
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

11

From Time Petri Nets to Timed Automata

Franck Cassez and Olivier H. Roux
Institut de Recherche en Communication et Cybernétique de Nantes (IRCCyN)

France

1. Introduction

In this chapter we introduce a formalism, Time Petri Nets (TPNs), to model real-time systems.
We compare it with another well-known formalism, Timed Automata (TA), used for specifying
timed systems. We precisely define the semantics of TPNs and TA and compare them accord-
ing to two criteria: the languages (or set of behaviours) they can generate, and the trees (or
branching behaviours) they can generate. We show that every TPN can be translated into an
equivalent1 TA.
Then, we introduce a real-time logic to specify properties of real-time systems. We show
how to check that a given TPN satisfies a property written in this logic. For this, we use our
translation2 from TPNs to TA and check the property on the equivalent TA. Finally we briefly
report on experiments for checking real-time properties of TPNs using this framework.

1.1. Petri Nets with Time

The two main extensions of Petri Nets with time are Time Petri Nets (TPNs) (Merlin, 1974) and
Timed Petri Nets (Ramchandani, 1974). In a TPN a transition can fire within a time interval
whereas for Timed Petri Nets it fires as soon as possible. For Timed Petri Nets, time can
be considered relative to places or transitions (Sifakis, 1980; Pezzè, 1999). It is interesting to
formally compare the different classes of Petri Nets with time: this gives a better idea of what
one subclass should be used for. The expressive power of (time) Petri Nets can be compared
w.r.t. the set of (timed) behaviors they can generate. One class C is a subclass of another C′,
if for every net n in C, there is a net n′ in C′ which can generate the same behaviors as n. In
this case, we say that the class C is less expressive than C′. For instance, the two subclasses
P-Timed Petri Nets and T-Timed Petri Nets are expressively equivalent (Sifakis, 1980; Pezzè,
1999) (i.e., P-Timed Petri Nets are less expressive than T-Timed Petri Nets and vice-versa). The
same subclasses are defined for TPNs i.e., T-TPNs and P-TPNs. Both classes of Timed Petri
Nets are less expressive than both P-TPNs and T-TPNs (Pezzè, 1999). P-TPNs and T-TPNs are
incomparable (Khansa et al., 1996). Finally TPNs are less expressive than Time Stream Petri
Nets (Diaz and Senac, 1994) which were introduced to model multimedia applications.
Another way of comparing two classes is to determine the status of different decision prob-
lems (e.g., reachability, coverability, boundedness) for the two classes. For instance, reachability
is undecidable for TPNs, as well as boundedness. Recent work (de Frutos Escrig et al., 2000;
Abdulla and Nylén, 2001) considers timed arc Petri nets where each token has a clock rep-
resenting its “age”. The authors prove that coverability and boundedness are decidable for
this class of Petri nets by applying a backward exploration technique. They use a lazy (non-
urgent) behavior of the net: the firing of transitions may be delayed, even if that implies that

1This equivalence is formally defined in the chapter.
2This translation preserves the properties of this logic.

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

226 Petri Net. Theory and Applications

some transitions are disabled because their input tokens become too old.

The class T-TPNs is the most commonly-used subclass of TPNs to specify real-time systems. In
this chapter, we focus on this subclass that will be henceforth referred to as TPNs. For classical
TPNs (with closed intervals), boundedness is undecidable (Berthomieu and Diaz, 1991), and
papers on this model report undecidability results, or decidability under the assumption that
the TPN is bounded, e.g., reachability in (Popova, 1991).

1.2. Verifying Time Petri Nets

The main objective in specifying real-time systems with formalisms like TPNs is to build a
model of a system S, and be able to mathematically reason about it. By reasoning we mean
“verifying that some properties are satisfied on the model”. The properties we would like to
check range from simple ones like “the system cannot reach a bad state” which are reachability
properties, to more involved properties like “after each failure, the system will reach a stable
state within 10 time units”, which are quantitative real-time properties. Given a formal model
S and a temporal logic formula ϕ, verifying that S satisfies ϕ is usually achieved by a model-
checking algorithm: such an algorithm checks that S is a model of the formula ϕ. Hence the
process of verifying that a formal model of a system satisfies a property in a temporal logic is
often called model-checking.

Algorithms for verifying properties on TPNs have been designed for more than a decade.
Formally, the behavior of a TPN can be defined by timed firing sequences which are sequences
of pairs (t, d) where t is a transition of the TPN and d ∈ R≥0. A sequence of transitions
like ω = (t1, d1) (t2, d2) . . . (tn, dn) . . . indicates that t1 is fired after d1 time units, then t2 is
fired after d2 time units have elapsed since t1 was fired, and so on, so that transition ti is

fired at absolute time ∑
i
k=1 dk. A marking M is reachable in a TPN if there is a timed firing

sequence ω from the initial marking M0 to M. Reachability analysis of TPNs relies on the
construction of the so-called State-Class Graph (SCG) that was introduced in (Berthomieu
and Menasche, 1983) and later refined in (Berthomieu and Diaz, 1991). It has been recently
improved in (Lilius, 1998) by using partial-order reduction methods.

For bounded TPNs, the SCG construction obviously solves the marking reachability problem:
“Given a marking M, is it possible to reach M from M0?”. If one wants to solve the state
reachability problem: “Given M and v ∈ R≥0 and a transition t, can we reach a marking M
such that transition t has been enabled for v time units?”, the SCG is not precise enough and an
alternative graph, the Strong State Class Graph has to be built for this purpose (Berthomieu and
Vernadat, 2003). The previous two graphs allow for checking qualitative properties written in a
real-time logic called LTL (Emerson, 1990). A more powerful real-time logic, CTL∗ (Emerson,
1990), can be checked on TPNs using yet another more precise graph.

Anyway, none of the previous graphs is a good3 abstraction (accurate enough) for checking
quantitative real-time properties e.g., “it is not possible to stay in marking M more than n
time units” or “from marking M, marking M′ is always reached within n time units”. In this
chapter we introduce a logic to specify such quantitative real-time properties and present an
algorithm to check for such properties on TPNs.

1.3. Timed Automata

Timed Automata (TA) were introduced by Alur & Dill (Alur and Dill, 1994) and have since
been extensively studied. They are now widely used to model real-time systems. TA forms
an extension of finite automata with dense time clocks and enables one to specify real-time

3The use of observers is of little help as it requires to specify a property as a TPN; thus it is hard to
specify properties on markings.

www.intechopen.com

From Time Petri Nets to Timed Automata 227

systems. It has been shown that model-checking a quantitative real-time logic, called TCTL,
is decidable (Alur and Dill, 1994; Henzinger et al., 1994) for TA and some of their exten-
sions (Bouyer et al., 2000). There also exist several efficient tools like UPPAAL (Larsen et al.,
1997), KRONOS (Yovine, 1997) and CMC (Laroussinie and Larsen, 1998) for model-checking
TA and many real-time industrial applications have been specified and successfully verified
with them. In this chapter, we show how to translate TPNs into equivalent TA. This enables
us to use the technology and tools developed for TA to verify TPNs.

1.4. Outline of the Chapter

In Section 2 we fix notations and provide basic notions for defining the formal semantics of
Time Petri Nets and Timed Automata. In Section 3, we introduce Time Petri Nets and define
their semantics. We also give the main properties of this model together with an algorithm
to compute a finite representation of the state space of a Time Petri Net; this algorithm can
be used to check marking reachability. In Section 4, we compare the expressiveness of Timed
Automata and Time Petri Nets and show that they are equivalent w.r.t. language equivalence.
We give the translation from TPNs to TA and show in Section 5 how to check quantitative
properties on TPNs using a timed temporal logic. In Section 6, we apply the framework
defined in Section 4 on some examples. Finally, we conclude with recent or ongoing work
on this subject in Section 7.

2. Preliminaries

Let Σ be a finite alphabet. Σ∗ (resp. Σω) denotes the set of finite (resp. infinite) sequences
over Σ and Σ∞ = Σ∗ ∪ Σω (called words in the sequel). By convention if u ∈ Σω , then the
length of u, denoted |u|, is ω; otherwise if u = a1 · · · an, |u| = n. We also use Σε = Σ ∪ {ε}
where ε 6∈ Σ, where ε is the empty word. BA stands for the set of mappings from A to B. If
A is finite and |A| = n, an element of BA is also a vector in Bn. The usual operators +,−, <
and = are used on vectors of An with A = N, Q, R and are the point-wise extensions of
their counterparts in A. The set B = {tt, ff} denotes the boolean truth values true and false,
R≥0 denotes the set of non-negative reals and R>0 = R≥0 \ {0}. A valuation ν for the set of
variables X is an element of RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν + d denotes the valuation

defined by (ν + d)(x) = ν(x) + d, and for X′ ⊆ X, ν[X′ 7→ 0] denotes the valuation ν′ with
ν′(x) = 0 for x ∈ X′ and ν′(x) = ν(x) otherwise. 0 denotes the valuation s.t. ∀x ∈ X, 0(x) = 0.
An atomic constraint is a formula of the form x ⊲⊳ c for x ∈ X, c ∈ Q≥0 and ⊲⊳∈ {<,≤,≥, >}.
We denote C(X) the set of constraints over a set of variables X which consists of conjunctions
of atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we denote
ϕ(ν) ∈ B the truth value obtained by substituting each occurrence of x in ϕ by ν(x).

2.1. Timed Languages and Timed Transition Systems

Let Σ be a fixed finite alphabet s.t. ε 6∈ Σ and A be a finite alphabet which can contain ε.

Definition 1 (Timed Word) A timed word w over Σ is a finite or infinite sequence

w = (a0, d0)(a1, d1) · · · (an, dn) · · ·

s.t. for each i ≥ 0, ai ∈ Σ, di ∈ R≥0 and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can also be viewed as a pair (v, τ) ∈
Σ∞ × R∞

≥0 s.t. |v| = |τ|. The value dk gives the absolute time (considering the initial in-
stant is 0) of action ak. We write Untimed(w) = a0a1 · · · an · · · for the untimed part of w, and

www.intechopen.com

228 Petri Net. Theory and Applications

Duration(w) = ∑k≥0 dk for the duration of the timed word w. We let TW∗(Σ) (resp. TWω(Σ))
be the set of finite (resp. infinite) timed words over Σ and TW(Σ) = TW∗(Σ) ∪ TWω(Σ). A
timed language L over Σ is a set of timed words i.e., any set L ⊆ TW(Σ).
Timed Transition Systems (TTS) are usual transition systems with two types of labels: discrete
labels for events and positive reals’ labels for time elapsing. Consequently, they have two
types of transitions: discrete transitions and time transitions:

Definition 2 (Timed Transition System) A timed transition system (TTS) (over a set of actions
A) is a tuple S = (Q, Q0, A,→, F, R) where:

• Q is a set of states;

• Q0 ⊆ Q is the set of initial states;

• A is a finite set of actions disjoint from R≥0;

• −→⊆ Q × (A ∪ R≥0)× Q is a set of edges. If (q, e, q′) ∈−→, we also write q
e
−→ q′;

• F ⊆ Q and R ⊆ Q are respectively the set of final and repeated states.

For a time transition q
d
−→ q′ with d ∈ R≥0, d denotes a delay and not an absolute time.

