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Abstract

Staphylococcus aureus is one of the most common pathogens that cause recurrent, 
chronic, and biofilm-related diseases. Biofilms are the major form of bacterial struc-
tures capable of secreting polysaccharides that provide intrinsic protection against 
environmental stress like high concentrations of antibiotics. This, along with the 
emergence of multidrug-resistant strains, has made S. aureus infections a worldwide 
problem as a result of the inefficiency of the conventional medications. Plant essential 
oils (EOs) are an important source for drug discovery and pharmaceutical develop-
ment due to their diverse biological activities, such as antimicrobial agents. The EOs’ 
microbicide action is extensively reported at the scientific literature and frequently 
associated with bioactive molecules, such as aldehydes and terpenes. However, the 
ability of some EOs to inhibit biofilm formation has been poorly explored and it is still 
unclear how they could be applied in specific treatments against well-known infec-
tions. Therefore, this chapter will address virulence factors and biofilm formation of 
S. aureus, as well as bioprospecting of essential oil as a promising source in the search 
for new bioactive compounds employed in the fight against this microorganism.

Keywords: antibiofilm activity, biofilm-related diseases, essential oil, natural 
products, Staphylococcus aureus

1. Introduction

The emergence of multidrug-resistant (MDR) bacteria is correlated with 
selective pressure caused by the indiscriminate use of antibiotics, which reduces 
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therapeutic options available [1]. Consequently, it leads to a serious public health 
problem frequently associated with increase of healthcare costs and high mor-
bimortality rates [2]. One worldwide recognized bacterial pathogen with the 
ability to develop severe clinical conditions such as pneumonia and septicemia is 
Staphylococcus aureus [3]. Historically, this bacterium has shown a great ability to 
become resistant to several antibiotics [4]. Furthermore, S. aureus has a highlighted 
ability to build surface-associated bacterial communities, called biofilm, being one 
of the most determinant factors for the development of chronic infections, and it is 
the major cause of treatment failure [5–7].

Recently, the use of natural compounds, such as EOs obtained from different 
parts of the plants, is receiving attention for their biological activities, including 
antioxidant, anti-inflammatory, and anticancer effect [8]. Moreover, EOs have 
been frequently mentioned on scientific literature as a promising antimicrobial 
agent, being effective against a wide range of pathogenic bacteria and yeast [9, 10]. 
Thus, this chapter will present a comprehensive overview about general features of 
S. aureus, including virulence factors, antibiotic resistance, and biofilm formation. 
Additionally, it will introduce the EOs used as potential therapeutic approaches 
against biofilm of multidrug-resistant S. aureus.

2. Staphylococcus aureus

2.1 Clinical relevance and virulence factors

Member of the Micrococcaceae family, S. aureus is Gram-positive cocci-shape 
arranged in a grape-like cluster. The cells are anaerobic facultative and catalase-
positive with approximately 0.5–1.5 μm in diameter. Overall, 52 species have been 
described in the staphylococcal genus, S. aureus being, by far, the member most 
clinically relevant [11]. S. aureus genome has been completely sequenced and three 
main components were observed: conserved genes, variable genes, and mobile 
genetic elements (MGE). More than 97% of the S. aureus genome is composed of 
highly conserved genes found in all staphylococcal strains. More than 700 genes are 
variable and their distribution defines different lineages [12, 13]. Apart from the core 
genes, there are several numbers of MGE acquired by horizontal gene transfer by 
bacteriophages, transposons, and plasmids that contribute to genome plasticity and 
evolution, such as the antibiotics resistance and virulence gene dissemination [14].

Widely disseminated in nature, S. aureus is a commensal component of human 
cutaneous and mucosal microbiota as well as an adaptive pathogen that leads to 
numerous invasive and, sometimes, fatal infections [15, 16]. This microorganism 
can be easily spread by the hands or expelled from the respiratory tract. About 
30% of the population is colonized by S. aureus, and this increases to 60% when it 
involves the healthcare environment, implying in either cases high risk of further 
infection [17]. As a pathogen, this bacterium causes various suppurative diseases, 
such as boils, carbuncles, folliculitis, and scalded-skin syndrome [18]. Additionally, 
the lymphatic system and bloodstream contributed to bacterial spread to other 
parts of the body causing osteomyelitis, medical device infection, endocarditis, and 
pneumonia [19]. Furthermore, the presence of a variety of antimicrobial resistance 
mechanisms in some strains leads to treatment failure, increasing healthcare costs 
and risk of death [20].

