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Chapter

Entropy in Quantum Mechanics
and Applications to
Nonequilibrium Thermodynamics
Paul Bracken

Abstract

Classical formulations of the entropy concept and its interpretation are intro-
duced. This is to motivate the definition of the quantum von Neumann entropy.
Some general properties of quantum entropy are developed, such as the quantum
entropy which always increases. The current state of the area that includes ther-
modynamics and quantum mechanics is reviewed. This interaction shall be critical
for the development of nonequilibrium thermodynamics. The Jarzynski inequality
is developed in two separate but related ways. The nature of irreversibility and its
role in physics are considered as well. Finally, a specific quantum spin model is
defined and is studied in such a way as to illustrate many of the subjects that have
appeared.

Keywords: classical, quantum, partition function, temperatures, entropy,
irreversible

1. Introduction

The laws of thermodynamics are fundamental to the present understanding of
nature [1, 2]. It is not surprising then to find they have a very wide range of
applications beyond their original scope, such as to gravitation. The analogy
between properties of black holes and thermodynamics could be extended to a
complete correspondence, since a black hole in free space had been shown to radiate
thermally with a temperature T ¼ κ=2π, where κ is the surface gravity. One should
be able to assign an entropy to a black hole given by SH ¼ AH=4 where AH is the
surface area of the black hole [3]. In the nineteenth century, the problem of recon-
ciling time asymmetric behavior with time symmetric microscopic dynamics
became a central issue in this area of physics [4]. Lord Kelvin wrote about the
subjection of physical phenomenon to microscopic dynamical law. If then the
motion of every particle of matter in the universe were precisely reversed at any
instant, the course of nature would be simply reversed for ever after [5]. Physical
processes, on the other hand, are irreversible, such as conduction of heat and
diffusion processes [6, 7]. It subsequently became apparent that not only is there no
conflict between reversible microscopic laws and irreversible microscopic behavior,
but there are extremely strong reasons to expect the latter from the former. There
are many reasons; for example, there exists a great disparity between microscopic
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and macroscopic scales and the fact that the events we observe in the macroworld
are determined not only by the microscopic dynamics but also by the initial
conditions or state of the system.

In the twentieth century, it became clear that the microworld was described by a
different kind of physics along with mathematical ideas that need not be taken into
account in describing the macroworld. This is the subject of quantum mechanics.
Even though the new quantum equations have similar symmetry properties as their
classical counterparts, it also reveals numerous phenomena that can contribute at
this level to the problems mentioned above. These physical phenomena which play
various roles include the phenomenon of quantum entanglement, the effect of
decoherence in general, and the theory of measurements as well.

The purpose of this is to study the subject of entropy as it applies to quantum
mechanics [8, 9]. Its definition is to be relevant to very small systems at the atomic
and molecular level. Its relationship to entropies known at other scales can be
examined. It is also important to relate this information from this new area of
physics to the older and more established theories of thermodynamics and statistical
physics [10–15]. To summarize, many good reasons dictate that the arrow of time is
specified by the direction of increase of the Boltzmann entropy, the von Neumann
macroscopic entropy. To relate the quantum Boltzmann approach to irreversibility
to measurement theory, the measuring apparatus must be included as a part of the
closed quantum mechanical system.

2. Entropy and quantum mechanics

Boltzmann’s great insight was to connect the second law of thermodynamics
with phase space volume. This he did by making the observation that for a dilute
gas, log ∣ΓM∣ is proportional up to terms negligible compared to the system size, to
the thermodynamic entropy of Clausius. He then extended his insight about the
relation between thermodynamic entropy and log ∣ΓM∣ to all macroscopic systems,
no matter what their composition. This gave a macroscopic definition of the obser-
vationally measureable entropy of equilibrium macroscopic systems. With this
connection established, he generalized it to define an entropy for systems not in
equilibrium.

Clearly, the macrostate M xð Þ is determined by x, a point in phase space, and
there are many such points, in fact a continuum, which correspond to the same M.
Let ΓM then be the region in Γ consisting of all microstates x corresponding to a
given macrostate M. Boltzmann associated with each microstate x of a macroscopic
system M a number SB, which depends only on M xð Þ, such that up to multiplicative
and additive constants is given by

S xð Þ ¼ SB M xð Þð Þ ¼ kB log ∣ΓM∣: (1)

This S is called the Boltzmann entropy of a classical system. The constant kB ¼
1:38 � 10�16 erg/K is called Boltzmann’s constant, and if temperature is measured in
ergs instead of Kelvin, it may be set to one. Boltzmann argued that due to large
differences in the sizes of ΓM, SB xtð Þ will typically increase in a way which explains
and describes the evolution of physical systems towards equilibrium.

The approach of Gibbs, which concentrates primarily on probability distribu-
tions or ensembles, is conceptually different from Boltzmann’s. The entropy of
Gibbs for a microstate x of a macroscopic system is defined for an ensemble density
ρ xð Þ to be
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SG ρð Þ ¼ �kB

ð

Γ

ρ xð Þ log ρ xð Þð Þdx: (2)

In (2), ρ xð Þ is the probability for the microscopic state of the system to be found
in the phase space volume element dx. Suppose ρ xð Þ is taken to be the generalized
microcanonical ensemble associated with a macrostate M

ρM xð Þ ¼ ΓMj j�1, x∈Γ;

0, otherwise:

(

(3)

Then clearly

SG ρMð Þ ¼ kB log ∣ΓM∣ ¼ SB Mð Þ: (4)

The probability density for the system in the equilibrium macrostate ρMeq
is the

same as that for the microcanonical and equivalent to the canonical or
grandcanonical ensemble when the system is of macroscopic size. The time devel-
opment of SB and SG subsequent to some initial time when ρ ¼ ρM is very different
unless M ¼ Meq when there is no further systematic change in M or ρ. In fact, SG ρð Þ
never changes in time as long as x evolves according to Hamiltonian evolution, so ρ

evolves according to the Liouville equation. Then SG does not give any indication
that the system is evolving towards equilibrium. Thus the relevant entropy for
understanding the time evolution of macroscopic systems is SB and not SG.

From the standpoint of mathematics, these expressions for classical entropies
can be unified under the heading of the Boltzmann-Shannon-Gibbs entropy [16]. A
very general form of entropy which includes those mentioned can be defined in a
mathematically rigorous way. To do so, let Ω,A, μð Þ be a finite measure space, ν a
probability measure that is absolutely continuous with respect to μ, and its Radon-
Nikodym derivative dν=dμ exists. The generalized BSG entropy is defined to be

SBSG ¼
ð

dν

dμ
� log dν

dμ

� �

dν, (5)

when the integrand is integrable.
This includes the classical Boltzmann-Gibbs entropy when dμ and dν are given by

dμ ¼ d3Npd3Nq

ℏ
3N

, dν ¼ ρcldμ: (6)

It also includes the Shannon entropy appearing in information theory in which

Ω ¼ 1, 2, …f g, μ 1f gð Þ ¼ μ 2f gð Þ ¼ … ¼ 1, ν if gð Þ ¼ 1: (7)

In this case, (5) gives the entropy to be

S ¼ �
X

i

ρi log ρið Þ: (8)

In attempting to translate these considerations to the quantum domain, it is
immediately clear that a perfect analogy does not exist.

