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Abstract

Since multipotential and immunoregulatory properties were identified in 
mesenchymal stem cells (MSCs) in the twentieth century, they have been proposed 
as an effective therapy for many degenerative and traumatic diseases such as spinal 
cord injury (SCI). SCI is a devastating event with a high mortality rate that evokes 
the loss of motor and sensory functions due to neurochemical imbalance and an 
exacerbated immune response as a consequence of the initial mechanical damage, 
which in conjunction creates a hostile microenvironment that inhibits neuronal 
circuitry restoration. This chapter pretends to lead the reader towards the immu-
nomodulatory, differentiation, and tissue repairing capacities of MSCs that allow 
them to be a valuable candidate for clinical trials. In the first section, the physio-
pathology of SCI will be addressed; after that, the chapter will review the general 
aspects of MSCs such as origin, molecular markers, and the different mechanisms 
by which MSCs can heal the target tissues. Finally, we will discuss clinical trials 
involving autologous MSC transplantation and their limitations.

Keywords: SCI, MSCs, clinical trials

1. Introduction

Spinal cord injury (SCI) is an important clinical problem with significant 
socioeconomic impact worldwide.

SCI is a catastrophic event involving damage to the spinal cord (SC) that causes 
morphological and physiological changes leading to biomechanical and functional 
disorders in patients [1]. This condition induces acute and chronic inflammatory 
processes that can result in temporary or permanent repercussions including 
paraplegia, quadriplegia, or even death [2].

The pathophysiology of SCI is very complicated, and it consists of a primary and 
a secondary phase. The primary phase occurs immediately after the damage to the 
SC causing cell death at the epicenter of the injury as well as the beginning of the 
pro-inflammatory response [3]. The secondary phase starts 2 hours after the dam-
age and can last up to 6 months. During this phase the extent of the injury increases 
in response to the augmented pro-inflammatory factors which contribute to induce 
local edema, ischemia, vascular alterations, ionic dysregulations, and oxidative 
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stress [3, 4]. These prejudicial mechanisms persist during the chronic stages of 
the injury, and although their intensity is diminished, the neurological function 
continues to decline [5]. Most of the post-traumatic neuronal degeneration involves 
an uncontrollable cascade of destructive mechanisms that are still incompletely 
understood and remain a challenge for scientists [6].

The current therapy for SCI involves surgical decompression and steroid admin-
istration; however, both of them only show minimal efficiency, and the need for an 
effective therapy is continuously rising [7]. Therefore, the transplantation of stem 
cells as a novel therapeutic approach has received increasing attention due to their 
promising results in neurological recovery in SCI [8–10]. Among them, mesenchy-
mal stem cells (MSCs) demonstrate to be a valuable promising therapy due to their 
significant autocrine and paracrine activity which help to induce the proliferation 
and differentiation of different cell types and to exert immunomodulatory effects 
in the microenvironment of the host [6, 11]. MSCs, anti-inflammatory molecules, 
and trophic factors are capable of supporting axonal growth to promote angiogen-
esis, remyelination, and protection against apoptotic cell death [12]. Furthermore, 
MSCs possess a varied spectrum of therapeutic properties such as neuroprotection 
after glutamate excitotoxicity [13, 14], reduction in protein levels associated with 
stress and reactive oxygen species [15] and pro-inflammatory cytokines [16], M1 
macrophage polarization to the M2 pro-repair activated phenotype [17], secre-
tion of neurotrophic factors [16, 18, 19], and their ability to produce numerous 
exosomes.

In addition, MSCs have minimal immunoreactivity towards the host as well as 
a limited chance of developing a tumor and are particularly appealing due to their 
wide range of advantages over other types of stem cells [20]. Finally, we will discuss 
clinical trials of improvement using autologous and allogeneic MSCs after acute and 
chronic SCI.

2. General aspects of MSCs

MSCs are adult stem cells with self-renewing and differentiation abilities. These 
cells can be isolated from different sources (bone marrow, adipose tissue, umbilical 
cord (UC), and amniotic fluid) and are easily preserved without raising any ethical 
issue [21]. Mammalian bone marrow is the best understood niche that harbors 
hematopoietic stem cells (HSCs), and MSCs are believed to provide the basis for the 
physical structures of the niche [22]. Moreover, MSCs are defined as multipotent 
cells that are thought to regulate the self-renewal, proliferation, and differentiation 
of the HSCs through the production of cytokines and intracellular signals that are 
initiated by cell-to-cell interaction. Lastly, MSCs can differentiate into cells from 
different lineages, such as osteoblasts, cartilage cells, fibroblasts, muscle cells, fat 
cells, and neurons [23, 24].