We assume that in any TTS there is a transition q
0
−→ q′ and in this case q = q′. A run ρ of

length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence of alternating time and discrete
transitions of the form:

ρ = q0
d0−−→ q′0

a0−−→ q1
d1−−→ q′1

a1−−→ · · · qn
dn−−→ q′n · · ·

with di ∈ R≥0 and ai ∈ A. We write first(ρ) = q0. We assume that a finite run ends with

a time transition dn . If ρ ends with dn, we let last(ρ) = q′n and write q0
d0a0···dn−−−−−→ q′n. We

write q
∗
−→ q′ if there is run ρ s.t. first(ρ) = q0 and last(ρ) = q′. The set of reachable states

in S is the set of states q s.t. q0
∗
−→ q for some q0 ∈ Q0. The trace of an infinite run ρ

is the timed word trace(ρ) = (ai0
, d0 + · · · + di0

) · · · (aik
, d0 + · · · + dik

) · · · that consists of
the sequence of letters (aik

)k∈N of A \ {ε}. If ρ is a finite run, we define the trace of ρ by
trace(ρ) = (ai0

, d0 + · · · + di0
) · · · (aik

, d0 + · · · + dik
) where the aik

are in A \ {ε}. By def-
inition Untimed(ρ) = Untimed(trace(ρ)) and Duration(ρ) = ∑dk∈R≥0

dk. A run ρ is zeno if
|Untimed(ρ)| = ω and Duration(ρ) = Duration(trace(ρ)) = r with r ∈ R≥0.
A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite initial run and
last(ρ) ∈ F or ii) ρ is an infinite initial run and there is a state q ∈ R that appears infinitely
often on ρ. A timed word w = (ai, di)i≥0 is accepted by S if there is an accepting run ρ s.t. trace
trace(ρ) = w. The timed language, L(S), accepted by S is the set of finite and infinite timed
words accepted by S. We let L∗(S) (resp. Lω(S)) be the set of finite (resp. infinite) timed
words accepted by S. When we omit the sets F and R, it means that F = R = Q i.e., every
state is final and repeated. In this case the language accepted by the TTS is prefix-closed, that
is, if the TTS accepts a timed word w, then it also accepts every finite prefix of w.

2.2. Equivalences on Timed Transition Systems

We can define two types of equivalences on TTS: roughly speaking, language equivalences are
based on the set of timed words two TTS generate. Branching equivalences (like simulation or
bisimulation) are finer in the sense that they involve the branching structure of the two TTS.

Definition 3 (Timed Language Equivalence) Let Si = (Qi, Qi
0, A,−→i, Fi, Ri) with i = 1, 2 be

two TTS. S1 and S2 are language equivalent, denoted S1 =L S2, if L(S1) = L(S2).

www.intechopen.com

From Time Petri Nets to Timed Automata 229

Branching equivalences can be defined on TTS and are more constraining:

Definition 4 (Strong Timed Similarity) Let S1 = (Q1, Q1
0, A,−→1, F1, R1) and S2 = (Q2, Q2

0,
A,−→2, F2, R2) be two TTS and � be a binary relation over Q1 × Q2. We write s � s′ for (s, s′) ∈�.
� is a strong (timed) simulation relation of S1 by S2 if:

1. if s1 ∈ F1 (resp. s1 ∈ R1) and s1 � s2 then s2 ∈ F2 (resp. s2 ∈ R2);

2. if s1 ∈ Q1
0 there is some s2 ∈ Q2

0 s.t. s1 � s2;

3. if s1
d
−→1 s′1 with d ∈ R≥0 and s1 � s2 then s2

d
−→2 s′2 for some s′2, and s′1 � s′2;

4. if s1
a
−→1 s′1 with a ∈ A and s1 � s2 then s2

a
−→2 s′2 and s′1 � s′2.

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation of S1 by S2. We write
S1 �S S2 in this case.

When there is a strong simulation relation � of S1 by S2 and �−1 is also a strong simulation
relation4 of S2 by S1, we say that � is a strong (timed) bisimulation relation between S1 and S2

and use ≈ instead of �. Two TTS S1 and S2 are strongly (timed) bisimilar if there exists a strong
(timed) bisimulation relation between S1 and S2. We write S1 ≈S S2 in this case.

Let S = (Q, Q0, Σε,−→, F, R) be a TTS. We define the ε-abstract TTS Sε = (Q, Qε
0, Σ, −→ε, F, R)

(with no ε-transitions) by:

• q
d
−→ε q′ with d ∈ R≥0 iff there is a run ρ = q

∗
−→ q′ with Untimed(ρ) = ε and

Duration(ρ) = d,

• q
a
−→ε q′ with a ∈ Σ iff there is a run ρ = q

∗
−→ q′ s.t. Untimed(ρ) = a and Duration(ρ) = 0,

• Qε
0 = {q | ∃q′ ∈ Q0 | q′

∗
−→ q and Duration(ρ) = 0 ∧ Untimed(ρ) = ε}.

Definition 5 (Weak Timed Similarity) Let Si = (Qi, Qi
0, Σε,−→i, Fi, Ri) for i = 1, 2 be two TTS

and � be a binary relation over Q1 × Q2. � is a weak (timed) simulation relation of S1 by S2 if it
is a strong timed simulation relation of Sε

1 by Sε
2. A TTS S2 weakly simulates S1 if there is a weak

(timed) simulation relation of S1 by S2. We write S1 �W S2 in this case.

When there is a weak simulation relation � of S1 by S2 and �−1 is also a weak simulation
relation of S2 by S1, we say that � is a weak (timed) bisimulation relation between S1 and S2

and use ≈ instead of �. Two TTS S1 and S2 are weakly (timed) bisimilar if there exists a weak
(timed) bisimulation relation between S1 and S2. We write S1 ≈W S2 in this case. Note that if
S1 �S S2 then S1 �W S2 and if S1 �W S2 then L(S1) ⊆ L(S2).

3. Time Petri Nets

Time Petri Nets were introduced in (Merlin, 1974) and extend Petri Nets with timing con-
straints on the firings of transitions. In this section, we give the definitions and semantics of
an extended class of TPNs using open and/or closed intervals (Bérard et al., 2005a; Cassez
and Roux, 2006).

4s2 �−1 s1 ⇐⇒ s1 � s2.

www.intechopen.com

230 Petri Net. Theory and Applications

3.1. Definition and Semantics

Definition 6 (Time Petri Net) A Time Petri Net (TPN) T is a tuple (P, T, •(.), (.)•, M0, (α, β))
where:

• P = {p1, p2, · · · , pm} is a finite set of places;

• T = {t1, t2, · · · , tn} is a finite set of transitions;

•
•(.) ∈ (NP)T is the backward incidence mapping; (.)• ∈ (NP)T is the forward incidence
mapping;

• M0 ∈ NP is the initial marking;

• α ∈ (Q≥0)
T and β ∈ (Q≥0 ∪ {∞})T are respectively the earliest and latest firing time

mappings.

A labeled TPN is a pair (T , L) where L : T → Σε.

The semantics of TPNs can be given by a Timed Transition System. ν ∈ (R≥0)
n is a valuation

such that each value νi is the elapsed time since transition ti was last enabled. 0 is the initial
valuation with ∀i ∈ [1..n], 0i = 0. A marking M of a TPN is a mapping in NP and if M ∈ NP,
M(pi) is the number of tokens in place pi. A transition ti is enabled in a marking M iff M ≥ •ti

and α(ti) ≤ νi ≤ β(ti). The predicate ↑enabled(tk, M, ti) ∈ B is true if tk is enabled by the
firing of transition ti from marking M, and false otherwise. This definition of enabledness
is based on (Berthomieu and Diaz, 1991; Aura and Lilius, 2000) which is the most common
one. In this framework, a transition tk is newly enabled after firing ti from marking M if “it is
not enabled by M − •ti and is enabled by M′ = M − •ti + ti

•” (Berthomieu and Diaz, 1991).
Formally this gives:

↑Enabled(tk, M, ti) =
(

M − •ti + ti
• ≥ •tk

)

∧
(

(M − •ti < •tk) ∨ (tk = ti)
)

(1)

Definition 7 (Semantics of a TPN) The semantics of a TPN T is a timed transition system ST =
(Q, q0, T,→) where: Q = NP × (R≥0)

n, q0 = (M0, 0), −→ ∈ Q × (T ∪ R≥0)× Q consists of:

• the discrete transition relation is defined for all ti ∈ T by (M, ν)
ti−→ (M′, ν′) iff:

M ≥ •ti ∧ M′ = M − •ti + ti
•

α(ti) ≤ νi ≤ β(ti)

ν′k =

{

0 if ↑Enabled(tk, M, ti),

νk otherwise.

• and the continuous transition relation is defined for all d ∈ R≥0 by (M, ν)
d
−→ (M, ν′) iff:

{

ν′ = ν + d

∀k ∈ [1..n],
(

M ≥ •tk =⇒ ν′k ≤ β(tk)
)

A run of a time Petri net T is a (finite or infinite) path in ST starting in q0. The set of runs of T
is denoted by Runs(T). As a shorthand we write (M, ν) −→d

e (M′, ν′) for a sequence of time

elapsing and discrete steps like (M, ν)
d
−→ (M′′, ν′′)

e
−→ (M′, ν′). A state (M, ν) is reachable in

T if (M0, ν0)
∗

−−−−→ (M, ν). ReachState(T) is the reachable set of states in T . A marking M is

www.intechopen.com

From Time Petri Nets to Timed Automata 231

reachable in T if there is a state (M, ν) ∈ ReachState(T). The set of reachable markings of T is
denoted ReachMark(T). If the set ReachMark(T) is finite we say that T is bounded, otherwise
it is unbounded.
If we add two sets of markings, F (final) and R (repeated), we can define the languages ac-
cepted by T . We let SF (resp. SR) be the set of states (M, ν) of ST s.t. M ∈ F (resp. M ∈ R).
The timed language L(T) accepted by T is the timed language accepted by ST with sets SF

and SR as final and repeated states. Similar definitions hold for L∗(T) and Lω(T). Moreover,
for a labeled TPN (T , L), the languages accepted by (T , L) are the languages accepted by T
where, in each timed word, a transition label t is replaced by L(t).
In Definition 7, we have implicitly assumed that the constraints given on each transition of the
TPN by the mapping (α, β) are closed constraints. We can also consider that the firing intervals
of a transition are left and/or right open. The semantics is defined accordingly substituting
< to ≤: assume α(ti), β(ti) is left-closed and right open; in this case the discrete transition
relation for ti is defined using α(ti) ≤ νi < β(ti) instead of α(ti) ≤ νi ≤ β(ti) in Definition 7
and for the continuous transition relation, we should use ν′i < β(ti). Most of the results we
give in this chapter hold for any type of intervals. In the sequel, we denote T PN the most
general class of TPNs using open or closed intervals and T PN (≤,≥) for the subclass that
uses only closed intervals.
Our semantics (Bérard et al., 2005a; Cassez and Roux, 2006) is based on the common definition
of (Berthomieu and Diaz, 1991; Aura and Lilius, 2000) for safe TPNs but still there are some
advantages using ours. First, previous formal semantics (Berthomieu and Diaz, 1991; Lilius,
1998; Pezzè, 1999; Aura and Lilius, 2000) for TPNs required the TPNs to be safe. Our semantics
encompasses the whole class of TPNs and is fully consistent with the previous semantics
when restricted to safe TPNs5. Thus, we have given a semantics to multiple enabledness of
transitions which seems the most simple and adequate. Indeed, several interpretations can be
given to multiple enabledness (Berthomieu and Diaz, 1991).
Second, some variations can be found in the literature about TPNs concerning the firing of
transitions. The paper (Pezzè, 1999) considers two distinct semantics: Weak Time Semantics
(WTS) and Strong Time Semantics (STS). According to WTS, a transition can be fired only in its
time interval whereas in STS, a transition must fire within its firing interval unless disabled by
the firing of others. The most commonly used semantics is STS as in (Merlin, 1974; Berthomieu
and Diaz, 1991; Pezzè, 1999; Aura and Lilius, 2000). A more complete study on the firing
policy in TPNs can be found in (Bérard et al., 2005c).
Third, it is possible for the TPN to generate zeno runs or to be unbounded. When it is un-
bounded, the discrete component (i.e., marking) of the state space of the timed transition sys-
tem is infinite. If ∀i, α(ti) > 0 then the TPN cannot generate any zeno word and time diverges
on each run. Otherwise, if the TPN is bounded and at least one lower bound is 0, whether or
not a TPN accepts a zeno run can be decided (Henzinger et al., 1994) (for instance using the
equivalent timed automaton we build in section 4.3). In the next subsections we summarize
the status of basic decision problems for TPNs.