Although the situation is in many ways similar in quantum mechanics, it is not
identical. The irreversible incompressible flow in phase space is replaced by the
unitary evolution of wave functions in Hilbert space and velocity reversal of x by
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complex conjugation of the wave function. The analogue of the Gibbs entropy (2) of
an ensemble is the von Neumann entropy of a density matrix ρ:

SvN ρð Þ ¼ �kBTr ρ log ρð Þ: (9)

This formula was given by von Neumann. It generalizes the classical expres-
sion of Boltzmann and Gibbs to the realm of quantum mechanics. The density
matrix with maximal entropy is the Gibbs state. The range of SvN is the whole of
the extended real line 0,∞½ �, so to every number ζwith 0< ζ≤∞, there is a density
matrix ρ such that SvN ρð Þ ¼ ζ. Like the classical SG ρð Þ, this does not alter in time
for an isolated system evolving under Schrödinger evolution. It has value zero
whenever ρ represents a pure stare. Similar to SG ρð Þ, it is not most appropriate for
describing the time symmetric behavior of isolated macroscopic systems. The
Szilard engine composed of an atom is an example in which the entropy of a
quantum object is made use of. von Neumann discusses the macroscopic entropy
of a system, so a macrostate is described by specifying values of a set of commut-

ing macroscopic observable operators Â, such as particle number, energy, and so
forth, to each of the cells that make up the system corresponding to the eigen-
values aα, an orthogonal decomposition of the system’s Hilbert space H into linear

subspaces Γ̂α in which the observables Â take the values aα. Let Πα the projection

into Γ̂α. von Neumann then defines the macroscopic entropy of a system with
density matrix ~ρ as

~Smac ~ρð Þ ¼ kB
X

N

α¼1

pα ~ρð Þ log ∣Γ̂α∣� kB
X

N

α¼1

pα ~ρð Þ log pα ~ρð Þ: (10)

Here, pα ~ρð Þ is the probability of finding the system with density matrix ~ρ in the
microstate Mα

pα ~ρð Þ ¼ Tr Πα~ρð Þ, (11)

and ∣Γ̂α∣ is the dimension of Γ̂α. An analogous definition is made for a system
which is represented by a wave function Ψ; simply replace pα ρð Þ by pα Ψð Þ ¼
Ψ,ΠαΨh i. In fact, ∣ΨihΨ∣ just corresponds to a particular pure density matrix.

von Neumann justifies (10) by noting that

~Smac ρð Þ ¼ �kBTr ~ρ log ~ρ½ � ¼ SvN ~ρð Þ, (12)

for

~ρ ¼
X

α

pα
∣Γ̂α∣

Πα, (13)

and ~ρ is macroscopically indistinguishable from ρ.
A correspondence can be made between the partitioning of classical phase space

Γ and the decomposition of Hilbert space H and to define the natural quantum
analogues to Boltzmann’s definition of SB Mð Þ in (1) as

ŜB Mαð Þ ¼ kB log ∣Γ̂Mα
∣ (14)

where ∣Γ̂Mα
∣ is the dimension of Γ̂Mα

. With definition (14) the first term on the
right of (10) is just what would be stated for the expected value of the entropy of a
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classical system of whose macrostate we were unsure. The second part of (10) will
be negligible compared to the first term for a macroscopic system, classical or
quantum, and going to zero when divided by the number of particles.

Note the difference that in the classical case, the state of the system is
described by x∈Γα for some α, so the system is always in one of the macrostates
Mα. For a quantum system described by ρ or Ψ, this is not the case. There is no
analogue of (1) for general ρ or Ψ. Even when the system is in a macrostate
corresponding to a definite microstate at t0, only the classical system will be in a
unique macrostate at time t. The quantum system will in general evolve into a
superposition of different macrostates, as is the case in the Schrödinger Cat
paradox. In this wave function, Ψ corresponding to a particular macrostate
evolves into a linear combination of wave functions associated with very differ-
ent macrostates. The classical limit is obtained by a prescription in which the
density matrix is identified with a probability distribution in phase space and the
trace is replaced by integration over phase space. The superposition principle
excludes partitions of the Hilbert space: an orthogonal decomposition is all that is
relevant.

2.1 Properties of entropy functions

Entropy functions have a number of characteristic properties which should be
briefly described in the quantum case. The set of observables will be the bounded,
self-adjoint operators with discrete spectra in a Hilbert space. The set of normal
states can be taken to be the density operators or positive operators of trace one.

The entropy functional satisfies the following inequalities. Let λi >0 and
P

i λi ¼ 1. Then S has the concavity property:

S
X

i

λiρi

 !

≥
X

i

λiS ρið Þ, (15)

with equality if all λi are equal.
Subadditivity holds with equality if and only if ρiρ j ¼ 0, i 6¼ j

S
X

i

λiρi

 !

≤
X

i

λiS ρið Þ �
X

i

λi log λi: (16)

and

S
X

i

λiρi

 !

≤ S TBρð Þ≤ S ρð Þ �
X

k

pk log pk (17)

where the first equality holds iff TBρ ¼ ρ and the second iff S ρkð Þ ¼ S ρð Þ for all k.
The conditional entropy is defined to be

S ρ1jρ2ð Þ ¼ Tr ρ1 log ρ1 � ρ1 log ρ2ð Þ: (18)

The formal expression will be interpreted as follows. If A,B are positive traceless
operators with complete orthonormal sets of eigenstates ∣aii and ∣bii, using a
resolution of identity,

P

ihai∣A log A ∣aii ¼
P

i,j aijAjb j

� �

b jj logAjai
� �

¼
P

i,jai aijb j

� �

log ai b jjai
� �

so that
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X

j

b jjA logA� A logBþ B� Ajb j

� �

¼
X

j

aijA logA� A logBþ B� Ajaih i

¼
X

i, j

aijbih ij j2 ai log ai � ai log b j þ b j � ai
� �

¼ S AjBð Þ:

(19)

Concavity of the function x log x ensures the terms of the final sum are nonneg-
ative. In order that S ρ1jρ2ð Þ<∞, it is necessary that πρ1 ≤ πρ2 where πW ¼ suppW is
the support projection of W, so ρ1 < ρ2. From the definition, S ρ1jρ2ð Þ≥0 with
equality if ρ1 ¼ ρ2. If λρ1 ≤ ρ2, for some λ∈ 0, 1ð Þ, S ρ1jρ2ð Þ≤ � log λ from operator
monotony of log z. If ρ ¼

P

i λiρi, then

S ρð Þ ¼
X

i

λiS ρið Þ þ
X

i

λiS ρijρð Þ, (20)

which gives (15) and (16). If T is a trace-preserving operator, then ρ<Tρ, and

S Tρð Þ ¼ S ρð Þ þ S ρjTρð Þ: (21)