Bacterial sepsis confirmed by blood cultures in pediatric hospitals, Gram-
positive bacteria (62%) were involved in most of the infection cases. Among them, 
the major reported strains were S. aureus (15%), followed by Staphylococcus coagu-
lase negative (11%) and Streptococcus pneumoniae (10%) [21]. In addition, serious 
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cases of high virulence profile community-associated S. aureus (CA-MRSA) infec-
tions have been reported globally in recent decades [22, 23]. In Taiwan, for instance, 
423 cases of CA-MRSA infections were reported in children, and most of them 
were associated to bone, joint, and deep soft tissue infections and pneumonia [24]. 
Despite each disease profile, the staphylococcal species is frequently correlated with 
both community- and hospital-acquired infections, and it has steadily increased 
[25, 26]. Thus, it is necessary to look for new therapeutic alternatives to minimize 
this public health problem [27].

S. aureus can survive in its hosts as a commensal bacterium for a long time; how-
ever, it can also be considered one of the most relevant human pathogens [28]. This 
bacterium has mechanisms to evade the host's immune response through production 
of a variety of virulence factors, such as adhesins, exotoxins, and hydrolytic enzymes 
(e.g., coagulase, catalase, and staphylokinase), as summarized in Figure 1 [29, 30].

The bacterial adherence to extracellular matrix cells in the host is one of the 
most important steps for colonization. It is mediated mainly by surface-anchored 
proteins classified as MSCRAMM (microbial surface components recognizing 
adhesive matrix molecules) family. Among them, two fibronectin binding proteins, 
FnbA and FnbB, contribute considerably to epithelial tissue colonization in vari-
ous pathological manifestations and medical device-related infections [31]. Other 
cell surface protein related in adhesion mechanisms are named clumping factor 
A and B (ClfA and ClfB). The first one has a highlighted ability to interact with 
soluble proteins, fibrinogen, and fibrin, present in blood plasma. These surface 
components aid the microorganism to interact with plasma protein-coated bioma-
terials and, consequently, make possible the colonization and biofilm formation on 
medical devices [32]. The ClfB is frequently associated to nasal colonization due to 
high affinity to cornified envelope of the nostrils, which promotes the formation 
of skin abscesses by binding to the protein loricrin [33]. It is worth mentioning 
genes capable of encoding proteins on the cell surface, cna (collagen adhesin), 
ebp (elastin-binding protein), bbp (bone sialoprotein-binding protein), and eno 
(laminin-binding protein), closely related to pathogenesis of implant infections 
caused by S. aureus [34–36].

2.2 Antibiotic resistance and biofilm formation

Historically, infections caused by MDR S. aureus strains have been often 
reported worldwide. This microorganism has a notable ability to acquire systems 
of antibiotics inactivation. Production of reduced-affinity penicillin binding, 

Figure 1. 
Illustration of virulence factors produced by S. aureus.
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ribosomal active site methylation, and efflux pumps that remove the antibiotic from 
the bacterial cell are the most cited mechanisms of antibiotic resistance developed 
by S. aureus cells [37]. The isolation of antibiotic-resistant strains began after the 
introduction of penicillin and methicillin into clinical practice, when resistant 
lineages, known as methicillin-resistant S. aureus (MRSA), were reported in 1950s 
and 1960s, respectively [38]. This resistance profile is mediated by mecA and mecC 
genes, which encode penicillin-binding protein 2a (PBP2a) in cell-wall synthesis. 
Those mec gene complexes are carried in an MGE known as the staphylococcal 
cassette chromosome mec (SCCmec), which can be acquired by horizontal gene 
transfer among related species [39].

Subsequently, vancomycin was used as an alternative to cases of MRSA infec-
tion [40]. However, the constant use of this antibiotic leads to the emergence of 
vancomycin-resistant S. aureus (VRSA) strains, first detected in 2002 [41]. Due to 
the fact that VRSA strains are generally also resistant to teicoplanin, the use of other 
abbreviations has been suggested: GISA (S. aureus of intermediate sensitivity to 
glycopeptides) and GRSA (S. aureus glycopeptide resistant) [42]. Moreover, some 
strains presented a relevant phenomenon known as heterogeneous resistance (het-
eroresistance) to vancomycin, where they have a mechanism of tolerance against 
this antibiotic. These strains, called hVISA, display a vancomycin-susceptible 
profile by microdilution assay; however, some individual cells into bacterial com-
munity might exhibit VRSA features [43].