3.2. Decidable and Undecidable Problems for TPNs

Let T = (P, T, •(.), (.)•, M0, (α, β)) be a TPN with |P| = p, |T| = n and let ST = (Q, q0, T,→)
its semantics. Let us consider the following problems:

(1) The marking reachability problem: Given m ∈ Np, is m in ReachMark(T)?

(2) The boundedness problem: Is there a bound b ∈ Np s.t. ∀m ∈ ReachMark(T), m ≤ b?

5If we except the difference with (Lilius, 1998) in the definition of the reset instants for newly enabled
transitions.

www.intechopen.com

232 Petri Net. Theory and Applications

(3) The k-boundedness problem: Given k = (k1, k2, · · · , kp) ∈ Np, is it true that for all

m ∈ ReachMark(T), m ≤ k?

(4) The state reachability problem: Given (M, ν) ∈ NP × Rn
≥0, is (M, ν) in ReachState(T)?

(5) The liveness problem: For t ∈ T, (M, ν) ∈ ReachState(T), is there any run (M, ν)
∗
−→

(M′, ν′) such that (M′, ν′)
t
−→ (M′′, ν′′)?

(6) The emptiness problem: Is the language accepted by T empty i.e., L(ST) = ∅?

(7) The universal problem: Does T accept all the finite (resp. infinite) timed words over T
i.e., L∗(T) = TW∗(T) (resp. Lω(T) = TWω(T))?

Problem (1) was proved undecidable for TPNs in (Jones et al., 1977). It follows that all prob-
lems (1–2) and (4–5) are undecidable for TPNs. There are however a number of sufficient con-
ditions for the boundedness property of TPNs, the stronger being that the underlying Petri
net is bounded, and the latter is known decidable. For Time Petri nets, we have the following
results:

Theorem 1 (Berthomieu and Diaz, 1991) k-boundedness (3) is decidable for TPNs. State reacha-
bility (4) and liveness (5) are decidable for bounded TPNs.

Theorem 2 (Cassez and Roux, 2006) The emptiness problem (6) is PSPACE-complete for bounded
TPNs.

Theorem 3 (Bérard et al., 2005a) The universal problem (7) is undecidable for bounded TPNs.

Theorem 2 is obtained by reducing the emptiness problem for bounded TPNs to the emptiness
problem for TA (using the result of Section 4). Theorem 3 is more difficult to obtain and
consists in translating a TA into an equivalent TPN (using the results of Table 1). In the next
two subsections we describe two ways of solving the state reachability (4) problem.

3.3. State Reachability Using The State Class Method

To decide problem 4, we can compute a finite representation of the state space of a bounded
TPN. If, on this representation G, we can decide whether a state (M, ν) belongs to G we have
an algorithm to check state reachability.
The first method to compute the state space of a TPN is based on the aggregation of states into
classes and was introduced by BERTHOMIEU and DIAZ in (Berthomieu and Diaz, 1991).

Definition 8 (State Class) A State Class C of a TPN is a pair (M, D) where M is a marking and D
is a set of inequalities, over a set of variables X, called the firing domain. The value of a variable xi ∈ X
of the firing domain represents the firing time of the enabled transition ti relatively to the time when
the class C was entered.

To obtain an abstract representation of the state space of a TPN, it is possible to compute a
graph of state classes called the State Class Graph (SCG). An edge in the SCG from a class to
another is defined by:

Definition 9 (State Class Transition) Given a class C = (M, D) and a transition tj enabled in

(M, D), the tj-successor class, C′ = (M′, D′), of C is computed as follows:

1. Compute the new marking M′ = M − •tj + tj
•;

www.intechopen.com

From Time Petri Nets to Timed Automata 233

2. Add the constraints xj ≤ xi for each i 6= j to D. Then substitute in D each variable xi , i 6= j by

x′i + xj where x′i are new fresh variables. The new domain obtained this way is D′;

3. Eliminate xj from D′ using for instance the Fourier-Motzkin method;

4. Replace x′i by xi in D′.

5. Compute a canonical form of D′ using for instance the Floyd-Warshall algorithm.

Computing all the edges of the SCG from the initial class of a TPN is called the State-Class
Method. In the state class method, the domain associated with a class is relative to the time
when the class was entered and as the transformation (we reset the time origin) is irreversible,
absolute values of clocks cannot be obtained easily. The graph produced is an abstraction
of the state space for which temporal information has been lost. Often, the graph has more
classes than the number of markings of the TPN. Edges between classes are no longer labeled
with a firing constraint but only with the name of the fired transition: the state class graph
accepts the untimed (prefix closed) language of the TPN. If the TPN is bounded the SCG of
a TPN is finite. The SCG computation is implemented in the tool TINA (Berthomieu and
Vernadat, 2006a).
As a consequence of the SCG construction, sophisticated temporal properties are not easy to
check. Indeed, the domain associated with a marking is made of relative values of clocks and
the function to compute domains is not bijective. Consequently, domains cannot be easily
used to verify properties involving constraints on clocks.
In order to get rid of these limitations, several papers have proposed to construct a different
state class graph by modifying the equivalence relation between classes. To our knowledge,
the methods proposed in (Berthomieu and Vernadat, 2003) depend on the property to check.
Checking LTL or CTL properties will lead to different state class graphs.
Another limitation of the methods and associated tools to check properties of TPN using the
SCG, is the need to compute the whole state graph while only the reachability of a given
marking is needed (safety properties). The graph is then analyzed by a model checker for
finite state systems. Using observers is even more costly: actually, for each property to be
checked, a new state class graph has to be built and the observer can dramatically increase the
size of the state space.

3.4. State Reachability Using a Zone Based Abstraction

Another method to compute a finite representation of the state space of a bounded TPN was
recently proposed by GARDEY et al. in (Gardey et al., 2003; Gardey et al., 2006). It is based on
the Region Graph introduced for Timed Automata (Alur and Dill, 1994; Rokicki, 1993).
A zone is a convex union of regions as defined by ALUR and DILL (Alur and Dill, 1994). For
short, considering n clocks, a zone is a convex subset of Rn

≥0. A zone can be represented by

a conjunction of constraints on pairs of clocks: xi − xj ∼ c where ∼∈ {<,≤, =,≥, >} and
c ∈ N.
The graph which is computed in this case is a simulation graph of a TPN which is an abstract
and symbolic representation of the state space of the TPN. Given the initial marking M0 and an
initial zone Z0 (the values of clocks for Z0 are 0), time and discrete successors are iteratively
computed by letting time pass or by firing transitions. Let M be a marking and Z a zone. The
computation of the reachable markings from (M, Z) is done as follows:

1. Compute the possible states reachable by time elapsing: we let
−→
Z be the set of such

states. It is obtained by setting all upper bounds of constraints on clocks defining Z to
infinity;

www.intechopen.com

234 Petri Net. Theory and Applications

2. Select only the possible valuations of clocks for which M could exist, i.e., the valuations
of clocks are smaller than the latest firing time of any enabled transitions;

Z′ =
−→
Z ∩

∧

ti∈EnabledM,Z

{xi ≤ βi}

where {x ≤ β} denotes the zone defined by the constraint x ≤ β. Z′ is the maximal
zone starting from Z for which the marking M exists.

3. Determine the firable transitions in (M, Z′): ti is firable if Z′ ∩ {xi ≥ αi} is a non empty
zone.

4. For each firable transition ti leading to a marking Mi, compute the zone obtained when
we enter the new marking Mi as follows:

Zi = (Z′ ∩ {xi ≥ αi})[Xe := 0]

where Xe is the set of newly enabled clocks. This means that each transition which is
newly enabled has its clock reset. Then, Zi is a zone for which the new marking Mi is
reachable.

It is then possible to compute all the reachable pairs (M, Z) reachable from (M0, Z0) using the
previous method. This way we obtain a forward algorithm to compute the simulation graph
for a bounded TPN.
An algorithm to enumerate reachable markings for a bounded TPN could be based on the
previous iterative process but, in some cases, it will lead to a non-terminating computation.
Though the number of reachable markings is finite for a bounded TPN, the number of zones
in which a marking is reachable is not necessarily finite as shown by the TPN T0 in Fig. 1.

• •P1 P2

P3

T1[0, ∞[T2[1, 1] T3[1, 1]

Figure 1. A TPN T0 with an Unbounded Number of Zones

The initial zone of T0 is Z0 is {x1 = 0 ∧ x2 = 0 ∧ x3 = 0} (where xi is the clock associated to
Ti) and the initial marking M0 = (P1, P2, P3) = (1, 1, 0). Consider the infinite firing sequence:
(T2.T3)

ω . By letting time pass, M0 is reachable until x2 = 1. When x2 = x1 = 1 the transition
T2 has to be fired. The zone corresponding to these clock values is: Z0 = {0 ≤ x1 ≤ 1 ∧
x1 − x2 = 0}. By firing T2 and then T3, T0 reaches its initial marking M0. When it enters
M0, the values of (new) clocks are: x1 = 2, x2 = 0 and x1 − x2 = 2. Indeed, T1 remains
enabled while T2 and T3 are fired and x2 is reset when T3 is fired because T2 became newly
enabled. Given these new values, the initial marking can exist while x2 ≤ 1 i.e., for the zone:
Z1 = {2 ≤ x1 ≤ 3 ∧ x1 − x2 = 2}. By applying infinitely the sequence T2.T3, there exists an
infinite number of zones for which the initial marking is reachable.

www.intechopen.com

From Time Petri Nets to Timed Automata 235

Actually, the number of zones is not bounded because infinity is used as latest firing time
for T1. If for all the transitions ti of a TPN, β(ti) ∈ Q≥0, i.e., the upper bound is finite, we
say that the TPN is t-bounded. if a TPN is t-bounded, all the clocks in the simulation graph
are bounded and so, the number of different zones is bounded (Alur and Dill, 1994). The
algorithm computing the simulation graph terminates in this case and it gives a finite (exact)
representation of the state space of a bounded TPN.
We now present a more general algorithm which computes the state space of a TPN as defined
in section 2, i.e., even if the TPN is not t-bounded. It is based on the use of an operator on zones
which constructs equivalence classes. The resulting equivalence relation will be of finite index.
A common operator on zones is the k-approx operator. For a given integer k, the use of this
operator allows to create a finite set of distinct zones as presented in (Alur and Dill, 1994).
To compute the simulation graph, we refine step 4 of the previous computation algorithm by
applying the k-approx operator on the zone resulting from this last step.
This approximation is based on the fact that once the clock associated with an “unbounded”
transition ([α, ∞[) has reached the value α, its precise value does not matter. Using k-approx
(with k = α) allows to group all zones [x, ∞[, x ≥ α in one equivalence class.
Previous papers on Timed Automata (Bouyer, 2004; Bouyer, 2003) have proved that this oper-
ator generally leads to a strict upper-approximation of the reachable state space. Nevertheless,
for a given class of TA called diagonal-free TA, there is no upper-approximation of the reachable
markings (Bouyer, 2004; Bouyer, 2003), and this also holds for TPNs:

Theorem 4 For a bounded TPN, the (forward) algorithm to compute the simulation graph using k-
approx on zones is exact (with respect to marking reachability) and terminates.