3. Markers of MSCs

Most researchers have suggested minimal criteria to define MSCs. The 
International Society for Cellular Therapy (ISCT) established specific criteria in 
order to identify unique populations of MSCs [25].

1. MSCs must be plastic adherent when maintained under standard culture 
 conditions.
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2. MSCs must be positive for CD105, CD90, CD73, CD29, CD44, CD71, and 
CD106 and be negative for the expression of hematopoietic markers such as 
CD34, CD45, HLA-DR, CD14, MHC-II, CD11b, and CD14 and express low 
levels of MHC-I.

3. MSCs must differentiate in vitro at least in osteoblasts, adipocytes, and chon-
droblasts [25, 26].

4. MSCs: biological properties

MSCs are well known for their ability to differentiate into numerous cell lin-
eages, but, besides their cell multipotential reprogramming capacity, they promise 
to be an effective candidate therapy in clinical trials for different human pathologies 
due to their successful homing, immunomodulation, and tissue repairing [27]. 
Moreover, exosomes from MSCs are being considered the most important factor of 
the therapeutic effects of MSCs as they could be used as molecule exchangers and 
natural drug delivery vehicles [28].

4.1 Homing and chemotactic activity

Several studies have shown that MSCs are capable of migrating selectively and 
exert homing capabilities to different organs [29, 30]. Even if they are transplanted 
by local or systemic pathways, MSCs are principally guided to damaged tissues by 
the coordinate expression of specific receptors and ligands that allow them to reach 
their desired target and effectuate different mechanisms [31]. Additionally, MSCs 
possess a high chemotactic activity that increases the recruitment of different cells. 
Indeed, fibroblasts accelerate migration, proliferation, and integrin expression in 
response to MSC secretome [32, 33]. Similarly, neutrophils increase migration rate 
and immunological response when they are stimulated with MSCs after microbial 
challenge in vitro [34, 35]. In murine SCI models, the MSC-grafted SC has proven 
to amplify granulocytes and antigen-presenting cell recruitment in early stages by 
a wide variety of cytokines and chemokines such as CXCL10, CXCL12, CXCL1, and 
CL5 to boost SC recovery [34, 36].

4.2 Microenvironment immunomodulation

MSCs have proven to regulate the immune response through cell-to-cell contact 
and by the secretion of soluble mediators including cytokines, prostaglandins, 
enzymes, and proapoptotic and antiapoptotic molecules [27, 37–39]. Different 
studies involving MSC transplantation in exacerbated immune response models 
such as peritonitis and ulcerative colitis ameliorate inflammation by reducing the 
expression levels of pro-inflammatory cytokines such as interleukin-1 beta, inter-
leukin-12, interleukin-6, and tumor necrosis factor-α (TNFα). In addition, these 
cells exert a decrease of the classical phenotype M1 marker and an increase of the 
alternative phenotype M2, as well as a marked macrophage reprogramming from 
M1 to M2 [17, 40–42]. Moreover, MSCs can suppress T cell activation and prolifera-
tion by downregulating the expression of costimulatory molecules on the surface 
of dendritic cells [43], interleukin-10, transforming growth factor-B (TGFβ), nitric 
oxide, and indoleamine 2,3-dioxygenase enzyme production in response to inflam-
mation as well as interleukin-2 absorption [37, 44, 45]. Similarly, B cell activation 
can be disturbed, and the regulatory B cell phenotype can be promoted [46, 47].
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4.3 Tissue repairing and regeneration

MSCs participate in repairing many tissues, mostly by the secretion of TGFβ and 
vascular endothelial growth factor (VEGF) to promote angiogenesis [48], extracel-
lular matrix remodeling, and reduction of the scar formation in chronic wounds [49, 
50]. Similarly, in pathologies where gliosis, demyelination, and neuroinflammation 
occur, MSCs have shown neuroprotective activities such as vascular stabilization and 
angiogenesis by tight junction protein expression [51], neuronal suppression apoptosis 
[52, 53], glia hypertrophy prevention [54], and promotion of myelinization by the 
activation of oligodendrocyte precursor cells [53, 55]. Additionally, MSCs promote 
synaptic transmission [56], neurite outgrowth, and axonal sprouting mostly by excre-
tion of trophic factors including brain-derived neurotrophic factor (BDNF) and nerve 
growth factor (NGF) [12, 57]. SCI models motor skills are increased [58] inclusively; 
bladder and erectile dysfunction improvement have been reported [59, 60].