This is to say that T is entropy-increasing.
The concept of irreversibility is clearly going to be relevant to the subject at

hand, so some thoughts related to it will be given periodically in what follows. A
possible way to account for irreversibility in a closed system in nature is by the
various types of course-graining. There are also strong reasons to suggest the arrow
of time is provided by the direction of increase of the quantum form of the
Boltzmann entropy. The measuring apparatus should be included as part of the
closed quantum mechanical system in order to relate the quantum Boltzmann
approach to irreversibility to the concept of a measurement. Let Sc be a composite
system consisting of a macroscopic system S coupled to a measuring instrument I ,
so Sc ¼ Sþ I , where I is a large but finite N-particle system. A set of course-
grained mutually commuting extrinsic variables are provided whose eigenspaces
correspond to the pointer positions of I . von Neumann’s picture of the measure-
ment process is basic to the approach, but according to which, the coupling of S to I
leads to the following effects. A pure state of S described by a linear combination
P

αcαψα of its orthonormal energy eigenstates is converted into a statistical mixture

of these states for which cαj j2 is the probability of finding the system in state ψα. It
also sends a certain set of classical or intercommuting, macroscopic variables M of
I to values indicated by pointer readings that indicate which of the states is realized.

There is an amplification process of the S� I coupling where different micro-
states of S give rise to macroscopically different states of I . If I is designed to have
readings which are in one-to-one correspondence with the eigenstates of S, it may
be assumed index α of its microstates goes from 1 to n. Denote the projection
operator for subspace K by Πα, then

ΠαΠβ ¼ Παδαβ,
X

α

Πα ¼ 1Kα
, (22)

and each element of the abelian subalgebra of ℬ takes the form with Mα scalars

M ¼
X

α

MαΠα: (23)

Define the projection operators:
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πα ¼ 1⊗Πα, α ¼ 1, … , n: (24)

Suppose A is measured on system S, initially in a state of the composite system
described by a density matrix ρ. The value pα is obtained with probability τα ¼
Tr ρπαð Þ. After the measurement, the state of the composite system is accounted for
by the density matrix:

ρα ¼
1

τα
παρπα: (25)

This is a mixture of states in each of which A has a definite value.
The transformation ρ ! ~ρ ¼Pα παρπα may be viewed as a loss of information

contained in non-diagonal terms ψαρπα0 with α 6¼ β in
P

αα0 παρπα0 . When a sequence
of measurements is carried out and a time evolution is permitted to occur between
measurements leads one to assign to a sequence of events πα1 t1ð Þπα2 t2ð Þ⋯παn tnð Þ the
probability distribution:

P αð Þ ¼ Tr πα1 tnð Þ⋯πα1 t1ð Þρπα1 t1ð Þ⋯παn tnð Þ
� �

, (26)

where ρ ¼ ρ 0ð Þ, over the set of histories, where the πk satisfy (22) with Π

replaced by the π. Let us define

D α0, αð Þ ¼ Tr πα1 t1ð Þ⋯παn tnð Þρπαn tnð Þ⋯πα1 t1ð Þ
� �

: (27)

The following definition can now be stated. A history is said to decohere if and
only if

D α, α0ð Þ ¼ δα,α0ρα: (28)

A state is called decoherent with respect to the set of πα if and only if

παρ 0ð Þπβ ¼ 0, α 6¼ β: (29)

This implies that Tr πα0ρπαAð Þ ¼ 0 for all α 6¼ α0, which is equivalent to πα, ρ½ � ¼
0 for all α. In contrast to infinite systems where there is no need to refer to a choice
of projections, decoherent mixed states over the macroscopic observables can be
described by relations between the density matrix and the projectors. They would

be of the form ρm ¼ ∣ΨihΨ∣ with ∣Ψi ¼
P

α λαπαΦα such that
P

α λαj j2 ¼ 1 and Φα ∈H
and satisfy

X

α6¼α0
πα0ρmπα þ παρmπα0ð Þ 6¼ 0: (30)

The relative or conditional entropy between two states S ρ1jρ2ð Þ was defined in
(18), and it plays a crucial role. It is worth stating a few of its properties, as some are
necessary for the theorem:

S ρ1jρ2ð Þ≥0: (31)

S ρ1jρ2ð Þ ¼ 0, ρ1 ¼ ρ2: (32)

S λρ1 þ 1� λð Þρ2jλσ1 þ 1� λð Þσ2ð Þ≤ λS ρ1jσ1ð Þ þ 1� λð ÞS ρ2jσ2ð Þ: (33)

When γ is a completely positive map, or embedding
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S ρ1 � γjρ2 � γð Þ≤ S ρ1jρ2ð Þ: (34)

The last two inequalities are known as joint concavity and monotonicity of the
relative entropy. The following result may be thought of as a quantum version of
the second law.

Theorem: Suppose the initial density matrix is decoherent at zero time (29) with
respect to πα and have finite entropy

ρ 0ð Þ ¼
X

α

παρ 0ð Þπα,

S ρ 0ð Þð Þ ¼ �kBTr ρ 0ð Þ log ρ 0ð Þð Þð Þ<∞,
(35)

and it is not an equilibrium state of the system. Let ρ t f
� �

, for t f >0, be any

subsequent state of the system, possibly an equilibrium state. Then for an
automorphic, unitary time evolution of the system between 0≤ t≤ t f

S 0ð Þ≤ S t f
� �

, (36)

where S 0ð Þ ¼ S t f
� �

if and only if (e)
P

α< β παρ t f
� �

πβ þ πβρ t f
� �

πα ¼ 0.

Proof: Set ρ0 t f
� �

¼
P

α παρ t f
� �

πα ¼ ρ t f
� �

� γ, so ρ0 is obtained from ρ by means of

a completely positive map. It follows that

S ρ0 t f
� �

jρ0 0ð Þ
� �

¼ �S ρ0 t f
� �� �

� kB
X

α

Tr ρ t f
� �

πα log ρ 0ð Þð Þπα
� �

¼ �S t f
� �

� kBTr ρ t f
� �

log ρ 0ð Þð Þ≤ S ρ t f
� �

jρ 0ð Þ
� �

¼ �S ρ 0ð Þð Þ � Tr ρ t f
� �

log ρ 0ð Þð Þ
� �

:
�

(37)

The first equality uses the cyclic property of the trace and the definition of ρ0.
The second equality uses decoherence of ρ 0ð Þ, and the next inequality is a conse-
quence of (34). The evolution is unitary and hence preserves entropy which is the
last equality. This implies that S tð Þ≥ S 0ð Þ and the equality condition (e) follows
from (32). □