In other words, checking whether M ∈ ReachMark(T) is equivalent to checking whether there
is a state class C = (M, D) in the simulation graph. As the approximation is only needed for
TPNs where some transitions have infinity as latest firing time, the following corollary holds:

Corollary 1 For a bounded and t-bounded TPN, the (forward) algorithm to compute the simulation
graph using zones is exact (with respect to marking reachability) and terminates.

4. Comparison of Time Petri Nets and Timed Automata

In this section we give some results concerning the expressive power of TPNs and Timed au-
tomata (Alur and Dill, 1994). Timed automata (TA) are very similar to TPNs and a lot of the-
oretical results have been obtained for TA. Moreover efficient tools have been developed to
check real-time properties on this model. It is thus important to compare the two formalisms
and see if they can provide new insights for TPNs.

4.1. Timed Automata and Products of Timed Automata

Timed automata were studied by ALUR and DILL (Alur and Dill, 1994) and are used to model
systems which combine discrete and continuous evolutions.

Definition 10 (Timed Automaton) A Timed Automaton H is a tuple (N, l0, C, A, E, Inv) where:

• N is a finite set of locations;

• l0 ∈ N is the initial location;

• X is a finite set of positive real-valued clocks;

• A is a finite set of actions;

www.intechopen.com

236 Petri Net. Theory and Applications

• E ⊆ N × C(C) × A × 2X × N is a finite set of edges, e = 〈l, γ, a, R, l ′〉 ∈ E represents an
edge from the location l to the location l ′ with the guard γ, the label a and the reset set R ⊆ X;

• Inv ∈ C(X)N assigns an invariant to any location. We restrict the invariants to conjuncts of
terms of the form c ≤ r for c ∈ C and r ∈ N.

The semantics of a timed automaton is a timed transition system.

Definition 11 (Semantics of a Timed Automaton) The semantics of a timed automaton H = (N,
l0, X, A, E, Inv) is given by a timed transition system SH = (Q, q0,→) with Q = N × RX

≤0, q0 =
(l0, 0) is the initial state and → consists of the discrete and continuous transition relations:

• the discrete transition relation if defined for all a ∈ A by (l, v)
a
−→ (l ′, v′) if:

∃ (l, γ, a, R, l ′) ∈ E s.t.

γ(v) = tt,

v′ = v[R 7→ 0]

Inv(l ′)(v′) = tt

• the continuous transitions is defined for all t ∈ R≥0 by (l, v)
t
−→ (l ′, v′) if:

{

l = l ′ v′ = v + t and

∀ 0 ≤ t′ ≤ t, Inv(l)(v + t′) = tt

A run of a timed automaton H is an initial run in SH starting in q0. The set of runs of H is denoted
by Runs(H). If we add two sets of locations F ⊆ N and R ⊆ N we can define the timed languages
accepted by a TA H. We let L(H), L∗(H) and Lω(H) be the different timed languages accepted by
H.

Modularity is important for modeling systems and it is convenient to describe a system as a
parallel composition of timed automata. To this end, we use the classical composition notion
based on a synchronization function à la Arnold-Nivat. Let X = {x1, · · · , xn} be a set of clocks,
H1, . . . , Hn be n timed automata with Hi = (Ni, li,0, X, A, Ei, Invi). A synchronization function
f is a partial function from (A ∪ {•})n ֒→ A where • is a special symbol used when an
automaton is not involved in a step of the global system. Note that f is a synchronization
function with renaming. We denote by (H1| . . . |Hn) f the parallel composition of the Hi’s
w.r.t. f . The configurations of (H1| . . . |Hn) f are pairs (l, v) with l = (l1, . . . , ln) ∈ N1 × . . . ×
Nn and v = (v1, · · · , vn) where each vi is the value of the clock xi ∈ X. Then the semantics of
a synchronized product of timed automata is also a timed transition system: the synchronized
product can do a discrete transition if all the components agree to do so, and time can progress
in the synchronized product also if all the components agree to do so. This is formalized by
the following definition:

Definition 12 (Semantics of a Product of Timed Automata) Let H1, . . . , Hn be timed automata
with Hi = (Ni, li,0, X, A, Ei, Invi), and f a (partial) synchronization function (A∪ {•})n ֒→ A. The
semantics of (H1| . . . |Hn) f is a timed transition system S = (Q, q0, A,→) with Q = N1 × . . . ×

Nn × RX
≥0, q0 is the initial state ((l1,0, . . . , ln,0), 0) and → is defined by:

• (l, v)
b
−→ (l′, v′) if there exists (a1, . . . , an) ∈ (A ∪ {•})n s.t. f (a1, . . . , an) = b and for any i

we have:

www.intechopen.com

From Time Petri Nets to Timed Automata 237

. If ai = •, then l′[i] = l[i] and v′[i] = v[i],

. If ai ∈ A, then (l[i], v[i])
ai−→ (l′[i], v′[i]).

• (l, v)
t
−→ (l, v′) if for all i ∈ [1..n], every Hi agrees on time elapsing i.e., (l[i], v[i])

t
−→

(l[i], v′[i]).

We could equivalently define the product of n timed automata syntactically, building a new
timed automaton from the n initial ones. In the sequel, we consider a product (H1| . . . |Hn) f

to be a timed automaton the semantics of which is timed bisimilar to the semantics of the
product we have given in Definition 12.

4.2. Expressiveness of TA vs TPNs

In this subsection, we define some criteria to compare the expressive power of TA and TPNs.
We then show how to translate a TPN into an equivalent TA.

4.2.1. Expressiveness and Equivalence Problems

If B, B′ are either TPNs or TA, we write B ≈S B′ (resp. B ≈W B′) for SB ≈S SB′ (resp.
SB ≈W SB′). Let C and C ′ be two classes of TPNs or TA.

Definition 13 (Expressiveness w.r.t. Timed Language Acceptance) The class C is more expres-
sive than C ′ w.r.t. timed language acceptance if for all B′ ∈ C ′ there is a B ∈ C s.t. L(B) = L(B′).
We write C ′ ≤L C in this case. If moreover there is some B ∈ C s.t. there is no B′ ∈ C ′ with
L(B) = L(B′), then C ′ <L C (read “strictly more expressive”). If both C ′ ≤L C and C ≤L C ′ then C
and C ′ are equally expressive w.r.t. timed language acceptance, and we write C =L C ′.

Definition 14 (Expressiveness w.r.t. Timed Bisimilarity) The class C is more expressive than
C ′ w.r.t. strong (resp. weak) timed bisimilarity if for all B′ ∈ C ′ there is a B ∈ C s.t. B ≈S B′ (resp.
B ≈W B′). We write C ′ ≤S C (resp. C ′ ≤W C) in this case. If moreover there is a B ∈ C s.t. there is
no B′ ∈ C ′ with B ≈S B′ (resp. B ≈W B′), then C ′ <S C (resp. C ′ <W C). If both C ′ <S C and
C <S C ′ (resp. <W) then C and C ′ are equally expressive w.r.t. strong (resp. weak) timed bisimilarity,
and we write C ≈S C ′ (resp. C ≈W C ′).

In the sequel we will compare various classes of TPNs and TAs. When refering to language
acceptance we assume that two sets F and R have been given for a TPN (see Definition 7) and
for a TA. We use the following notations:

• B-T PN ε for the set of bounded labeled TPNs with ε-transitions (Definition 7);

• 1-B-T PN ε for the subset of B-T PN ε with at most one token in each place (one safe
TPN);

• B-T PN (≤,≥) for the subset of B-T PN ε where only closed intervals are used;

• T Aε for TA with ε-transitions; TA∗
(≤,≥) for the syntactical subclass of TA that is equiv-

alent to B-T PN (≤,≥) (see (Bérard et al., 2005a)).

T A∗
(≤,≥) is formally defined by:

Definition 15 The subclass T A∗
(≤,≥) of TA is defined by the set of TA of the form (L, l0, X, A, E, Inv)

where :

www.intechopen.com

238 Petri Net. Theory and Applications

Timed Language Acceptance Timed Bisimilarity

≤L T Aε (Cassez and Roux, 2006) ≤W T Aε (Cassez and Roux, 2006)
B-T PN ε =L T Aε (Bérard et al., 2005a) <W T Aε (Bérard et al., 2005a)

≈W 1-B-T PN (≤,≥) (Bérard et al., 2005b)
B-T PN (≤,≥) =L T A∗

(≤,≥) (Bérard et al., 2005b) ≈W T A∗
(≤,≥) (Bérard et al., 2005b)

Table 1. Summary of the Expressiveness Results for TPNs vs. TA

• guards are conjunctions of atomic constraints of the form x ≥ c and invariants are conjunction
of atomic constraints x ≤ c.

• the invariants satisfy the following property; ∀e = (ℓ, γ, a, R, ℓ′) ∈ E, if x 6∈ R and x ≤ c is an
atomic constraint in Inv(ℓ), then if x ≤ c′ is Inv(ℓ′) for some c′ then c′ ≥ c.

In Table 1, �L or �W with �∈ {<,≤}, respectively means “less expressive than” w.r.t. Timed
Language Acceptance and Weak Timed Bisimilariry; the term =L means “equally expressive
as” w.r.t. language acceptance and ≈W “equally expressive as” w.r.t. weak timed bisimilarity.
A consequence of the results in this table is that 1-B-T PN ε and B-T PN ε are equally expres-
sive w.r.t. Timed Language Acceptance i.e., 1-B-T PN ε =L B-T PN ε. An equivalent result
was known for untimed PN (we can always obtain a safe PN that accepts the same language
as a PN) but the counterpart for TPN was proved in (Bérard et al., 2005a).
Surprisingly, bounded TPNs are less expressive than timed automata w.r.t. timed bisimula-
tion. We will see in subsection 4.3 how to translate a TPN into a timed bisimilar TA. Thanks
to this translation, we will use in section 5 the TA obtained to check TCTL properties of the
original TPN.