4.4 Multipotential capacity

Originally it was believed that MSCs could exclusively differentiate into cells 
from the mesodermal lineage [23, 24]; however, in the last 20 years many authors 
have proven that a proper microenvironment can promote greater plasticity and 
that MSCs from different sources can differentiate into dermal, neural, or glial cells 
in vitro and in vivo when they are exposed to neurotrophic factors and specific 
cytokines [61–63]. Smooth muscle and endothelial cells derived from MSCs can be 
detected and improve heart functions in ischemic myocardium models [64]. Also, 
skin, articular cartilage, and bone regeneration have been reported, but mostly 
when MSCs are combined with natural and artificial scaffolds or when genetically 
modified [65–67]. In order to achieve CNS regeneration, different sources of MSCs 
and culture methods have been tested in murine SCI models; however, transplants 
have demonstrated to improve functional recovery by differentiation into neurons, 
astrocytes, but mostly oligodendrocytes [54, 55, 58].

4.5  Exosomes as mechanisms for cell-to-cell communication and drug delivery 
vehicles

Exosomes are extracellular vesicles released by many cells, including MSCs. 
Their length is between 30 and 100nm, and they can bind to cells through recep-
tor and ligand interaction or by fusion with the target cell membrane to deliver 
high amounts of cytokines, growth factors, microRNAs, and mRNAs capable of 
modifying peptide and protein synthesis [60]. Thus, the derived MSC exosomes 
could be the most attractive therapy in SCI models since neuronal differentiation 
from MSCs remains poor [58, 68] and several studies show that the regenerative and 
anti-inflammatory mechanisms are mostly mediated by paracrine factors [27, 36, 
69–71]. Furthermore, MSC exosomes are natural drug delivery vehicles that can be 
modified and produced in high quantities [28, 72, 73]. MSCs have proven to be safe 
in many different preclinical studies; however, clinical trials involving exosomes in 
SCI therapy are not yet recruited due to the fact that optimal MSC culture conditions 
and protocols for exosome isolation is still to be established (www.clinicaltrials.gov).

5. MSCs in the clinic

The promising results of MSCs in preclinical studies encouraged their use in 
humans; however, the results obtained in the clinical trials still remain controversial 
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and do not replicate what was previously reported in experimental animal stud-
ies. In this section we will review the results obtained from the main clinical trials 
involving MSC transplantation as well as their type of application, properties, 
limitations, and future directions.

Most of the first clinical studies describing reporting the application of MSCs 
were focused on describing the transplantation technique, the safety, and the 
evidence of any adverse reactions. Moviglia et al. conducted a preliminary report 
that described the intra-arterial administration of bone marrow (BM) MSCs 
(BM-MSCs) in two patients with chronic SCI in combination with neurorehabilita-
tion programs. Patient 1 presented paraplegia at the eighth thoracic vertebra (T8) 
with a sensitive level corresponding to T6, while patient 2 presented severe quadri-
plegia with a lesion that extended from his third to fifth cervical vertebrae (C3–C5) 
and a sensitive level corresponding to C2. After 6 months, both patients improved 
their motor and sensory functions without having any secondary effects. The motor 
level of patient 1 now corresponds to his first sacral metamere (S1) and his sensitive 
level to the fourth sacral metamere (S4), while sensory and motor functions from 
patient 2 reached T1–T2 [74]. Similar results, in terms of the safety, were obtained 
in a pilot study conducted by Pal et al., where 30 patients with complete cervical 
or thoracic SCI (ASIA scale rating system class A) received intrathecal injections 
of MSCs via lumbar puncture and none of them presented any adverse effects in 
the following 1–3 years [75]. However, only the patients with less than 6 months of 
thoracic-level injury experienced improvement in their quality of life and degree of 
independence according to Barthel’s Index (BI). Despite these improvements, there 
was no significant change in the ASIA score and in magnetic resonance imaging 
(MRI). Furthermore, due to the homing abilities of the MSCs, Ra et al. also tested 
the toxicity, tumorigenicity, and therapeutic potential of the intravenous adminis-
tration of adipose tissue-derived MSCs in eight patients with more than 12 months 
of SCI. After 3 months the therapy demonstrated to be safe and not promoting 
tumor growth [76]. In addition, this study described limited motor recovery where 
only one patient with ASIA A demonstrated improvement to ASIA grade C. Lastly, 
other studies have also demonstrated the safety and lack of evidence of any severe 
adverse reactions with the intrathecal administration of MSCs [77, 78].