Furthermore, the ability of some microorganisms to form cellular agglomerates, 
such as biofilms, contributes way more for antibiotic resistance. In summary, biofilm 
is a three-dimensional community of microorganisms covered and embedded in a 
self-produced matrix of extracellular polymeric substances (EPS) [44]. Such mul-
ticellular structure provides intrinsic protection for biofilm-embedded cells against 
hostile environments, for instance extreme temperature and pH, high salinity and 
pressure, poor nutrients, and antibiotics [45–47]. Microorganisms that grow on 
biofilms often exhibited different physiology profile from planktonic cells, especially 
in terms of their response to antibiotic treatment [48]. Although biofilm lifestyle 
can arise from a single cell, differential environmental conditions throughout the 
community can potentiate the development of distinct subpopulations. Gradients 
in oxygen, nutrients, and electron acceptors can cause heterogeneous gene expres-
sion throughout a biofilm. This communication between these bacterial cells, called 
quorum sensing, mediated the genes expression and activate virulence factors [49].

S. aureus has a great capacity to form biofilms on human body tissues and 
medical devices, increasing the risk of invasive infections [50]. It is estimated 
that S. aureus causes about 40–50% of prosthetic heart valve infections, 50–70% 
of catheter biofilm infections, and 87% of bloodstream infections [24]. The main 
stages of biofilm formation consist of four sequential steps: attachment, forma-
tion of microcolonies, accumulation or maturation, and detachment or dispersal 
(Figure 2) [51]. Firstly, planktonic cells adhere to biotic or abiotic surfaces and 
further proliferate into sticky aggregations called microcolonies. The EPS produced 
by bacterial cells during biofilm maturation serves as scaffold for establishing this 
three-dimensional architecture, also known as mushroom-like structures. Upon 
reaching a specific cell density, a mechanism is triggered to initiate EPS degrada-
tion that releases cells embedded into biofilm to disperse and reinitiate the biofilm 
formation at distal sites [7].

S. aureus shows a variety of adhesins that mediate attachment to host factors, 
essential for biofilm formation [48]. These proteins are surface-associated by dif-
ferent means, such as ionic or hydrophobic interactions, such as autolysin, SERAM 
(secretable expanded repertoire adhesive molecules) proteins, membrane-spanning 
proteins, and the polysaccharide intercellular adhesin (PIA) [52]. It is worth to 
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highlight that the presence of the ica gene located in the icaADBC (intercellular 
adhesion [ica]) operon works like a genetic determinant that contributes for biofilm 
establishment [53]. This genetic element can mediate the production of an extra-
cellular mucopolysaccharide composed mainly of N-acetylglucosamine, which is 
associated to adhesion and colonization of several surfaces [54, 55].

Thus, several steps regarding biofilm formation of S. aureus might be considered 
as target to antibiofilm approaches. As many conventional antimicrobial agents 
have no satisfactory effect against mature biofilms, EOs already used for hundreds 
of years as a natural medicine to combat a variety of infections became a great 
antimicrobial alternative. The EOs are made up of various compounds, and it is 
further believed that this makes it difficult to develop bacterial resistance compared 
to antibiotics that have only one target action, making it attractive to fight MDR 
biofilm-forming bacteria [56]. Then, such attributes qualify the EOs as an important 
product from natural source to be explored by pharmaceutical industry [57, 58].

3. Essential oils

3.1 General aspect

Essential oils are compounds obtained from the secondary metabolism of the 
plants. They are characterized as complex mixtures of volatile compounds abundant 
in aromatic plants found in different parts of the plant, including leaves, flowers, 
stem, roots, seeds, and fruits [59]. There is a diversity of these substances described 
in the literature in commercial use, such as in perfumes, pharmaceuticals, cosmet-
ics, insecticides, and food additives [60].

Generally, they are oily-looking liquids at room temperature of complex mix-
tures of volatile lipophilic substances, usually with pleasant scent. In water, EOs 
have a limited solubility, which allows their separation by steam or water distil-
lation. Other methods to obtain EOs include cold-press extraction used for citrus 
peels, separation by solubility using organic solvents, and through supercritical 
fluid extraction [61]. They are usually unstable against environmental factors 
such as light, temperature, water activity, and salinity, affecting their constitu-
tion, contributing to the appearance of chemotypes with particular compositions. 
Depending on the technique used in the course of a separation, reactions such as 
ester hydrolysis, autoxidation, and rearrangements may occur, leading to the forma-
tion of artifacts and modifying their biological activity [62].