4.3. From Time Petri Nets to Timed Automata

The relationship between TPNs and TA has not been much investigated before 2000. In (Sifakis
and Yovine, 1996) J. SIFAKIS and S. YOVINE are mainly concerned with compositionality prob-
lems. They show that for a subclass of 1-safe Time Stream Petri Nets, the usual notion of
composition used for TA is not suitable to describe this type of Petri Nets as the composition
of TA. Consequently, they propose Timed Automata with Deadlines and flexible notions of
composition. In (Bornot et al., 1998) the authors consider Petri nets with deadlines (PND)
that are 1-safe Petri nets extended with clocks. A PND is a timed automaton with deadlines
(TAD) where the discrete transition structure is the corresponding marking graph. The tran-
sitions of the marking graph are subject to the same timing constraints as the transitions of
the PND. The PND and the TAD have the same number of clocks. They propose a transla-
tion of safe TPN into PND with a clock for each input arc of the initial TPN. It defines (by
transitivity) a translation of safe TPN into TAD (that can be considered as standard timed au-
tomata). In (Cortès et al., 2000) the authors consider an extension of Time Petri Nets (PRES+)
and propose a translation into hybrid automata. Correctness of the translation is not proved.
Moreover the method is defined only for 1-safe nets.
In another line of work, SAVA (Sava, 2001) considers bounded TPNs where the underlying
Petri net is not necessarily safe and proposes an algorithm to translate the TPN into a timed
automaton (one clock is needed for each transition of the original TPN). However, the author
does not give any proof that this translation is correct (i.e., it preserves some equivalence
relation between the semantics of the original TPN and the computed TA) and neither that
the algorithm terminates (even if the TPN is bounded).

www.intechopen.com

From Time Petri Nets to Timed Automata 239

LIME and ROUX proposed an extension in (Lime and Roux, 2006) of the state class graph
construction that allows to build the state class graph of a bounded TPN as a timed automaton.
They prove that this timed automaton and the TPN are timed bisimilar and they also prove a
relative minimality result of the number of clocks needed in the obtained automaton.
The first two approaches are structural but are limited to Petri nets whose underlying net
is 1-safe. The last two approaches rely on the computation of the state space of the TPN
and are limited to bounded TPNs. In this section, we consider a structural translation from
TPN (not necessary bounded) to TA proposed in (Cassez and Roux, 2006). This extends the
previous results in the following directions: first, we can easily prove that our translation
is correct and terminates as it is a syntactic translation and it produces a timed automaton
that is timed bisimilar to the TPN we started with. Notice that the timed automaton contains
integer variables that correspond to the marking of the Petri net and that it may have an
unbounded number of locations. However timed bisimilarity holds even in the unbounded
case. In case the Petri net is bounded, we obtain a timed automaton with a finite number
of locations and we can check for TCTL properties of the original TPN. Second, as it is a
structural translation it does not need expensive computation (like the State Class Graph) to
obtain a timed automaton. This has a practical application as it enables one to use efficient
existing tools for TA to analyze TPNs.

4.3.1. Translating Time Petri Nets into Timed Automata

In this subsection, we build a synchronized product of timed automata from a TPN so that the
behaviors of the two are in a one-to-one correspondence.
We start with a TPN T = (P, T, •(.), (.)•, M0, (α, β)) with set of places P = {p1, · · · , pm} and
set of transitions T = {t1, · · · , tn}.

Timed Automaton Associated with a Transition

We define one timed automaton Ai for each transition ti of T (see Fig. 2.a). This timed automa-
ton has one clock xi. Also the locations of the automaton Ai give the state of the transition
ti: in location t the transition is enabled; in location t̄ it is disabled and in Firing it is being
fired. The initial location of each Ai depends on the initial marking M0 of the Petri net we
want to translate. If M0 ≥ •ti, then the initial location is t otherwise it is t̄. This automaton
updates an array of integers p (s.t. p[i] is the number of tokens in place pi) shared by all the
Ai’s. This is not covered by Definition 12,but this extended model with integer arrays is very
common (Pettersson and Larsen, 2000) and it does not affect the expressiveness of the model
when the variables are bounded.

The Supervisor

The automaton for the supervisor SU is depicted on Fig. 2.b. The locations 1 to 3 subscripted
with a “c” are assumed to be committed. Committed locations can be simulated by adding an
extra variable: see (Tripakis, 1999) Appendix A for details. This means that no time can elapse
while visiting them. We denote by ∆(T) = (SU | A1 | · · · | An) f the timed automaton associ-
ated to the TPN T . The initial location of the supervisor is 0. Let us define the synchronization
function f with n + 1 parameters (the first element of the vector refers to the supervisor move)
by:

• f (!pre, •, · · · , ?pre, •, · · ·) = prei if ?pre is the (i + 1)th argument and all the other argu-
ments are •,

• f (!post, •, · · · , ?post, •, · · ·) = posti if ?post is the (i + 1)th argument and all the other
arguments are •,

• f (!update, ?update, · · · , ?update) = update.

www.intechopen.com

240 Petri Net. Theory and Applications

t

[xi ≤ β(ti)]
Firing

t̄

α(ti) ≤ xi ≤ β(ti)
?pre

p := p − •ti

p < •ti
?update

?post
p := p + ti

•

p ≥ •ti
?update

xi := 0

p ≥ •ti
?update

p < •ti
?update

?update

0 1c

2c3c

!pre

!update

!post

!update

(a) The automaton Ai for transition ti

(b) Supervisor SU

Figure 2. Automata for the Transitions and the Supervisor

In the sequel, ((s, p), q, v) is such that (s, p) ∈ {0, 1c, 2c, 3c} × Nm is the state of SU, q gives
the product location of A1 × · · · ×An, and v[i], i ∈ [1..n] gives the value of the clock xi .
We will prove in the next subsection that the semantics of ∆(T) is closely related to the se-
mantics of T . For this we have to relate the states of T to the states of ∆(T) and we define the
following equivalence:

Definition 16 (State Equivalence) Let (M, ν) and ((s, p), q, v) be, respectively, a state of ST and
a configuration. Then (M, ν) ≈ ((s, p), q, v) if:

s = 0,

∀i ∈ [1..m], p[i] = M(pi),

∀k ∈ [1..n], q[k] =

{

t if M ≥ •tk,

t̄ otherwise

∀k ∈ [1..n], v[k] = νk.

4.3.2. Soundness of the Translation

We now prove that our translation preserves the behaviors of the initial TPN in the sense
that the semantics of the TPN and its translation are timed bisimilar. Let T be a TPN and
ST = (Q, q0, T,→) its semantics. Let Ai be the automaton associated with transition ti of T
as described by Fig. 2.a, SU the supervisor automaton of Fig. 2.b and f the synchronization
function defined previously. The semantics of ∆(T) = (SU | A1 | · · · | An) f is the TTS

S∆(T) = (Q∆(T), q
∆(T)
0 , A(∆(T)),→).

www.intechopen.com

From Time Petri Nets to Timed Automata 241

Theorem 5 (Timed Bisimilarity) For (M, ν) ∈ ST and ((0, p), q, v) ∈ S∆(T) such that (M, ν) ≈

((0, p), q, v) the following holds:

(M, ν)
ti−→ (M′, ν′) iff

((0, p), q, v)
wi=⇒ ((0, p′), q′, v′) with

wi = prei.update.posti.update and

(M′, ν′) ≈ ((0, p′), q′, v′)

(2)

(M, ν)
d
−→ (M′, ν′) iff

{

((0, p), q, v)
d
−→ ((0, p′), q′, v′) and

(M′, ν′) ≈ ((0, p′), q′, v′)
(3)

Proof. We first prove statement (2). Assume (M, ν) ≈ ((0, p), q, v). Then as ti can be fired
from (M, ν) we have: (i) M ≥ •ti, (ii) α(ti) ≤ νi ≤ β(ti), (iii) M′ = M − •ti + ti

•, and (iv)
ν′k = 0 if ↑enabled(tk, M, ti) and ν′k = νk otherwise. From (i) and (ii) and the state equivalence
we deduce that q[i] = t and α(ti) ≤ v[i] ≤ β(ti). Hence ?pre is enabled in Ai. In state 0 for
the supervisor, !pre is the only possible transition. As the synchronization function f allows
(!pre, •, · · · , ?pre, · · · , •) the global action prei is possible. After this move ∆(T) reaches state
((1, p1), q1, v1) such that for all k ∈ [1..n], q1[k] = q[k],∀k 6= i and q1[i] = Firing. Also
p1 = p − •ti and v1 = v.

Now the only possible transition when the supervisor is in state 1 is an update transition
where all the Ai’s synchronize according to f . From ((1, p1), q1, v1) we reach ((2, p2), q2, v2)
with p2 = p1, v2 = v1. For all k ∈ [1..n], k 6= i, q2[k] = t if p1 ≥ •tk and q2[k] = t̄ otherwise.
Also q2[i] = Firing. The next global transition must be a posti transition leading to ((3, p3),
q3, v3) with p3 = p2 + ti

•, v3 = v2 and for all k ∈ [1..n], q3[k] = q2[k],∀k 6= i and q3[i] = t̄.

From this last state only an update transition leading to ((0, p4), q4, v4) is allowed, with p4 =
p3, v4 and q4 given by: for all k ∈ [1..n], q4[k] = t if p3 ≥ •tk and t̄ otherwise. v4[k] = 0
if q3[k] = t̄ and q4[k] = t and v4[k] = v1[k] otherwise. We then just notice that q3[k] = t̄ iff
p− •ti < •tk and q4[k] = t iff p− •ti + ti

• ≥ •tk. This entails that v4[k] = 0 iff ↑enabled(tk, p, ti)
and with (iv) gives ν′k = v4[k]. As p4 = p3 = p2 + ti

• = p1 −
•ti + ti

• = p − •ti + ti
• using

(iii) we have ∀i ∈ [1..m], M′(pi) = p4[i]. Hence we conclude that ((0, p4), q4, v4) ≈ (M′, ν′).

The converse of statement (2) is straightforward following the same steps as the previous ones.

We now focus on statement (3). According to the semantics of TPNs, a continuous transition

(M, ν)
d
−→ (M′, ν′) is allowed iff ν = ν′ + d and ∀k ∈ [1..n], (M ≥ •tk =⇒ ν′k ≤ β(tk)).

As (M, ν) ≈ ((0, p), q, v), if M ≥ •tk then q[k] = t and the continuous evolution for Ak is
constrained by the invariant xk ≤ β(tk). Otherwise q[k] = t̄ and the continuous evolution is
unconstrained for Ak. No constraints apply for the supervisor in state 0. Hence the result. �

We can now state a useful corollary which enables us to do TCTL model-checking for TPNs
in the next section. We write ∆((M, ν)) = ((0, p), q, v) if (M, ν) ≈ ((0, p), q, v), ∆(ti) =
prei .update.posti.update and also ∆(d) = d . Just notice that ∆ is one-to-one and we can use

∆−1 as well. Then we extend ∆ to transitions by: ∆((M, ν)
e
−→ (M′, ν′)) = ∆((M, ν))

∆(e)
−−−→

∆((M′, ν′)) with e ∈ T ∪ R≥0 (as ∆(ti) is a word, this transition is a four step transition in
∆(T)). Again we can extend ∆ to runs: if ρ ∈ Runs(T) we denote ∆(ρ) the associated run
in Runs(∆(T)). Notice that ∆−1 is only defined for runs σ of Runs(∆(T)), the last state of
which is of the form ((0, p), q, v) where the supervisor is in state 0. We denote this property
last(σ) |= SU.0.