Moving forward, Sykova et al. conducted a nonrandomized phase I/phase II 
clinical trial comparing the functional improvement and safety of intra-arterial 
versus intravenous administration of BM-MSCs in 20 patients with SCI at the 
cervical or thoracic level. The clinical characterization described 15 patients with 
ASIA grade A and 5 patients with ASIA grade B (incomplete SCI). Both intra-
arterial group (n=7) and the intravenous group (n=13) contained patients with 
acute and chronic phases of SCI. The study found significant functional improve-
ments (motor and sensory) in five acute patients and only in one chronic patient. 
In the intra-arterial group, all four subacute patients exhibited a significant 
improvement in their ASIA score or Frankel score as well as a marked recovery of 
motor and somatosensory evoked potentials (MEPs and SEPs). However, in the 
intravenous group, only one patient demonstrated an improved ASIA score as well 
as electrophysiology results. Interestingly most of the patients who had functional 
improvements received the administration of the MSCs close to the injury site 
suggesting that the administration route through the vertebral artery or into the 
cerebrospinal fluid might lead to the best outcome. This study also describes that 
3–4 weeks after the injury appears to be the best therapeutic window to administer 
the cells [79]. These results are also supported by another study carried out by 
Park et al. where they showed improved motor and sensory function in 5 out of 6 
patients who received intraspinal implantation of BM-MSCs 7 days post-injury in 
combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) 
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[80]. Four patients demonstrated a significant improvement in their American 
Spinal Injury Association Impairment Scale (AIS) grades from A to C, while one 
patient improved to AIS B from A. Lastly this study also describes those 3–4 
weeks after the injury appears to be the best therapeutic window to administer the 
cells [79].

As many studies supported the safety of this therapy, more scientists focused on 
comparing and trying to find different types of MSC transplantation. Geffner et al. 
reported eight thoracic SCI cases (four acute and four chronic) with the administra-
tion of BM-MSCs through many different administration routes such as intravenous, 
intraspinal, and directly into the spinal canal in order to assure that the cells will 
reach their target. Over the course of 2 years, patients showed significant improve-
ments in their quality of life measured by the BI score as well as certain motor 
recovery measured by the ASIA, Ashworth, and Frankel scores. All four patients of 
the acute group experienced an improvement in the ASIA score from A to C, while 
chronic patients had a lesser recovery improving from an ASIA score of B–C to 
C–D. Improvement of bladder control was the most important aspect in augmenting 
their quality of life; however, there were also many other important motor improve-
ments, which cannot be correctly represented in the ASIA score [81]. In addition, 
other studies furtherly support the therapeutic potential of MSCs in improving 
the urinary functions of SCI patients which majorly contributes to increasing their 
self-care ability [82, 83]. This study also demonstrated the feasibility and safety 
of multiple administration routes. Moreover, the study conducted by Jeon et al. 
discussed the effectiveness of the intraspinal application of BM-MSCs in 10 patients 
with complete cervical SCI. After 6 months 6 patients demonstrated motor improve-
ments in the upper limbs by measuring electrophysiological parameters (electro-
myography, nerve conduction velocity, SEP, MEP) as well as morphological changes 
described by magnetic resonance imaging (MRI) at the site of the lesion. In addition, 
three out of those six patients exhibited a significant increase in the performance of 
daily tasks. However, the ASIA/Frankel motor grade remained the same and did not 
reflect these motor improvements. This study also reported the absence of any major 
adverse effect or neoplasm growth over the course of 3 years, furtherly supporting 
the safety of this therapy [84].

Karamouzian et al. conducted one of the first studies to introduce a control 
group in the field of MSCs and SCI. This nonrandomized clinical trial discussed 
their therapeutic potential by comparing the outcome of 11 patients (7 males and 4 
females with mean age of 33.3 ± 8.9 years) with complete subacute SCI who received 
BM-MSC transplantation via lumbar puncture with a control group (n=20). Five 
patients in the study group and 12 patients in the control group presented spinal 
fracture at T12 and L1 levels, while the remaining patients presented a lesion 
between T1 and T11. After almost 3 years of follow-up, five patients of the experi-
mental group and three patients of the control group exhibited noticeable recovery 
(a two-grade improvement from baseline, i.e., from ASIA A to C); however, the 
results were statistically borderline, and there is no clear evidence of the therapeutic 
potential of these MSCs [85]. In a similar study, Dai et al. discussed the effective-
ness of BM-MSCs in complete and chronic SCI. This study randomly assigned 40 
patients with complete and chronic SCI into a treatment group (n=20) and a control 
group (n=20). After 6 months of follow-up, 50% of the treatment group demon-
strated significant motor recovery as well as an improvement in ASIA score and in 
electrophysiological examinations. In addition, most of the patients in the treat-
ment group exhibited a significant clinical improvement in terms of the amount 
of residual urinary volume, pinprick sensory, and light touch, while the control 
group did not exhibit any significant motor or sensorial improvements [82]. Both 
of these studies suggest that BM-MSCs might help improve neurological function 
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in complete and chronic SCI, and they present no evidence of any severe complica-
tions or major adverse events in any of the patients.

