 m (Figure 4). The similar interpretation procedures mentioned above are used

Figure 5.
Werner deconvolution solutions for a self-potential model due to horizontal cylinder without and with a 10% of
random noise (K = 200 mV�m, z = 5 m, θ = 45°, xo = 0, q = 1, and profile length = 100 m).

Table 4.
Numerical results using the particle swarm approach for a self-potential model due to horizontal cylinder
without and with a 10% of random noise (K = 200 mV�m, z = 5 m, θ = 45°, xo = 0, q = 1, and profile length
= 100 m).
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as follows: first, the least-squares approach is applied to interpret the self-potential
data using various s-values for the three suggested shape bodies, i.e., q = 0.5, q = 1.0,
and q = 1.5, after that the RMS is calculated to execute the best-fit parameters
(happens at the lowest RMS) (Table 3). Secondly, the Werner deconvolution
approach is utilized to infer the same self-potential data using 11 clustered solutions
to determine in the average evaluated depth (4.9 m) (Figure 5). Third step: the
particle swarm method is applied to obtain the parameters (Table 4). Besides, a
10% random noise was added to this data (Figure 3) to test the efficiency of the
suggested approaches in interpretation. Furthermore, the results from applying the
three approaches are mentioned in Table 3 (the least-squares approach results),
Figure 5 (Werner deconvolution results), and Table 4 (the particle swarm results).
Finally, the estimated parameters are in all case are in good agreement with the
actual parameters.

4. Field examples

The three suggested approaches have been organized to inspect the gravity and
self-potential anomalies due to three simple bodies of various structures, e.g.,
sheets, cylinders, and spheres. Two mineral field examples from India and Turkey
have been interpreted to study the reliability of the suggested approaches. The
relevant model parameters (K, z, θ, xo, and q) are evaluated in an integrated way
with the existing geological and geophysical results.

4.1 Gravity anomaly of manganese ore body

Figure 6 shows a gravity anomaly was collected over a manganese deposit near
Nagpur, India [45]. This gravity profile has a length of 333 m and digitized with an
interval of 27 m. This gravity anomaly is subjected to the three interpretation
approaches as discussed earlier. Firstly, the interpreted results due to applying the
least-squares approach are shown in Table 5 for various s-values. Besides, the use of

Figure 6.
A gravity anomaly due to a manganese ore body, India.
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Table 5.
Numerical results using the least-squares approach for a manganese field example, India.

Table 6.
Numerical results using the particle swarm approach for a manganese field example, India.

Figure 7.
A self-potential anomaly due to a Weiss copper ore body,Turkey.
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Werner deconvolution approach, the interpretive results obtained are z = 56.8 m
and xo = 0.6 m. Finally, the depth and the other model parameters evaluated by
using the particle swarm approach are presented in Table 6.

4.2 Self-potential anomaly of manganese ore body

Figure 7 demonstrates a self-potential anomaly over a Weiss copper ore body in
the Ergani copper district, Turkey [46]. The Weiss self-potential anomaly profile
has a length of 144 m and digitized with an interval of 7.7 m. This anomaly has
subjected to the three interpretation approaches as discussed earlier. Firstly, the
interpreted results due to applying the least-squares approach are shown in Table 7
for various s-values. Also, the applying of the Werner deconvolution approach, the
interpretive results obtained are z = 36.9 m and xo = �2.1 m. Finally, the depth and
the other model parameters evaluated by using the particle swarm approach are
presented in Table 8.

5. Conclusions

The three geophysical approaches (the least-squares approach, Werner
deconvolution approach, and the particle swarm approach) discussed here to inter-
pret gravity or self-potential data using a combined formula for the simple

Table 7.
Numerical results using the least-squares approach for a Weiss copper field example, Turkey.

Table 8.
Numerical results using the particle swarm approach for a Weiss copper field example, Turkey.
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geometric models (spheres, cylinders, and dikes) are stable and give a good results.
The stability of these approaches has been confirmed and tested applying two
synthetic examples with a 10% and without random noise and two field data for
mineral explorations. The estimated parameters in all cases demonstrated the
importance of these approaches in interpreting the gravity or self-potential data.
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