Corollary 2
(

ρ ∈ Runs(T) ∧ σ = ∆(ρ)
)

iff
(

σ ∈ Runs(∆(T)) ∧ last(σ) |= SU.0
)

.

www.intechopen.com

242 Petri Net. Theory and Applications

Proof. The proof is a direct consequence of Theorem 5. It suffices to notice that all the finite
runs of ∆(T) are of the form

σ = (s0, v0)
δ1−→ (s′0, v′0)

w1−→ (s1, v1) · · ·
δn−→ (s′n−1, v′n−1)

wn−→ (sn, vn)

with wi = prei.update.posti.update, δi ∈ R≥0, and using Theorem 5, if last(σ) |= SU.0, there
exists a corresponding run ρ in T s.t. σ = ∆(ρ). �

This property will be used in Section 5 when we address the problem of model-checking TCTL
for TPNs.

5. Model-Checking of TCTL on Time Petri Nets

In this section we introduce a logic to specify properties of real-time systems and show how
we can model-check this logic on bounded TPNs.
We define TCTL (Henzinger et al., 1994) for TPNs. The only difference with the versions
of (Henzinger et al., 1994) is that the atomic propositions usually associated with states are
now properties of markings. For practical applications with model-checkers, we assume that
the TPNs we check are bounded.

Definition 17 (TCTL for TPN) Assume we have a TPN with n places, and m transitions T = {t1,
t2, · · · , tm}. The temporal logic TPN-TCTL is inductively defined by:

TPN-TCTL ::= M ⊲⊳ V̄ | false | tk + c ≤ tj + d | ¬ϕ | ϕ → ψ | ϕ ∃U⊲⊳c ψ | ϕ ∀U⊲⊳c ψ (4)

where M and false are keywords, ϕ, ψ ∈ TPN-TCTL, tk, tj ∈ T, c, d ∈ Z, V̄ ∈ (N ∪ {∞})n and6

⊲⊳ ∈ {<,≤, =, >,≥}.

Intuitively the meaning of M ⊲⊳ V̄ is that the current marking vector is in relation ⊲⊳ with V̄.
The meaning of the other operators is the usual one. We use the familiar shorthands:

true = ¬false

∃♦⊲⊳cφ = true ∃U⊲⊳c φ

∀�⊲⊳c = ¬∃♦⊲⊳c¬φ.

The semantics of TPN-TCTL is defined on timed transition systems. Let T = (P, T, •(.), (.)•,
M0, (α, β)) be a TPN with n places and m transitions and ST = (Q, q0, T,→) the semantics of

T . Let σ = (s0, ν0) −→d1
a1

· · · −→dn
an

(sn, νn) ∈ Runs(T). The truth value of a formula ϕ of
TPN-TCTL for a state (M, ν) is given in Fig. 3.
The TPN T satisfies the formula ϕ of TPN-TCTL, which is denoted by T |= ϕ, iff the first state
of ST satisfies ϕ, i.e., (M0, 0) |= ϕ.
We will see that thanks to Corollary 2, model-checking TPNs amounts to model-checking
timed automata.
Let us assume we have to model-check formula ϕ on a TPN T . Our method consists in using
the equivalent timed automaton ∆(T) defined in Section 4.3. For instance, suppose we want
to check T |= ∀�≤3(M ≥ (1, 2)). The check means that all the states reached within the next

6The use of ∞ in V̄ allows us to handle comparisons like M(p1) ≤ 2 ∧ M(p2) ≥ 3 by writing M ≤
(2, ∞) ∧ M ≥ (0, 3).

www.intechopen.com

From Time Petri Nets to Timed Automata 243

(M, ν) |= M ⊲⊳ V̄ iff M ⊲⊳ V̄
(M, ν) 6|= false
(M, ν) |= tk + c ≤ tj + d iff νk + c ≤ νj + d

(M, ν) |= ¬ϕ iff (M, ν) 6|= ϕ
(M, ν) |= ϕ → ψ iff (M, ν) |= ϕ implies (M, ν) |= ψ
(M, ν) |= ϕ ∃U⊲⊳c ψ iff ∃σ ∈ Runs(T) such that:

(s0, ν0) = (M, ν)

∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ
(

∑
n
i=1 di

)

⊲⊳ c and (sn, vn) |= ψ

(M, ν) |= ϕ ∀U⊲⊳c ψ iff ∀σ ∈ Runs(T) we have:

(s0, ν0) = (M, ν)

∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ
(

∑
n
i=1 di

)

⊲⊳ c and (sn, vn) |= ψ

Figure 3. Semantics of TPN-TCTL

3 time units will have a marking such that p1 has more than one token and p2 more than 2.
Actually, this is equivalent to checking

∀�≤3(SU.0 → (p[1] ≥ 1 ∧ p[2] ≥ 2))

on the equivalent timed automaton. Notice that ∃♦≤3(M ≥ (1, 2)) reduces to

∃♦≤3(SU.0 ∧ (p[1] ≥ 1 ∧ p[2] ≥ 2))

We can then define the translation of a formula in TPN-TCTL to standard TCTL for timed
automata: we denote TA-TCTL the logic TCTL for timed automata.

Definition 18 (From TPN-TCTL to TA-TCTL) Let ϕ be a formula of TPN-TCTL. Then the trans-
lation ∆(ϕ) of ϕ is inductively defined by:

∆(M ⊲⊳ V̄) =
n
∧

i=1

(p[i] ⊲⊳ V̄i)

∆(false) = false

∆(tk + c ⊲⊳ tj + d) = xk + c ⊲⊳ xj + d

∆(¬ϕ) = ¬∆(ϕ)

∆(ϕ → ψ) = SU.0 ∧ (∆(ϕ) → ∆(ψ))

∆(ϕ ∃U⊲⊳c ψ) = (SU.0 → ∆(ϕ))∃U⊲⊳c (SU.0 ∧ ∆(ψ))

∆(ϕ ∀U⊲⊳c ψ) = (SU.0 → ∆(ϕ))∀U⊲⊳c (SU.0 ∧ ∆(ψ))

SU.0 means that the supervisor is in state 0 and the clocks xk are the ones associated with every
transition tk in the translation scheme.

www.intechopen.com

244 Petri Net. Theory and Applications

Theorem 6 Let T be a TPN and ∆(T) the equivalent timed automaton. Let (M, ν) be a state of ST
and ((s, p), q, v) = ∆((M, ν)) the equivalent state of S∆(T) (i.e. (M, ν) ≈ ((s, p), q, v)). Then
∀ϕ ∈ TPN-TCTL:

(M, ν) |= ϕ iff ((s, p), q, v) |= ∆(ϕ).

Proof. The proof is done by structural induction on the formula of TPN-TCTL. The cases of
M ⊲⊳ V̄, false, tk + c ≤ tj + d, ¬ϕ and ϕ → ψ are straightforward. We give the full proof for
ϕ ∃U⊲⊳c ψ (the same proof can be carried out for ϕ ∀U⊲⊳c ψ).

Only if part.

Assume (M, ν) |= ϕ ∃U⊲⊳c ψ. Then by definition, there is a run ρ in Runs(T) s.t. :

ρ = (s0, ν0) −→
d1
a1

(s1, ν1) · · · −→
dn
an

(sn, νn)

and (s0, ν0) = (M, ν), ∑
n
i=1 di ⊲⊳ c, ∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ and (sn, νn) |= ψ.

With corollary 2, we conclude that there is a run σ = ∆(ρ) in Runs(S∆(T)) s.t.

σ = ((l0, p0), q̄0, v0)) =⇒d1
w1

((l1, p1), q̄1, v1)) · · · · · · =⇒dn
wn

((ln, pn), q̄n, vn))

and ∀i ∈ [1..n], ((li, pi), q̄i, vi)) ≈ (si, νi) (this entails that li = 0.)
Since (sn, νn) ≈ ((ln, pn), q̄n, vn)), using the induction hypothesis on ψ, we can assume that
(sn, νn) |= ψ iff ((ln, pn), q̄n, vn)) |= ∆(ψ) and thus we can conclude that ((ln, pn), q̄n, vn)) |=
∆(ψ). Moreover as ln = 0 we have ((ln, pn), q̄n, vn)) |= SU.0 ∧ ∆(ψ). It remains to prove
that all intermediate states satisfy SU.0 → ∆(ϕ). Just notice that all the intermediate states
in σ not satisfying SU.0 between ((li, pi), q̄i, vi) and (((li+1, pi+1), ¯qi+1, vi+1)) satisfy SU.0 →
∆(ψ). Then we just need to prove that the intermediate states satisfying SU.0, i.e., the states
((li, pi), q̄i, vi) satisfy ∆(ϕ). As for all i ∈ [1..n], we have ((li, pi), q̄i, vi)) ≈ (si, νi), with the
induction hypothesis on ϕ, we have ∀i ∈ [1..n], ((li, pi), q̄i, vi)) |= ∆(ϕ). Moreover, again
applying theorem 5, we obtain for all d ∈ [0, di): ((li, pi), q̄i, vi + d)) ≈ (si, νi + d); applying
the induction hypothesis again we conclude that for all d ∈ [0, di) ((li, pi), q̄i, vi + d)) |= ∆(ϕ).
Hence ((l0, p0), q̄0, v0)) |= (SU.0 → ϕ) ∃U⊲⊳c (SU.0 ∧ ψ).

If part.

Assume ((l0, p0), q̄0, v0)) |= (SU.0 → ∆(ϕ)) ∃U⊲⊳c (SU.0 ∧ ∆(ψ)). Then there is a run

σ = ((l0, p0), q̄0, v0)) =⇒d1
w1

((l1, p1), q̄1, v1)) · · · · · · =⇒dn
wn

((ln, pn), q̄n, vn))

with ((ln, pn), q̄n, vn)) |= SU.0 ∧ ∆(ψ) and:

∀i ∈ [1..n],∀d ∈ [0, di), ((li, pi), q̄i, vi)) |= (SU.0 → ∆(ϕ))

As ((ln, pn), q̄n, vn)) |= SU.0, we can use corollary 2 and we know there exists a run in
Runs(T)

ρ = ∆−1(σ) = (s0, ν0) →
d1
a1

(s1, ν1) · · · →
dn
an

(sn, νn)

with ∀i ∈ [1..n], ((li, pi), q̄i, vi)) ≈ (si, νi). The induction hypothesis on SU.0 ∧ ∆(ψ) and
((ln, pn), q̄n, vn)) |= SU.0 ∧ ∆(ψ) implies (sn, νn) |= ψ. For all the intermediate states of ρ we
also apply the induction hypothesis: each ((li, pi), q̄i, vi)) is equivalent to (si, νi) and all the
states (si, νi + d), d ∈ [0, di) satisfy ϕ. Hence (s0, ν0) |= ϕ ∃U⊲⊳c ψ. �

Theorem 6 enables to reduce the model-checking of a TPN-TCTL formula ϕ against a TPN T
i.e., the problem T |= ϕ to a model-checking of TCTL against TA:

Corollary 3 T |= ϕ ⇐⇒ ∆(T) |= ∆(ϕ).

www.intechopen.com

From Time Petri Nets to Timed Automata 245

1

P1_1

P1_2

1
P2_1

P2_2

1

P3_1

P3_2

1

P1
1

P2

1

P3
1

P4
1

P5

1

P4_1
1

P5_1
1

P6_1
1

P7_1

P4_2
P5_2

P6_2 P7_2

1

P6

P 21

1

P8_1

P8_2

1

P9_1

P9_2

1

P10_1

P10_2

T1_1
 [2; 4] T2_1

 [5; 8]

T3_1
 [4; 9]

T3_2

T2_2
T1_2

T4_1
 [1; 6]

T5_1
 [6; 7]

T6_1
 [2; 5] T7_2

 [6; 9]

T7_2T6_2T5_2T4_2

T1
 [10; 10]

T2
 [15; 15]

T3
 [10; 10] T4

 [15; 15]
T5
 [10; 10]

T6
 [15; 15]

T8_1
 [1; 10]

T8_2

T9_1
 [2; 2]

T9_2

T10_1
 [1; 1]

T10_2

Figure 4. A TPN for a Producer/Consumer example in ROMEO

6. Implementation

In this section, we describe some properties of our translation and important implementa-
tion details. Then we report on examples we have checked using our approach and the tool
UPPAAL.