Of course, entropy growth as in the theorem is not necessarily monotonic in
the time variable. For this reason, it is usual to refer to fixed initial and final
states. For thermal systems, a natural choice of the final state is the equilibrium
state of the system. It is the case in thermodynamics that irreversibility is
manifested as a monotonic increase in the entropy. Thermodynamic entropy, it is
thought, is related to the entropy of the states defined in both classical and
quantum theory. Under an automorphic time evolution, the entropy is conserved.
One application of an environment is to account for an increase. A type of course-
graining becomes necessary together with the right conditions on the initial state
to account for the arrow of time. In quantum mechanics, the course-graining
seems to be necessary and may be thought of as a restriction of the algebra and
can also be interpreted as leaving out unobservable quantum correlations. This
may, for example, correspond to decoherence effects important in quantum
measurements. Competing effects arise such as the fact that correlations becom-
ing unobservable may lead to entropy increase. There is also the effect that a
decrease in entropy might be due to nonautomorphic processes. Although both
effects lead to irreversibility, they are not cooperative but rather contrary to one
another. The observation that the second law does hold implies these
nonautomorphic events must be rare in comparison with time scales relevant to
thermodynamics.
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3. Quantum mechanics and nonequilibrium thermodynamics

Some aspects of equilibrium thermodynamics are examined by considering an
isothermal process. Since it is a quasistatic process, it may be decomposed into a
sequence of infinitesimal processes. Assume initially the system has a Hamiltonian
H γð Þ in thermal equilibrium at a temperature T. Boltzmann’s constant is set to one.
The state is given by the Gibbs density operator ρ. This expression can also be
written in terms of the energy eigenvalues εn and eigenvectors ∣ni of H. The
probability of finding the system in state ∣ni is

pn ¼ njρjnh i ¼ e�βεn

Z
: (38)

The average external energy U of the system is given as

U ¼ Uh i ¼ Tr Hρð Þ ¼
X

n

εnpn: (39)

When the parameter γ is changed to γ þ dγ, both εn and pn as well as U change to

dU ¼
X

n

dεnpn þ εndpn
� 	

: (40)

Each instantaneous infinitesimal process can be broken down into a part which
is the work performed; the second is the heat transformed as the system relaxes to
equilibrium. This breakup motivates us to define

δW ¼
X

n

dεnð Þpn, δQ ¼
X

n

εndpn, (41)

so dU ¼ δQ þ δW, and δ is used to indicate that heat and work are not exact
differentials. The free energy of the system is defined to be F ¼ �T log Z, so dF ¼
P

n dεnð Þpn which means

δW ¼ dF: (42)

By integrating over the infinitesimal segments, we find W is

W ¼ ΔF ¼ ΔU � Q : (43)

Inverting Eq. (38) for pn, we can solve for

εn ¼ �T log Zpn
� �

: (44)

Substituting into the relation for δQ, we get two terms, one proportional to
log Zð Þ and the other to log pn

� �

. The term with log Zð Þ when the pk satisfy
P

kpk ¼ 1 is

�T
X

n

log Zð Þdpn ¼ �T log Zð Þd
X

n

pn

 !

¼ 0, (45)

It remains to study

δQ ¼ �T
X

n

dpn log pn
� �

: (46)
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By the chain rule

d
X

n

pn log pn
� �

 !

¼
X

n

dpn log pn
� �

þ
X

n

dpn ¼
X

n

dpn log pn
� �

: (47)

So δQ is not a function of the state but is related to the variation of some-
thing that is. Define the entropy S as usual from (9), S ¼ �

P

npn log pn
� �

, and

arrive at

δQ ¼ TdS: (48)

This relation only holds for infinitesimal processes. For finite and irreversible
processes, there may be additional terms to the entropy change. This has been quite
successful at describing many different types of physical system [17–19].

A deep insight has come recently into the properties of nonequilibrium thermo-
dynamics which could be achieved by regarding work as a random variable. For
example, consider a process in which a piston is used to compress a gas in a cylinder.
Due to the nature of the gas and its chaotic motion, each time the piston is pressed,
the gas molecules exert a back reaction with a different force. This means the work
needed to achieve a given compression changes each time something is carried out.

Usually a knowledge of nonequilibrium processes is restricted to inequalities
such as the Jarzynski inequality. He was able to show by interpreting work W as a
random variable that an inequality can be obtained, even for a process performed
arbitrarily far from equilibrium.

Suppose the system is always prepared in the same state initially. A process is
carried out and the total work W performed is measured. Repeating this many
times, a probability distribution for the work P Wð Þ can be constructed. An average
for W can be computed using P Wð Þ as

Wh i ¼
ð

P Wð ÞdW: (49)

Jarzynski showed that the statistical average of e�βW satisfies

e�βW
� �

¼ e�βΔF, (50)

where ΔF ¼ F T, γ f


 �

� F T, γið Þ. It holds for a process performed arbitrarily far

from equilibrium. Now the inequality W ≥ΔF is contained in (50) and can be

realized by applying Jensen’s inequality, which states that e�βW
� �

≥ e�β Wh i.
In macroscopic systems, individual measurements are usually very close to the

average by the law of large numbers. For mictoscopic systems, this is usually not
true. In fact, the individual realizations of W may be smaller than ΔF. These cases
would be local violations of the second law but for large systems become extremely
rare. If the function P Wð Þ is known, the probability of a local violation of the
second law is

P W <ΔFð Þ ¼
ð

ΔF

�∞
P Wð Þ dW: (51)

To get (50) requires detailed knowledge of the system’s dynamics, be it classical,
quantum, unitary, or whatever.
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Consider nonunitary quantum dynamics. Initially, the system has Hamiltonian
Hi ¼ H γið Þ. The system was in thermal equilibrium with a bath at temperature T.
The initial state of the system is the Gibbs thermal density matrix (38). Let εin and

∣ni denote the initial eigenvalues and eigenvectors of Hi as εin is obtained with

probability pn ¼ e�βεin=Z.
Immediately after this measurement, γ changes from γ 0ð Þ ¼ γi to γ τð Þ ¼ γ f

according to the rule γ tð Þ. If it is assumed the contact with the bath is very weak
during this process, the state of the system evolves according to

∣ψ tð Þi ¼ U tð Þ ∣ni, (52)

where U is the unitary evolution operator which satisfies Schrödinger’s equation,
i∂tU ¼ H tð ÞU, U 0ð Þ ¼ 1.

The Hamiltonian is H γ f


 �

at the end and has energy levels ε
f
m, eigenvectors ∣mi,

so the probability ε
f
n measured is ∣hm ψ τð Þij j2 ¼ ∣hm∣U τð Þ nij j2. This may be

interpreted as the conditional probability a system in ∣ni will be in ∣mi after time τ.
No heat has been exchanged with the environment, so any change in the envi-

ronment has to be attributed to the work performed by the external agent and is

W ¼ ε f
m � εin, (53)

where both εin and ε
f
m are fluctuating and change during each realization of the

experiment. The first εin is random due to thermal fluctuations and ε
f
m is random due

to quantum fluctuations in W as a random variable by (53).
To get an expression for P Wð Þ obtained by repeating the process several times,

this is a two-step measurement process. From probability theory, if A,B are two
events, the total probability p AjBð Þ that both events have occurred is

p A,Bð Þ ¼ p AjBð Þp Bð Þ, (54)

where p Bð Þ is the probability B which occurs and p AjBð Þ is the conditional
probability B that has occurred. The probability of both events that have occurred is