Although stem cell therapy has demonstrated that they possess the therapeutic 
potential to be combined with neurorehabilitation, Cheng et al. analyzed the effect 
of UC-MSCs in comparison with neurorehabilitation and self- healing in 34 patients 
with thoracolumbar SCI and AIS A grading. Patients were divided into three groups: 
the UC-MSC treatment group, the rehabilitation group, and the control group. 
After 6 months around 70% of the patients in the treatment group experienced 
a significant motor recovery and noticeable improvement in muscle tension and 
self-care ability which involves an increase in the strength of the abdomen, waist, 
and lower limbs. Meanwhile, only 36% of the patients treated with neurorehabilita-
tion exhibited certain improvements in these aspects, and the control group showed 
no significant changes in motor recovery, sensation, or self-care ability. In terms of 
bladder functions, the treatment group showed a decrease in residual urinary vol-
ume and maximum detrusor pressure as well as an increase in bladder capacity and 
urinary flow in comparison with the other two groups [86]. Later on, El-Kheir et al. 
decided to compare the use of BM-MSCs in combination with physical therapy with 
the use of physical therapy alone in 70 chronic cervical and thoracic SCI patients 
(25 AIS A and 45 AIS B) in a phase I/phase II controlled single-blind clinical trial. 
After 18 months of follow-up, 46% of the stem cell therapy group exhibited func-
tional improvement and an increase in both motor and dermatome scores by the 
ASIA and AIS scoring as well as a significant improvement in motor, pinprick, and 
light touch sensory and functional independence scores over the treated group with 
physical therapy alone [87]. These studies suggest that BM-MSCs can be combined 
with additional therapies in order to boost their therapeutic potential.

Equally important, El-Kheir et al. described that thoracic SCI patients with 
smaller lesions and lower duration of the injury had a higher increase of functional 
improvement in comparison with patients with cervical SCI [87]. Similar results 
were obtained in the study carried out by Mendonca et al. which demonstrated a 
statistically significant correlation between the neurological recovery and both the 
level and size of the injury in patients with chronic (>6 months) thoracic or lumbar 
SCI. In addition, after the intra-lesion administration of BM-MSCs, all of the 14 
patients demonstrated certain improvements in tactile sensitivity and 8 subjects 
showed some improvement in the motor functions of the lower limbs reflected by 
an improvement in their ASIA grading from A to B or C [88].

As the amount of beneficial but limited results grew, the amount of the trans-
planted MSCs and number of administrations started to gain attention. Vaquero 
et al. conducted a series of clinical trials involving different numbers of MSC 
administrations in SCI. The first study consisted of a clinical trial involving 12 
patients with complete (ASIA A) and chronic thoracic SCI who received two 
separate transplantations of BM-MSCs in the subarachnoid space. All patients 
exhibited certain degree of sensorial improvement (pinprick sensitivity and light 
touch sensitivity), and 50% of the patients showed motor activity below the injury 
level according to clinical and neurophysiological studies (SEPs and MEPs). More 
than 30% of the patients improved their AIS A score from A to B or C, and 83% 
of the patients presented improvement in urodynamic function including pos-
sibility of voluntary micturition (5 patients), increased bladder capacity at filling 
in (8 patients), decreased detrusor pressure at bladder filling in (9 patients), and 
increased bladder compliance (10 patients). In addition, they hypothesize that the 
clinical improvement was dose-dependent [89]. The second study consisted of 10 
patients with incomplete (ASIA B and C) cervical, thoracic, and lumbar SCI who 
received 4 subarachnoid administrations of MSCs. Besides the variable degree of 
sensorial and motor improvement, after 12 months of the first dosage almost all the 
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patients showed noticeable improvements in bowel and bladder control as well as 
evidence of muscle reinnervation in electromyographic studies. Furthermore, half 
of them demonstrated a decrease in spasticity by the Penn and Ashworth scales, and 
after the third dosage of MSCs, all the patients exhibited an increase in the values 
of neurotrophic factors such as brain-derived neurotrophic factor (BDNF), glial-
derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNF), and neu-
rotrophin 3 (NT-3) and neurotrophin 4 (NT-4). However, the difference with the 
basal mean concentration was not statistically significant [90]. Lastly, their third 
study consisted of a phase II clinical trial with the administration of three intrathe-
cal injections of MSCs in nine patients with chronic SCI. However, this time 44.4% 
of the patients demonstrated important improvements in voluntary muscle contrac-
tion, motor power, spasm, spasticity, neuropathic pain, and sexual function (IANR-
SCIFRS scale) along with evidence of muscle reinnervation. In addition, more than 
half of the patients showed improved somatosensory and motor evoked potentials 
[91]. Taken all together, Vaquero and colleagues demonstrate that the subarachnoid 
administration of MSCs is a safe procedure and that the clinical improvement may 
increase in a dose-dependent manner. These results were furtherly supported by 
a study carried out by Oh et al. where a single intramedullary administration of 
MSC in 16 patients with chronic SCI ASIA B demonstrated very limited therapeutic 
efficacy. Only two patients demonstrated enhanced motor recovery [92].