Figure 2. 
General steps of S. aureus biofilm formation.
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Compounds included in the EOs are produced in the cytoplasm and plastids 
of plant cells through the action of terpene synthase enzymes (TPSs), in which 
they use substrates from two pathways involved in the synthesis of terpenes: the 
mevalonate (MVA) and the methyl-eritritol phosphate (MEP) pathways [63]. They 
are localized and stored in complex secretory structures, such as glands, secretory 
cavities, hairs or trichomes, epidermal cells, internal secretory cells, and the secre-
tory pockets [64]. Many of these substances are now known to be directly involved 
in the defense or attraction mechanisms of plants and often show interesting 
 biological activities [65].

Despite containing two or three main components at a level of 20–70%, EOs 
are very complex mixtures of substances. In general, the majority components are 
formed by terpenes and phenylpropanoids [66]. In the very first definitions of EOs, 
these were frequently identified with terpenes, principally mono- and sesquiter-
penes. Other substances have also been identified as alcohols, aldehydes, ketones, 
phenols, esters, ethers, oxides, peroxides, furans, organic acids, lactones, couma-
rins, sulfur compounds, anthraquinones, and alkaloids [61]. In the mixture, such 
compounds come in different concentrations. Usually, one of them is the majority 
compound, with others in lower grades and some in very low quantities (trace). EOs 
are composed of volatile hydrocarbons, and they may contain oxygen, sulfur, and 
halogens (rare) in their chemical structure [67]. In a reduced number of species, the 
predominant components are aromatic molecules, and these include thyme (thymol 
and carvacrol), peppermint (menthol), and anise (anethol) [68].

3.2 Antimicrobial and antibiofilm potential

Humans have used EOs for thousands of years, not only as aromatic extracts 
and for beauty care and culinary uses, but also in folk medicine, due to their many 
different pharmacological activities, such as antiseptic, anti-inflammatory, and 
analgesic properties [65]. Some of the EOs, and their components, have dem-
onstrated the relevant antimicrobial potential against a wide range of microbial 
pathogens [69]. Additionally, Gram-positive bacteria, such as S. aureus, seem to be 
much more susceptible to EOs than Gram-negative cells, probably due to cellular 
surface constitution. Gram-positive has only the inner membrane and a cell wall 
that allows hydrophobic molecules to easily penetrate into the cells. For instance, 
phenolic compounds have a dose-dependent effect, at low concentrations they 
interfere with enzymes involved in energy production, and at high amounts they 
can denature proteins [70, 71].

The broad-spectrum activity of EOs is related to the diverse chemical reac-
tions of aldehydes, phenolic compounds, and terpenes, synthesized from second-
ary metabolism by different plant parts [10]. The EO action is attributed to the 
ability of their constituents to interact with the cell membrane and consequently 
disturb the microbial integrity, leading to cell death [72]. However, EO bioactive 
components can have several cellular targets, and they are mainly associated 
with cytoplasmic coagulation, inhibition of ATP-production enzymes, altera-
tion in ion transport, cell-wall damage, and bacterial membrane destruction 
(Figure 3) [73].

The emergence of MRD pathogens has caused an interesting shift from the oner-
ous development of novel classes of antibiotics to the more straightforward applica-
tion of synergism or combinatory therapy in the hope of reviving the efficacy and 
effectiveness of existing antibiotics [74]. Several studies have demonstrated that 
there was synergetic effect when two or more EOs are mixed together. Moreover, 
there are also reports of synergistic activity of EOs when used in combination 
with well-known antibiotics. When blended with other antimicrobial agents, the 
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constituents of EOs can unlock the cell membrane channels, thus opening the pas-
sage of antimicrobial agents to reach their target sites [75].

The capacity of some EOs to inhibit biofilm formation has been less explored; 
however, some reports suggested their utilization as potent inhibitor of virulence 
factors and biofilm formation [76]. So far, a plethora of potential antibiofilm 
agents, mainly inspired by natural products, has been developed and shown great 
promise in either facilitating the dispersion of preformed biofilms or inhibiting the 
formation of new biofilms in vitro [77]. In contrast to conventional antibiotics, the 
recently developed antibiofilm molecules do not directly affect bacterial survival 
and thus the expectation is that resistance to these molecules will not readily 
occur [77].