∣hm∣U τð Þ nij j2pn. Since we are interested in the work performed, we write

P Wð Þ ¼
X

n,m

∣hm∣U τð Þ nij j2pn δ W � ε f
m � εin

� �� �

: (55)

And some over all allowed events, weighted by their probabilities, and arrange

the terms according to the values ε
f
m � εin. In most systems, there are present a

rather large number of allowed levels, and even more allowed differences ε
f
m � εin. It

is more efficient to use the Fourier transform

G yð Þ ¼ eiyW
� �

¼
ð

∞

�∞
P Wð ÞeiyWdW: (56)

This has the inverse Fourier transform

P Wð Þ ¼ 1

2π

ð

∞

�∞
dyG yð Þe�iyW : (57)

Using (55), we obtain that
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G yð Þ ¼
X

n,m

∣hm∣U nij j2pn eiy ε
f
m�εinð Þ ¼

X

n,m

njU†eiyε
f
m jm

D E

mjUe�iyεinpnjn
D E

¼
X

n,m

njU†eiyH f jm
� �

mjUe�iyHi ρjn
� �

¼ Tr U† τð ÞeiyH fU τð Þe�iyHiρ
� �

:
(58)

Hence, it may be concluded that

G ¼ Tr U† τð ÞeiyH fU τð Þe�iyHi ρ
� �

: (59)

This turns out to be somewhat easier to work with than P Wð Þ, and (59) plays a
similar role as Z in equilibrium statistical mechanics. From G yð Þ, the statistical
moments of W can be found by expanding

G yð Þ ¼ eiyW
� �

¼ 1þ iy Wh i � y2

2
W2
� �

� y3

6
W3
� �

þ⋯: (60)

A formula for the quantummechanical formula for the moments can be found as

well. The average work is Wh i ¼ H f

� �

� Hih i, where for any operator A, we have

Ah it ¼ Tr U† tð ÞAU tð Þρ
� �

as the expectation value of A at time t. This follows from

the fact that the state of the system at t is ρ tð Þ ¼ U tð ÞρU tð Þ†. From the definition of G,
it ought to be the case that G y ¼ iβð Þ ¼ e�βW

� �

. However, ρ in (38) and (59) yields

G iβð Þ ¼ 1

Zi
Tr U†e�βH fU
� �

¼ 1

Zi
Tr eβH f
� �

¼
Z f

Zi
: (61)

Using Z ¼ e�βF, (61) yields (50)

G iyð Þ ¼ e�βW
� �

¼ e�βΔF: (62)

Nothing has been assumed about the speed of this process. Thus inequality (50)
must hold for a process arbitrarily far from equilibrium.

4. Heat flow from environment approach

There is another somewhat different way in which the Jarzynski inequality can
be generalized to quantum dynamics. In a classical system, the energy of the system
can be continuously measured as well as the flow of heat and work. Continuous
measurement is not possible in quantum mechanics without disrupting the dynam-
ics of the system [20].

A more satisfactory approach is to realize that although work cannot be contin-
uously measured, the heat flow from the environment can be measured. To this
end, the system of interest is divided into a system of interest and a thermal bath.
The ambient environment is large, and it rapidly decoheres and remains at thermal
equilibrium, uncorrelated and unentangled with the system. Consequently, we can
measure the change in energy of the bath �Qð Þ without disturbing the dynamics of
the system. The open-system Jarzynski identity is expressed as

e�βW
� �

¼ e�βE f eβQeβEi
� �

¼ e�βΔF: (63)

For a system that has equilibrated with Hamiltonian H interacting with a ther-
mal bath at temperature T, the equilibrium density matrix is ρ ¼ eβH=Z ¼ e�βF�βH,
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where β ¼ 1=KBT. The dynamics of an open quantum system is described by a
quantum operator ~ρ ¼ Sρ, a linear trace-preserving, complete positive map of
operators. Any such complete positive superoperator has an operator-sum
representation

Sρ ¼
X

α

AαρA
†
α: (64)

Conversely, any operator-sum represents a complete positive superoperator.
The set of operators Aαf g is often called Krauss operators. The superoperator is

trace-preserving and conserves probability if
P

αA
†
αAα ¼ I. In the simplest case, the

dynamics of an isolated quantum system is described by a single unitary operator

U† ¼ U�1.
The interest here is in the dynamics of a quantum system governed by a time-

dependent Hamiltonian weakly coupled to an extended, thermal environment. Let
the total Hamiltonian be

H ¼ HS tð Þ⊗ IB þ IS ⊗HB þ εHint, (65)

where IS and IB are system and bath identity operators, HS tð Þ the system
Hamiltonian, HB the bath Hamiltonian, and Hint the bath-system interaction with ε

a small parameter. Assume initially the system and environment are uncorrelated
such that the initial combined state is ρS ⊗ ρBeq, where ρBeq is the thermal density

equilibrium matrix of the bath.
By following the unitary dynamics of the combined total system for a finite time

and measuring the final state of the environment, a quantum operator description
of the system dynamics can also be obtained:

S s, tð ÞρS ¼ TrBU ρS ⊗ ρBeq


 �

U† ¼
X

i, f

hb f ∣UðρS ⊗ ð
X

i

e�βεBi

ZB
∣bii bijÞÞU†jb f

� �

¼ 1

ZB

X

i, f

e�βεBi b f jUjbi
� �

ρS bijU†jb f

� �

:

(66)

Here U is the unitary evolution operator of the total system

U ¼ exp
i

ℏ

ðt

s
H τð Þdτ

� �

, (67)

and TrB is the partial trace over the bath degrees of freedom, εBi
� 

are the energy

eigenvalues, jbif g is the orthonormal energy eigenvectors of the bath, and ZB is the
bath partition function. Assume the bath energy states are nondegenerate. Then
(66) implies the Krauss operators for this dynamics are

Ai,f ¼
1
ffiffiffiffiffiffi

ZB

p e�βεBi =2 b f jUjbi
� �

: (68)

Suppose the environment is large, with a characteristic relaxation time short
compared with the bath-system interactions, and the system-bath coupling ε is
small. The environment remains near thermal equilibrium, unentangled and
uncorrelated with the system. The system dynamics of each consecutive time
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interval can be described by a superoperator derived as in (66) which can then be
chained together to form a quantum Markov chain:

ρ tð Þ ¼ S t� 1, tð Þ⋯S sþ 1, sþ 2ð ÞS s, sþ 1ð Þρ: (69)

The Hermitian operator of a von Neumann-type measurement can be broken up
into a set of eigenvalues λσ and orthonormal projection operators πσ such that H ¼
P

σ λσπσ . In a more general sense, the measured operator of a positive operator-
valued measurement need not be projectors or orthonormal. The probability of
observing the a-th outcome is

pa ¼ Tr AaρA
†
a

� �

: (70)

The state of the system after this interaction is

~ρa ¼
AaρA

†
a

Tr AaρA
†
a

� � : (71)

The result of the measurement can be represented by using a Hermitian map
superoperator A:

A ¼
X

α

aαAαρA
†
α: (72)