6.1. Translation of TPNs to UPPAAL Input Format

The first step in using our approach is to translate an existing TPN into a product of TA. For
this we use the TPN tool ROMEO (Gardey et al., 2005) that has been developed for the analysis
of TPNs (state space computation and “on-the-fly” model-checking of reachability properties
with a zone-based forward method and with the State Class Graph method). ROMEO has a
GUI (see Fig. 4) to “draw” Time Petri Nets and an export to UPPAAL feature that implements
our translation of a TPN into the equivalent TA in UPPAAL input format7.
The textual input format for TPNs in ROMEO is XML and the timed automaton is given in
the “.xta” UPPAAL input format8. The translation gives one timed automaton for each tran-
sition and one automaton for the supervisor SU as described in Section 4.3. The automata
for each transition update an array of integers M[i] (which is the number of tokens9 in place
i in the original TPN). For example, the enabledness and firing conditions of a transition ti

such that •ti = (1, 0, 0) and ti
• = (0, 0, 1), are respectively implemented by M[0] ≥ 1 and

M[2] := M[2] + 1. Instead of generating one template automaton for each transition, we gen-
erate as many templates as types of transitions in the original TPN: the type of a transition is

7At least version (3.4.7) of UPPAAL is required to read the files produced by ROMEO.
8see http://www.uppaal.com for further information about UPPAAL.
9The actual meaning of M[i] is given by a table that is available in the ROMEO tool via the “Trans-

late/Indices =⇒ Place/Transition” menu; the table gives the name of the place represented by M[i] as
well as the corresponding information for transitions.

www.intechopen.com

246 Petri Net. Theory and Applications

the number of input places and output places. For the example of Fig. 4, there are only three
types of transitions (one input place to one output place, one to two and two to one) and three
templates in the UPPAAL translation. Then one of these templates is instantiated for each tran-
sition of the TPN we started with. An example of a UPPAAL template for transitions having
one input place and one output place is given in Fig. 5; integers B1 and F1 give respectively
the index of the unique input place of the transition, and the index of the output place. The
timing constraints of the transition are given by dmin and dmax. We can handle as well tran-
sitions with input and output arcs with arbitrary weights (on the examples of Fig. 5 the input
and output weights are 1).

In our translation, each transition of the TPN is implemented by a TA with one clock. The
synchronized product thus contains as many clocks as the number of transitions of the TPN.
At first sight, one can think that the translation we have proposed is far too expensive w.r.t. to
the number of clocks to be of any use when using a model-checker like UPPAAL: indeed the
model-checking of TA is exponential in the number of clocks. Nevertheless we do not need to
keep track of all the clocks as many of them are not useful in many states.

6.2. Inactive Clocks

When a transition in a TPN is disabled, there is no need to store the value of the clock for
this transition: this was already used in the seminal paper (Berthomieu and Diaz, 1991). Ac-
cordingly when the TA of a transition is in location t̄ (i.e., t is not enabled) we do not need to
store the value of the clock: this means that many of the clocks can often be disregarded. In
UPPAAL, there is a corresponding notion of inactive clock:

Definition 19 (UPPAAL Inactive Clock) Let A be a timed automaton. Let x be a clock of A and ℓ

be a location of A. If on all paths starting from (ℓ, v) in SA, the clock x is always reset before being
tested then the clock x is inactive in location ℓ. A clock is active if it is not inactive.

notenable

enable

x<=dmax

firing

true , M[B1]>0
update?
x:=0

true , M[B1]>0
update?

M[B1]<1

update?
M[B1]<1
update?

x>=dmin, x<=dmax
pre!
M[B1]:=M[B1]-1post!

M[F1]:=M[F1]+1

update?

Figure 5. A UPPAAL Template Obtained with the “Export to UPPAAL” Feature of ROMEO

www.intechopen.com

From Time Petri Nets to Timed Automata 247

A consequence of the notion of inactive clocks in UPPAAL is that at location ℓ the the con-
straints on the clocks will only contain the active clocks (they can be omitted in the DBM
that represents it). The next proposition (which is easy to prove on the timed automaton of a
transition) states that our translation is effective w.r.t. active clocks reduction i.e., that when a
TA of a transition is not in state t (enabled) the corresponding clock is considered inactive by
UPPAAL.

Proposition 1 Let Ai be the timed automaton associated with transition ti of a TPN T (see Fig. 2,
page 240). The clock xi of Ai is inactive in locations Firing and t̄.

The recent versions of UPPAAL (≥ 3.4.7) computes active clocks syntactically for each automa-
ton of the product. When the product automaton is computed “on-the-fly” (for verification
purposes), the set of active clocks for a product location is simply the union of the set of active
clocks of each component. Again without difficulty we obtain the following theorem:

Theorem 7 Let T be a TPN and ∆(T) the equivalent product of timed automata (see section 4.3). Let
M be a reachable marking of ST and ℓ the equivalent10 location in S∆(T). The number of active clocks
in ℓ is equal to the number of enabled transitions in the marking M.

Thanks to this theorem and to the active clocks reduction feature of UPPAAL the model-checking
of TCTL properties on the network of timed automata given by our translation can be efficient.
Of course there are still examples with a huge number of transitions, all enabled at any time
that we will not be able to analyze, but those examples cannot be handled by any existing tool
for TPN.
In the next subsection we apply our translation to some recent and non trivial examples of
TPNs that can be found in (Gardey et al., 2005).

6.3. Tools for Analyzing TPNs

One feature of ROMEO is to export a TPN to UPPAAL or KRONOS but it was originally devel-
oped to analyze directly TPNs and has many built-in capabilities: we refer to ROMEO STD for
the tool ROMEO with these capabilities (Gardey et al., 2005). TINA (Berthomieu and Verna-
dat, 2006b) is another state-of-the-art tool to analyze TPNs with some more capabilities than
ROMEO STD: it allows to produce an Atomic State Class Graph (ASCG) on which CTL∗ prop-
erties can be checked. Using ROMEO STD or TINA is a matter of taste as both tools give similar
results on TPNs.
Table 2 gives a comparison in terms of the classes of property (LTL, CTL, TCTL, Liveness)
the tools can handle. The columns UPPAAL and KRONOS in ROMEO give the combined capa-
bilities obtained when using our structural translation and the corresponding (timed) model-
checker.
Regarding time performance ROMEO STD and TINA give almost the same results. Moreover
with ROMEO STD and TINA, model-checking LTL or CTL properties will usually be faster than
using ROMEO +UPPAAL: those tools implement efficient algorithms to produce the (A)SCG
needed to perform LTL or CTL model-checking. On one hand it is to be noticed that both
ROMEO STD and TINA need 1) to produce a file containing the (A)SCG; and then 2) to run a
model-checker on the obtained graph to check for the (LTL, CTL or CTL∗) property. This can
be prohibitive on very large examples (see (Cassez and Roux, 2006)).
On the other hand neither ROMEO STD nor TINA are able to check quantitative properties
such as quantitative liveness (like property of equation (5) below) and TCTL which in general

10See Definition 16.

www.intechopen.com

248 Petri Net. Theory and Applications

TINA

ROMEO

ROMEO translation from TPN to TA
ROMEO STD UPPAAL KRONOS

Marking
Reachability

Compute
marking graph

ROMEO-
TCTLc UPPAAL-TCTLc TCTL

LTL SCGa + MCb

CTL (CTL∗) ASCGa + MCb

TCTL –

aSCG = Computation of the State Class Graph ; ASCG = of the atomic SCG.
bMC = requires the use of a Model-Checker on the SCG.
cCorresponds to a subset of TCTL and a special type of liveness defined by formulas of the form

∀�(ϕ =⇒ ∀♦Ψ).

Table 2. What can we do with the different tools and approaches?

cannot be encoded with an observer (when this possible we can translate such a quantitative
property into a problem of marking reachability).

P1

P2

P3

P4

T1 [0, 4]

T2 [2, 2]

T3 [4, 5]

T4 [1, 3]

• •

Figure 6. The TPN Tg

Let us consider the TPN Tg of Fig. 6. The response (liveness) property,

∀�
(

(M[1] > 0 ∧ M[3] > 0 ∧ T1.x > 3) =⇒ ∀♦(M[2] > 0 ∧ M[4] > 0) (5)

where M[i] is the marking of the place Pi, cannot be checked with TINA and can easily be
checked with our method using the translation and UPPAAL. This property means that if we
do not fire T1 before 3 t.u. then it is unavoidable that at some point in the future there is a
marking with a token in P2 and in P4. In UPPAAL we can use the response property template
P -> Q which corresponds to ∀�(P =⇒ ∀♦Q). Using our TPN-TCTL translation we obtain:

(SU.0 and M[1]>0 and M[3]>0 and T_1.x>3) --> (SU.0 and M[2]>0 and M[4]>0)

www.intechopen.com

From Time Petri Nets to Timed Automata 249

6.4. Experimental Results

We just point out that our translation is syntactic and the time to translate a TPN into an
equivalent product of TA is negligible. This is in contrast with the method used in TINA and
ROMEO STD where the whole state space has to be computed in order to build some graph
(usually very large) and later on, a model-checker has to be used to check the property on
the graph. Reports on experimental results on different types of TPNs (cyclic tasks, produc-
ers/consumers and large TPNs) can be found in (Cassez and Roux, 2006).

7. Conclusion

In this chapter, we have presented time Petri Nets (TPNs) and a structural translation from
TPNs to TA. Any TPN T and its associated TA ∆(T) are timed bisimilar.

Such a translation has many theoretical implications. Most of the positive theoretical results
on TA carry over to TPNs. The class of TPNs can be extended by allowing strict constraints
(open, half-open or closed intervals) to specify the firing dates of the transitions; for this ex-
tended class, the following results follow from our translation and from Theorem 5:

• TCTL model checking is decidable for bounded TPNs. Moreover efficient algorithms
used in UPPAAL (Pettersson and Larsen, 2000) and KRONOS (Yovine, 1997) are exact for
the class of TA obtained with our translation;

• it is decidable whether a TA is non-zeno or not (Henzinger et al., 1994) and thus our
result provides a way to decide non-zenoness for bounded TPNs;

• lastly, as our translation is structural, it is possible to use a model-checker to find suffi-
cient conditions of unboundedness of the TPN.