6. Study limitations and future directions for MSCs

Overall, the use of MSCs in SCI appears to be safe and without any major 
evidence of severe adverse reactions. However, the results obtained in the clinical 
trials so far do not concrete the promising results obtained in the preclinical trials. 
This may be due to the fact that preclinical studies normally utilize specific animal 
models with standardized protocols to produce the injury as well as preestablished 
treatments and timing of the transplantation which cannot be replicated in a human 
study. In clinical trials, most of these conditions depend heavily on chance, the trau-
matic event, and the emergency setting which may differ a lot from the controlled 
atmosphere of an animal experiment. In addition, there is a great lack of phase III 
clinical trials due to financial and ethical reasons. As mentioned before, one of the 
few phase III clinical trials held by Oh et al. showed weak and limited therapeutic 
efficacy [92]. Further investigation is needed to determine accurate parameters for its 
clinical use in SCI such as optimal therapeutic protocols involving type, preparation, 
number of cells administered, timing of transplantation, and administration route.

On the other hand, thanks to the technological revolution, scientists have now 
started to investigate the use of MSCs in combination with new biomaterials in 
order to promote tissue repair and to improve cell survival [6]. A study conducted 
by Xiao et al. analyzed the therapeutic effect of MSC transplantation in combina-
tion with a collagen scaffold which is known to support cell migration and adhesion 
[93]. After the transplant the injury status of the patients changed from ASIA A to 
ASIA C accompanied by a significant improvement in motor, sensory, and urinary 
functions [94]. Furthermore, the possibility of combining MSCs with hydrogels is 
particularly appealing due to their capacity to be injected with minimal invasion 
and to be loaded with specific drugs that can be furtherly released in a controlled 
manner [95]. Moreover, MSCs’ ability to induce the production of neurotrophic, 
immunomodulating, and neuroprotective factors needs further investigation in 
order to be fully understood and furtherly enhanced, aiming to improve the clinical 
outcomes. Lastly, the homing properties of the MSCs could be useful to transport 
specific target drugs to the site of the lesion and thus acting as a vector [96].
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7. Conclusion

In conclusion, MSCs represent a practical therapy in the search for a new 
treatment for SCI; this may be due to the fact that MSC therapy presents a large 
spectrum of favorable assets that make it particularly appealing. First, MSCs can be 
isolated from non-embryonic tissues (BM, adipose tissue, UC, and amniotic fluid, 
among others) via noninvasive techniques and are easily preserved and expanded 
in vitro. Furthermore, MSCs possess migratory properties that allow them to be 
administered through different routes and have minimal immunoreactivity towards 
the host, as well as a limited chance of developing a tumor. Numerous clinical trials 
have demonstrated their safety for transplantation in humans as well as their lack of 
any major side effects. However, an enormous improvement in motor recovery and 
sensory function is still missing, bringing out that additional investigation and new 
phase III clinical trials are needed in order to fully understand the mechanism of 
action of MSCs as well as the pathological mechanisms which prevent the restora-
tion of neural circuits in SCI. Lastly, the use of combinatory strategies with specific 
drugs, biomaterials, or neurorehabilitation may be the key factor to translate their 
promising results into the clinical practice.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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