An operator-value sum maps Hermitian operators into Hermitian operators:

AH½ �† ¼ aαAαHA†
α

� 	† ¼
X

α

aα A†
� �†

H†A†
α ¼ AH: (73)

In the other direction, any Hermitian map has an operator-value-mean repre-
sentation. Hermitian maps provide a particularly concise and convenient repre-
sentation of sequential measurements and correlation functions. For example,
suppose Hermitian map A represents a measurement at time 0, C is a different
measurement at time t, and the quantum operation St represents the system
evolution between the measurements. The expectation value of a single measure-
ment is

ah i ¼ Tr Aρð Þ ¼
X

α

aαTrAαρA
†
α ¼

X

α

pαaα: (74)

The correlation function b tð Þa 0ð Þh i can be expressed as

b tð Þa 0ð Þh i ¼ Tr BStAρ 0ð Þð Þ ¼
X

α, β

aαbβTr Bα St Aαρ 0ð ÞA†
α

� �� �

B†
β: (75)

It may be shown that just as every Hermitian operator represents some mea-
surement on the Hilbert space of pure states, every Hermitian map can be associ-
ated with some measurement on the Liouville space of mixed states.

A Hermitian map representation of heat flow can now be constructed under
assumptions that the bath and system Hamiltonian are constant during the mea-
surement and the bath-system coupling is very small. A measurement on the total
system is constructed, and thus the bath degrees of freedom are projected out. This
leaves a Hermitian map superoperator that acts on the system density matrix alone.
Let us describe the measurement process and mathematical formulation together.
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Begin with a composite system which consists of the bath, initially in thermal
equilibrium weakly coupled to the system:

ρS ⊗ ρBeq: (76)

Measure the initial energy eigenstate of the bath so based on (76):

IS ⊗∣biihbi∣
� �

ρS⊗ ρBeq


 �

IS ⊗∣b jihb j∣
� �

: (77)

Now allow the system to evolve together with the bath for some time:

U IS ⊗∣biihbi∣
� �

ρS ⊗ ρBeq


 �

IS ⊗ ∣b jihb j∣
� �

U†: (78)

Finally, measure the final energy eigenstate of the bath:

IS ⊗ ∣biihb f ∣
� �

U IS ⊗ ∣biihbi∣
� �

ρS ⊗ ρBeq


 �

IS ⊗ ∣b jihb j∣
� �

U† IS ⊗∣b f ihb f ∣
� �

: (79)

Taking the trace over the bath degrees of freedom produces the final normalized
system density matrix where trace over S gives the probability of observing the
given initial and final bath eigenstates. Multiply by the Boltzmann weighted heat,
and sum over the initial and final bath states to obtain the desired average
Boltzmann weighted heat flow:

eβQ
� �

¼
X

i, f

e
�β εB

f
�εBi


 �

TrSTrBðIS ⊗ ∣b f ihb f ∣ÞUðIS ⊗ ∣biihbi∣Þ

ρS ⊗ ρBeq


 �

ðIS ⊗∣b jihb j∣ÞU†ðIS ⊗ ∣b jihb j∣Þ:
(80)

Replace the heat bath Hamiltonian by IS ⊗HB ¼ H �HS tð Þ⊗ IB � εHint. The
total Hamiltonian commutes with the unitary dynamics and cancels. The interac-
tion Hamiltonian can be omitted in the small coupling limit giving

eβQ
� �

¼ TrSTrB eβH
S=2 ⊗ IS


 �

U e�β=2HS

⊗ IB

 �

ρS ⊗ ρBeq


 �

e�βHS=2 ⊗ IB

 �

U† eβH
S=2 ⊗ IB


 �

(81)

Collecting the terms acting on the bath and system separately and replacing the
Krauss operators describing the reduced dynamics of the system, the result is

eβQ
� �

¼ TrS e
βHS=2 TrB Ue�βHS=2ρSe�βHS=2


 �

⊗ ρBeqU
†


 �

eβH
S=2

¼ TrS
X

α

eβH
S=2Aαe

�βHS=2ρSeβH
S=2A†

αe
�βHS=2:

(82)

To summarize, it has been found that the average Boltzmann weighted heat flow
is represented by

eβQ
� �

¼ Tr R�1SRρS
� �

: (83)

where S represents the reduced dynamics of the system. The Hermitian map
superoperator Rt is given by
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Rtρ ¼ e�βHt=2ρeβHt=2: (84)

The paired Hermitian map superoperators act at the start and end of a time
interval. They give a measure of the change in the energy of the system over that
interval. This procedure does not disturb the system beyond that already incurred
by coupling the system to the environment. The Jarzynski inequality now follows
by applying this Hermitian map and quantum formalism. Discretize the experi-
mental time into a series of discrete intervals labeled by an integer t.

The system Hamiltonian is fixed within each interval. It changes only in discrete
jumps at the boundaries. The heat flow can be measured by wrapping the
superoperator time evolution of each time interval St along with the corresponding

Hermitian map measurementsR�1
t SRt. In a similar fashion, the measurement of the

Boltzmann weighted energy change of the system can be measured with e�βΔE
� �

¼
TrRτSR�1

τ . The average Boltzmann weighted work of a driven, dissipative quan-
tum system can be expressed as

e�βW
� �

¼ Tr Rτ

Y

t

R�1
t StRt

� �

R�1
τ ρ

eq
0

 !

, (85)

In (85), ρteq is the system equilibrium density matrix when the system Hamilto-

nian is HS
t .

This product actually telescopes due to the structure of the energy change
Hermitian map (84) and the equilibrium density matrix (65). This leaves only the
free energy difference between the initial and final equilibrium ensembles, as can be
seen by writing out the first few terms

e�βW
� �

¼ Tr Rτ R�1
τ SτRτ

� �

⋯ R�1
2 S2R2

� �

R�1
1 S1R1

� �

R�1
0 ρ0eq

h i

¼ Tr τ R�1
τ SτRτ

� �

⋯ R�1
2 S2R2

� �

R�1
1 S1R1

� � I

Z 0ð Þ

� �

¼ Tr ½Rτ R�1
τ SτRτ

� �

⋯ R�1
2 S2R2

� �

R�1
1 S1ρ

1
eq

Z 1ð Þ
Z 0ð Þ

� �

⋯ ¼ Z τð Þ
Z 0ð Þ ¼ e�βΔF ¼ e�βΔF:

(86)

In the limit in which the time intervals are reduced to zero, the inequality can be
expressed in the continuous Lindblad form:

e�βW
� �

¼ TrR tð Þ exp
ðt

0
R ξð Þ�1S ξð ÞR ξð Þdξ

� �

R 0ð Þ�1
ρ
eq
0 ¼ e�βΔF: (87)

5. A model quantum spin system

A magnetic resonance experiment can be used to illustrate how these ideas can
be applied in practice. A sample of noninteracting spin-1=2 particles are placed in a
strong magnetic field B0 which is directed along the z direction. Denote by σ j, j ¼
x, y, z the usual Pauli matrices and 1 the 2� 2 identity matrix. It is assumed the
motion of the system is unitary. Then the spin is governed by the Hamiltonian:

H0 ¼ � 1

2
B0σz: (88)

16

Quantum Mechanics



In units where ℏ is one, B0 represents the characteristic precession frequency of
the spin. Since Ho is diagonal in the ∣�i basis that diagonalizes σz, the matrix
exponential and partition function are given by

e�H=T ¼ eB0=2T 0

0 e�B0=2T

 !