Table 1 shows some studies based on the S. aureus antibiofilm activity of OEs 
extracted from several plant sources. The EO action on biofilm inhibition and dis-
persal can be related to reactivity, hydrophobicity, and the diffusion rate of the EO 
in the matrix, as well as the biofilm composition and structure [78]. Same studies 
correlated sublethal concentrations of EOs with their capability to inhibit the first 
steps of biofilm formation. The main constituents of OE can act by several ways to 
disturb the biofilm development, such as blockage of the quorum-sense system, 
inhibition of the flagellar gene transcription, or through interference with bacterial 
motility [71].

Antibiofilm agents can have different therapeutic applications depending on 
their effects on the biofilm: compounds that interfere with biofilm formation could 
be exploited in the prophylaxis of implant surgery or for the coatings in medical 
devices, whereas agents able to disperse biofilm structure could be administered in 
combination with conventional antibiotics for the treatment of biofilm-associated 
infections [96]. Despite the growing number of new potent EO-based antibiofilm 
compounds described, there is still a great challenge in the development of antib-
iofilm drugs. Once the EO compounds, which has such activity, discovered so far 
need further optimizations to improve potency for it become one clinical candidate 
for such approach. Other EO features such as stability, volatility, encapsulation, and 
optimal dosage should be considered for the development of EO-based antibiofilm 
drugs. However, it is expected that in the coming years some of these compounds 
would be translated into antibiofilm drugs.

Figure 3. 
General antibacterial mechanisms of essential oils.
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4. Conclusion

Due to the emergence of multiresistant strains and biofilm formation, there is 
an urgent need to find effective alternatives against S. aureus. Thus, EOs became 
a promising alternative for treatment and prophylaxis of infections caused by 
S. aureus. Many EOs have proven to be effective antimicrobials and antibiofilm, 

Scientific name Plant part Major chemical compounds Resistant 

phenotype

Ref.

Artemisia absinthium Aerial 1,8 Cineole, methyl chavicol, 
camphor

MRSA, 
MRSAMupR

[79]

Artemisia dracunculus Aerial Methyl chavicol, methyl 
eugenol

MRSA, 
MRSAMupR

[79]

Artemisia longifolia Aerial Camphor, 1,8-cineole MRSA, 
MRSAMupR

[79]

Artemisia frigida Aerial 1,8-cineole, methyl chavicol, 
camphor

MRSA, 
MRSAMupR

[79]

Cinnamomum 
zeylancium

Bark and 
leaves

Cinnamaldehyde MRSA [80]

Cymbopogon citratus Fruit Ethanolic compounds MSSA 
MRSAMupR

[80]

Cymbopogon nardus Leaves Eugenol, cinnamaldehyde, 
citral, geraniol

MSSA, MRSA [80, 81]

Eucalyptus globulus Aerial Eucalyptol, [+] spathulenol, 
α-pinene

MRSA, MSSA [82]

Lippia alba Aerial Geranial, neral MSSA [83]

Mentha piperita Aerial Menthol, menthone, menthyl 
acetate

MRSA, MSSA [84]

Melaleuca alternifolia Aerial α-Terpineol, terpinen-4-ol MSSA [85]

Myrtus communis Leaves Eugenol, α-terpineol, 
γ-terpinene

MSSA [86]

Ocimum gratissimum Leaves Eugenol, 1,8-cineole MRSA, MSSA [87]

Origanum vulgare Leaves and 
Arial

1-Terpineol, sabinene, 
γ-terpinene

MRSA, MSSA [88, 89]

Piper nigrum Leaves Limonene, sabinene, β-pinene MSSA [90]

Rosmarinus officinalis Leaves and 
flower

1,8-cineol, camphor, α-pinene MSSA [91]

Satureja hortensis Leaves β-cubebene, limonene, 
α-pinene

MSSA, MRSA [92]

Satureja montana Leaves Carvacrol, p-cymene, 
δ-terpinene

MRSA [93]

Syzygium aromaticum Aerial Eugenol, caryophyllene MSSA [90]

Thymus vulgaris Aerial p-Cymene, γ-terpinene MRSA, MSSA [82, 94]

Thymus daenensis Aerial Carvacrol, γ-terpinene MSSA [92]

Zataria multiflora Leaves Thymol, carvacrol, 
rho-cymene

MRSA, MSSA [95]

Table 1. 
Summarized antibiofilm activity of EOs against MDR S. aureus.
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