These results enable us to use algorithms and tools developed for TA to check quantitative
properties on TPNs. For instance, it is possible to check real-time properties expressed in the
logic TCTL on bounded TPNs. The tool ROMEO (Gardey et al., 2005) that has been developed
for the analysis of TPN (state space computation and “on-the-fly” model-checking of reach-
ability properties) implements this translation of a TPN into the equivalent TA in UPPAAL

input format.

Our approach turns out to be a good alternative to existing methods for verifying TPNs:

• with our translation and UPPAAL we were able to check safety properties on very large
TPNs that cannot be handled by other existing tools;

• we also extend the class of properties that can be checked on TPNs to real-time quanti-
tative properties.

Note also that using our translation, we can take advantage of all the features of a tool like
UPPAAL: looking for counter examples is usually much faster than checking a safety property.
Moreover if a safety property is false, we will obtain a counter example even for unbounded
TPNs (if we use breadth-first search).

There are currently new features being developed for tools like ROMEO that enables one to
directly check TCTL properties on a TPN without translating it into a TA.

Aknowledgments

The authors wish to thank Didier Lime for his careful reading of this chapter and useful com-
ments to improve many parts of the text.

www.intechopen.com

250 Petri Net. Theory and Applications

8. References

Abdulla, P. A. and Nylén, A. (2001). Timed Petri nets and BQOs. In 22nd International Confer-

ence on Applications and Theory of Petri Nets (ICATPN’01), volume 2075 of Lecture Notes

in Computer Science, pages 53–70, Newcastle upon Tyne, UK. Springer-Verlag.

Alur, R. and Dill, D. L. (1994). A Theory of Timed Automata. Theoretical Computer Science,

126(2):183–235.

Aura, T. and Lilius, J. (2000). A Causal Semantics for Time Petri Nets. Theoretical Computer

Science, 243(2):409–447.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005a). Comparison of the

Expressiveness of Timed Automata and Time Petri Nets. In 3rd International Confer-

ence on Formal Modelling and Analysis of Timed Systems (FORMATS’05), volume 3829

of Lecture Notes in Computer Science, Uppsala, Sweden. Springer-Verlag.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005b). When are Timed Au-

tomata Weakly Timed Bisimilar to Time Petri Nets? In 25th Conference on Foundations

of Software Technology and Theoretical Computer Science (FSTTCS(05), volume 3821 of

Lecture Notes in Computer Science, Hyderabad, India. Springer-Verlag.

Bérard, B., Cassez, F., Haddad, S., Roux, O., and Lime, D. (2005c). Comparison of Different

Semantics for Time Petri Nets. In Xiaoyu, M., Cardoso, J., and Valette, R., editors,

Proceedings of the Third International Symposium on Automated Technology for Verification

and Analysis (ATVA’2005), volume 3707 of Lecture Notes in Computer Science, pages

293–307, Taipei, Taiwan. Springer-Verlag.

Berthomieu, B. and Diaz, M. (1991). Modeling and Verification of Time Dependent Systems

Using Time Petri Nets. IEEE Transactions on Software Engineering, 17(3):259–273.

Berthomieu, B. and Menasche, M. (1983). An Enumerative Approach for Analyzing Time Petri

Nets. In Mason, R. E. A., editor, Information Processing: proceedings of the IFIP congress

1983, volume 9 of IFIP congress series, pages 41–46.

Berthomieu, B. and Vernadat, F. (2003). State Class Constructions for Branching Analysis of

Time Petri Nets. In Proc. 9th Int. Conf. on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’03), volume 2619 of Lecture Notes in Computer Science,

pages 442–457. Springer-Verlag.

Berthomieu, B. and Vernadat, F. (2006a). TINA. http://www.laas.fr/tina.

Berthomieu, B. and Vernadat, F. (2006b). Time Petri Nets Analysis with TINA. In Third Interna-

tional Conference on the Quantitative Evaluation of Systems (QEST 2006), pages 123–124,

Riverside, California, USA. IEEE Computer Society.

Bornot, S., Sifakis, J., and Tripakis, S. (1998). Modeling Urgency in Timed Systems. In de

Roever, W. P., Langmaack, H., and Pnueli, A., editors, International Symposium on

Compositionality: The Significant Difference (COMPOS’97), volume 1536 of Lecture Notes

in Computer Science, pages 103–129, Bad Malente, Germany. Springer-Verlag.

Bouyer, P. (2003). Untamable Timed Automata! In 20th Annual Symposium on Theoretical As-

pects of Computer Science (STACS’03), volume 2607 of Lecture Notes in Computer Science,

pages 620–631, Berlin, Germany. Springer-Verlag.

www.intechopen.com

From Time Petri Nets to Timed Automata 251

Bouyer, P. (2004). Forward Analysis of Updatable Timed Automata. Formal Methods in System

Design, 24(3):281–320.

Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2000). Are Timed Automata Updatable?

In Proc. 12th International Conference on Computer Aided Verification (CAV’00), volume

1855 of Lecture Notes in Computer Science, pages 464–479. Springer-Verlag.

Cassez, F. and Roux, O. H. (2006). Structural Translation from Time Petri Nets to Timed Au-

tomata – Model-Checking Time Petri Nets via Timed Automata. The journal of Systems

and Software, 79(10):1456–1468.

Cortès, L. A., Eles, P., and Peng, Z. (2000). Verification of Embedded Systems Using a Petri

Net based Representation. In 13th International Symposium on System Synthesis (ISSS

2000), pages 149–155, Madrid, Spain.

de Frutos Escrig, D., Ruiz, V. V., and Alonso, O. M. (2000). Decidability of Properties of

Timed-Arc Petri Nets. In 21st International Conference on Applications and Theory of

Petri Nets (ICATPN’00), volume 1825 of Lecture Notes in Computer Science, pages 187–

206, Aarhus, Denmark. Springer-Verlag.

Diaz, M. and Senac, P. (1994). Time Stream Petri Nets: A Model for Timed Multime-

dia Information. In 15th International Conference on Applications and Theory of Petri

Nets (ICATPN’94), volume 815 of Lecture Notes in Computer Science, pages 219–238,

Zaragoza, Spain. Springer-Verlag.

Emerson, E. A. (1990). Temporal and Modal Logic. In Handbook of Theoretical Computer Science,

Volume B: Formal Models and Semantics (B), pages 995–1072. Elsevier.

Gardey, G., Lime, D., Magnin, M., and Roux, O. H. (2005). ROMEO: A Tool for Analyzing

Time Petri Nets. In Proc. 17th International Conference on Computer Aided Verification

(CAV’05), volume 3576 of Lecture Notes in Computer Science, pages 418–423, Edin-

burgh, Scotland, UK. Springer-Verlag. http://romeo.rts-software.org.

Gardey, G., Roux, O. H., and Roux, O. F. (2003). Using Zone Graph Method for Computing

the State Space of a Time Petri Net. In International Conference on Formal Modelling and

Analysis of Timed Systems (FORMATS’03), volume 2791 of Lecture Notes in Computer

Science, Marseille, France. Springer-Verlag.

Gardey, G., Roux, O. H., and Roux, O. F. (2006). State Space Computation and Analysis of

Time Petri Nets. Theory and Practice of Logic Programming (TPLP). Special Issue on

Specification Analysis and Verification of Reactive Systems, 6(3):301–320.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic Model Checking for

Real-Time Systems. Information and Computation, 111(2):193–244.

Jones, N. D., Landweber, L. H., and Lien, Y. E. (1977). Complexity of some problems in Petri

nets. Theoretical Computer Science, 4:277–299.

Khansa, W., Denat, J.-P., and Collart-Dutilleul, S. (1996). P-Time Petri Nets for Manufacturing

Systems. In International Workshop on Discrete Event Systems (WODES’96), pages 94–

102, England. IEEE Computer Society.

Laroussinie, F. and Larsen, K. G. (1998). CMC: A Tool for Compositional Model-Checking of

Real-Time Systems. In Budkowski, S., Cavalli, A. R., and Najm, E., editors, Proceed-

ings of IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques

www.intechopen.com

252 Petri Net. Theory and Applications

for Distributed Systems and Communication Protocols (FORTE’XI) and Protocol Specifica-

tion, Testing and Verification (PSTV’XVIII), volume 135 of IFIP Conference Proceedings,

pages 439–456, Paris, France. Kluwer Academic Publishers.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL in a Nutshell. International Journal of

Software Tools for Technology Transfer, 1(1–2):134–152. http://www.uppaal.com/.

Lilius, J. (1998). Efficient State Space Search for Time Petri Nets. Electronic Notes in Theoretical

Computer Science, 18.

Lime, D. and Roux, O. H. (2006). Model Checking of Time Petri Nets Using the State Class

Timed Automaton. Journal of Discrete Events Dynamic Systems - Theory and Applica-

tions, 16(2):179–205.

Merlin, P. M. (1974). A Study of the Recoverability of Computing Systems. PhD thesis, Dep. of

Information and Computer Science, Univ. of California, Irvine, CA.

Pettersson, P. and Larsen, K. G. (2000). UPPAAL2k. Bulletin of the European Association for

Theoretical Computer Science, 70:40–44.

Pezzè, M. (1999). Time Petri Nets: A Primer Introduction. Tutorial presented at the

Multi-Workshop on Formal Methods in Performance Evaluation and Applications,

Zaragoza, Spain.

Popova, L. (1991). On Time Petri Nets. Journal of Information Processing and Cybernetics, EIK,

27(4):227–244.

Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA. Project MAC Report

MAC-TR-120.

Rokicki, T. G. (1993). Representing and Modeling Circuits. PhD thesis, Stanford University.

Sava, A. T. (2001). Sur la synthèse de la commande des systèmes à évènements discrets temporisés.

PhD thesis, Institut National polytechnique de Grenoble, Grenoble, France.

Sifakis, J. (1980). Performance Evaluation of Systems using Nets. In Brauer, W., editor, Net

theory and applications : Proceedings of the advanced course on general net theory, processes

and systems, volume 84 of Lecture Notes in Computer Science, pages 307–319, Hamburg,

Germany. Springer-Verlag.

Sifakis, J. and Yovine, S. (1996). Compositional specification of timed systems. In Puech, C.

and Reischuk, R., editors, 13th Annual Symposium on Theoretical Aspects of Computer

Science (STACS’96), volume 1046 of Lecture Notes in Computer Science, pages 347–359,

Grenoble, France. Springer-Verlag.

Tripakis, S. (1999). Timed Diagnostics for Reachability Properties. In Cleaveland, R., editor,

Proc. 5th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’99), volume 1579 of Lecture Notes in Computer Science, pages 59–73, Amster-

dam, The Netherlands. Springer-Verlag.

Yovine, S. (1997). KRONOS: A Verification Tool for Real-Time Systems. International Journal of

Software Tools for Technology Transfer, 1(1–2):123–133.

www.intechopen.com

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Franck Cassez and Olivier H. Roux (2008). From Time Petri Nets to Timed Automata, Petri Net, Theory and

Applications, Vedran Kordic (Ed.), ISBN: 978-3-902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/from_time_petri_nets_to_timed_automat

a

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