, Z ¼ Tr e�H=T

 �

¼ 2 cosh
B0

2T

� �

, (89)

If we set ~σ to be the equilibrium magnetization of the system, ~σ ¼ σxh ith, the
thermal density matrix is

ρ ¼ ρth ¼
1

2

1þ ~σ 0

0 1� ~σ

� �

, ~σ ¼ tanh
B0

T

� �

: (90)

and ~σ corresponds to the parametric response of a spin-1=2 particle.
The work segment is implemented by introducing a very small field of ampli-

tude B rotating in the xy plane with frequency ω. The work parameter is governed
by the field

B ¼ B sin ωtð Þ, cos ωtð Þ, 0ð Þ: (91)

Typically, B0≈ωT and B≈0:01T, so we may approximate B< <B0. The total
Hamiltonian is the combination

H tð Þ ¼ �B0

2
σz �

B

2
σz sin ωtð Þ þ σy cos ωtð Þ
� �

: (92)

The oscillating field plays the role of a perturbation which although weak may
initiate transitions between the up and down spin states and will be most frequent
at the resonance condition ω ¼ B0, so the driving frequency matches the natural
oscillation frequency.

The time evolution operator U tð Þ is calculated now. To do this, define a new
operator V tð Þ by means of the equation

U tð Þ ¼ eiωtσz=2V tð Þ: (93)

Substituting (43) into the evolution equation for U tð Þ, i∂tU ¼ H tð ÞU, U 0ð Þ ¼ 1.
It is found that V tð Þ obeys the Schrödinger equation:

i
∂V

∂t
¼ ~H tð ÞV, V 0ð Þ ¼ 1, (94)

It is found that V tð Þ satisfies

i
∂V

∂t
¼ 1

2
ωσz � B0σz � Be�iωtσz=2 σx sin ωtð Þ þ σy cos ωtð Þ

� �

eiωσz=2

 �

V tð Þ: (95)

Using the commutation relations of the Pauli matrices and the fact that

e�iωσz ¼ 1 cos
ωt

2


 �

� iσz sin
ωt

2


 �

, (96)

it is found that the terms in the evolution equation can be simplified

e�iασzσxe
iασz ¼ 1 cos α� iσx sin αð Þσx 1 cos αþ iσz sin αð Þ

¼ σx þ 2 sin α cos ασy � 2iσzσy sin
2α ¼ σx þ 2 sin α cos ασy sin

2α,
(97)
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e�iασzσye
iασz ¼ σy cos α� iσxσy sin α 1 cos αþ iσz sin αð Þ ¼ σy � 2 sin α cos ασx þ 2iσzσ sin

2α:
�

(98)

By means of these results, it remains to simplify

e�iωtσz=2 σz sin ωtð Þ þ σy cos ωtð Þ
� �

eiωtσz=2

¼ σz sinωt� sinωtþ cosωt sinωt� cosωt sinωtð Þ þ σy sin 2ωtþ cosωt� cosωtþ cos 2ωt
� �

¼ σy:

(98a)

Taking these results to (95), we arrive at

i
∂V

∂t
¼ H1V, H1 ¼ � 1

2
B0 � ωð Þσz �

1

2
Bσy: (99)

This means V tð Þ evolves according to a time-dependent Hamiltonian, so the
solution can be written as

V tð Þ ¼ e�iH1t, (100)

and the full-time evolution operator is given by

U tð Þ ¼ eiωtσz=2e�iH1t: (101)

Since the operators σy and σz do not commute, the exponentials in (101) cannot
be using the usual addition rule.

To express (100) otherwise, suppose M is an arbitrary matrix such that M2 ¼ 1.
When α is an arbitrary parameter, power series expansion of e�iαM yields

e�iαM ¼ 1 cos αð Þ � iM sin αð Þ: (102)

Now H1 can be put in equivalent form

H1 ¼
Ω

2
σz cos ϑþ σy sin ϑ
� �

,

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B0 � ωð Þ2 þ B2
q

, tan ϑ ¼ B

B0 � ω
,

(103)

Since σ2i ¼ 1, it follows that

σz cosϑþ σy sin ϑ
� �2 ¼ 1: (104)

Consequently, (100) can be used to prove that V tð Þ is given by

e�iH1t ¼ 1 cos
Ω

2
t

� �

þ i σz cos ϑþ σy sin ϑ
� �

sin
Ω

2
t

� �

¼
cos

Ω

2
t

� �

þ i cos ϑ sin
Ω

2
t

� �

sin ϑ sin
Ω

2
t

� �

� sin ϑ sin
Ω

2
t

� �

cos
Ω

2
t

� �

� i cos ϑ sin
Ω

2
t

� �

0

B

B

B

@

1

C

C

C

A

(105)

Since
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eiωσzt=2 ¼ eiωt=2 0

0 e�iωt=2

 !

(106)

the evolution operator is then given by

U tð Þ ¼
u tð Þ v tð Þ

�v ∗ tð Þ u ∗ tð Þ

� �

: (107)

The functions u tð Þ and v tð Þ in (107) are given as

u tð Þ ¼ eiωt=2 cos
Ω

2
t

� �

þ i sin ϑ sin
Ω

2
t

� �� �

, v tð Þ ¼ eiωt=2 � sin ϑ � sin Ω

2
t

� �

:

(108)

Apart from a phase factor, the final result depends only on Ω and ϑ, and these in
turn depend on B0, B, and ω through (108). To understand the physics of U tð Þ a bit
better, suppose the system is initially in the pure state ∣þi. The probability will be
found in state ∣�i after time t is

∣h�∣U tð Þ þij j2 ¼ vj j2: (109)

This expression represents the transition probability per unit time a transition

will occur. Since the unitarity condition U†U ¼ 1 implies that uj j2 þ vj j2 ¼ 1, we

conclude uj j2 is the probability when no transition occurs. Note v is proportional to
sin ϑ, which gives a physical meaning to ϑ. It represents the transition probability
and reaches a maximum when ω ¼ B0 at resonance where Ω ¼ B, so u and v
simplify to

u tð Þ ¼ eiωt=2 cos
B

2
t

� �

, v tð Þ ¼ eiωt=2 sin
B

2
t

� �

: (110)

Now that U tð Þ is known, the evolution of any observable A can be calculated

Ah it ¼ Tr U† tð ÞAU tð Þρ
� �

: (111)

If A is replaced by σz in (111), we obtain

σzh it ¼ Tr
u ∗ tð Þ �v tð Þ

v ∗ tð Þ u tð Þ

 !

σz

u tð Þ v tð Þ

�v ∗ tð Þ u ∗ tð Þ

 !

1

2

1þ ~σ 0

0 1� ~σ

 !

¼ ~σ uj j2 � vj j2

 �

¼ ~σ 1� 2 vj j2

 �

:

(112)

Substituting vj j2, this takes the form

σzh it ¼ ~σ cos 2ϑþ sin 2ϑ cos Ωtð Þ
� �

¼ tanh
B0

2T

� �

cos 2ϑþ sin 2ϑ cos Ωtð Þ
� �

:

(113)

Consider the average work. Suppose B< <B0, so the unperturbed Hamiltonian
H0 can be used instead of the full Hamiltonian H tð Þ when expectation values of
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quantities are calculated which are related to the energy. Let us determine the
energy of the system at any t by taking operator A to be H0:

H0h it ¼ �B0

2
σzh it ¼ � 1

2
B0Tr U

† tð ÞσzU tð ÞρÞ

¼ � 1

2
B0Tr

u ∗ �v

v ∗ u

 !

1 0

0 �1

 !

u v

�v ∗ u ∗

 !

1

2

1þ ~σ 0

0 1� ~σ

 ! !

¼ �B0

4
Tr

u ∗ �v

v ∗ u

 !

u v

v ∗ �u ∗

 !

1þ ~σ 0

0 1� ~σ

 ! !

¼ � 1

4
B0~σ 1� 2 vj j2


 �

:

(114)

The average work at time t is simply the difference between the energy st time t1
and t ¼ 0. Since v 0ð Þ ¼ 0, this difference is

Wh it ¼ �B0

2
~σ 1� 2 vj j2

 �

þ B0

2
~σ ¼ ~σB0 vj j2

¼ ~σB0 sin
2ϑ sin 2 Ω

2
t

� �

¼ ~σB0
B

Ω
2 sin 2 Ω

2
t

� �

,
(115)

since sin 2ϑ ¼ 1� cos 2ϑ ¼ B2=Ω2. The average work oscillates indefinitely with
frequency Ω=2. This is a consequence of the fact the time evolution is unitary. The
amplitude multiplying the average work is proportional to the initial magnetization

~σ and B2=Ω2, so the ratio is a Lorentzian function.
The equilibrium free energy is F ¼ �T log Z where Z ¼ 2 cosh B0=2Tð Þ. The

free energy of the initial state at t ¼ 0 and final state at any arbitrary time is the
same yielding

ΔF ¼ 0: (116)

This is a consequence of the fact that B< <B0. According to Wh i≥F, it should
be expected that

Wh it ≥ΔF ¼ 0: (117)

Given the matrices for U tð Þ and ρ that have been determined so far, the function
G can be computed:

G yð Þ ¼ Tr U† yð ÞeixH fU yð Þe�iyHi ρ
� �

¼ Tr
u ∗ �v

v ∗ u

 !

e�iyB0=2 0

0 eiyB0=2

 !

u v

�v ∗ u ∗

 !

eiyB0=2 0

0 e�iyB0=2

 !

1

2
1þ ~σð Þ 0

0
1

2
1� ~σð Þ

0

B

B

@

1

C

C

A

¼ uj j2 þ 1

2
1þ ~σð ÞeiyB0 þ 1� ~σe�iyB0

� �

vj j2:



(118)

Set x ¼ iβ and recall use definition (42) for ~σ in the second term of (118) to give

1þ tanh
β

2
B0

� �� �

e�βB0 þ 1� tanh
β

2
B0

� �� �

eβB0

¼ 2 cosh βB0ð Þ � 2 tanh
β

2
B0

� �

sinh βB0ð Þ ¼ 1: (119)
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Substituting (119) into (118), we can conclude

e�βW
� �

¼ G iβð Þ ¼ uj j2 þ vj j2 ¼ 1: (120)

This is the Jarzynski inequality, since it is the case that ΔF ¼ 0 here. The
statistical moments of the work can be obtained by writing an expression for G into
a power series

G yð Þ ¼ uj j2 þ vj j2 1þ i~σB0y�
1

2
B2
0y

2 þ⋯

� �

: (121)

From (121), the first and second moments can be obtained; for example

Wh i ¼ ~σB0 vj j2, W2
� �

¼ B2
0 vj j2: (122)

As a consequence, the variance of the work can be determined

var Wð Þ ¼ W2
� �

� Wh i2 ¼ B2
0 vj j2 � ~σ2B2

0 vj j4 � B2
0 vj j2 1� ~σ2 vj j2


 �

: (123)

A final calculation that may be considered is the full distribution of work P Wð Þ.
Now P Wð Þ is the inverse Fourier transform of G yð Þ:

P Wð Þ ¼ 1

2π

ð

∞

�∞
dyG yð Þe�iyW : (124)

Using the Fourier integral form of the delta function, (124) can be written as

P Wð Þ ¼ 1

2π

ð

∞

�∞
dyG yð Þe�iyW

¼ 1

2π

ð

∞

�∞
dy u tð Þj j2 þ v tð Þj j2 1

2
1þ ~σð ÞeiB0y þ 1

2
1� ~σð Þe�iB0y

� �� �

e�iyW :

¼ uj j2δ Wð Þ þ 1

2
v tð Þj j2δ W � B0ð Þ þ 1

2
v tð Þj j2 1þ ~σð Þδ W þ B0ð Þ:

(125)

Work taken as a random variable can take three values W ¼ 0, þ B0, � B0

where B0 is the energy spacing between the up and down states. The event
W ¼ B0 corresponds to the case where the spin was originally up and then
reversed, so an up-down transition. The energy change is B0=2ð Þ � �B0=2ð Þ ¼
B0. Similarly, W ¼ �B0 is the opposite flip from this one, and W ¼ 0 is the case
with no spin flip.

The second law would have us think that W >0, but a down-up flip should have
W ¼ �B0, so P W ¼ �B0ð Þ is the probability of observing a local violation of the
second law. However, since P W ¼ �B0ð Þ is proportional to 1� ~σ, up-down flips are
always more likely than down-up. This ensures that Wh i≥0, so violations of the
second law are always exceptions to the rule and never dominate.

The work performed by an external magnetic field on a single spin-1=2 particle
has been studied so far. The energy differences mentioned correspond to the work.
For noninteracting particles, energy is additive. Hence the total work Wh i which is
performed during a certain process is the sum of works performed on each individ-
ual particle W ¼ W1 þ⋯þWN . Since the spins are all independent and energy is
an extensive variable, it follows that Wh i ¼ N Wh i. where Wh i is the average work
from (115).
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6. Conclusions

We have tried to give an introduction to this frontier area that lies in between
that of thermodynamics and quantum mechanics in such a way as to be compre-
hensible. There are many other areas of investigation presently which have had
interesting repercussions for this area as well. There is a growing awareness that
entanglement facilitates reaching equilibrium [21–23]. It is then worth mentioning
that the ideas of einselection and entanglement with the environment can lead to a
time-independent equilibrium in an individual quantum system and statistical
mechanics can be done without ensembles. However, there is really a lot of work
yet to be done in these blossoming areas and will be left for possible future
expositions.
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